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Abstract

Objective

Epidemiological studies suggest vitamin D deficiency as a potential risk factor for rheuma-

toid arthritis (RA) development, a chronic autoimmune disorder highly prevalent in indige-

nous North American (INA) population. We therefore profiled the circulating levels of 25-

hydroxyvitaminD [25(OH)D], an active metabolite of vitamin D, in a cohort of at-risk first-

degree relatives (FDR) of INA RA patients, a subset of whom subsequently developed RA

(progressors).

Methods

2007 onward, serum samples from INA RA patients and FDR were collected at the time of a

structured baseline visit and stored at -20˚C. Anti-citrullinated protein antibodies (ACPA), 25

(OH)D, hs-CRP, vitamin-D binding protein (VDBP) and parathyroid hormone (PTH) levels

were determined using ELISA and rheumatoid factor (RF) seropositivity was determined by

nephelometry.

Results

We demonstrate that 25 (OH) D concentrations were lower in winter than summer (P =

0.0538), and that serum 25(OH)D levels were higher in samples collected and stored after

2013 (P<0.0001). Analysis of samples obtained after 2013 demonstrated that 37.6% of

study participants were 25(OH)D insufficient (<75nmol/L). Also, seropositive RA patients

and FDR had lower 25(OH)D levels compared to ACPA-/FDR (P<0.05, P<0.01 respec-

tively). Linear regression analysis showed 25(OH)D insufficiency was inversely associated

with presence of RA autoantibodies. Longitudinal samples from 14 progressors demon-

strated a consistent increase in 25(OH)D levels at the time they exhibited clinically detect-

able joint inflammation, without any significant change in VDBP or PTH levels. Spearman

rank correlation analysis showed significant association between 25(OH)D and PTH levels,

both in RA patients and progressors at RA onset time.
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Conclusion

We demonstrate that 25(OH)D levels in serum increased at RA onset in progressors. The

potential role that vitamin D metabolites and their downstream effects play in RA transition

requires further investigation.

Introduction

RA is a systemic autoimmune inflammatory disorder that disproportionately affects indigenous

North American (INA) population [1]. The reasons for this are incompletely understood and

appear to relate to complex gene-environment interactions that initiate a break in immune toler-

ance and then accelerate the development of systemic and articular inflammation in susceptible

individuals[2, 3]. Studies of the preclinical phase of RA have demonstrated seropositivity for RA

autoantibodies such as rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPA),

elevations in pro-inflammatory cytokines and the presence of aberrant epigenetic processes [2–4].

A role for lifestyle habits and diet as risk factors for the development of RA has been pro-

posed [5, 6]. To date, the best documented lifestyle risk factor for RA development is tobacco

smoking as described in multiple populations worldwide [7]. Several dietary risk factors have

also been studied in epidemiologic and cohort studies[8, 9]. Since vitamin D deficiency has

been shown to be prevalent in patients with early and established RA and an association with

disease activity has been demonstrated, its potential role as a risk factor for RA development

has been hypothesized [8, 10]. Currently, there are limited studies that can define this associa-

tion beyond any reasonable doubt. Existing literature suggests that lower vitamin D intake is

associated with increased RA risk, while hypovitaminosis D affects disease activity score,

bone-mass index, and regulatory T-cell proliferation in treatment-naïve RA patients[10].

Biologically synthesized inside the epidermis due a UV photolysis, vitamin D is hydroxylated

by a family of cytochrome P450 enzymes called 25-hydroxylases to form 25(OH)D, the most pre-

dominant circulating form of vitamin D metabolite. 25(OH)D is further hydroxylated in the kid-

ney and other tissues to form 1,25(OH)2D, the most biologically active form of vitamin D

involved in maintenance of bone density, calcium absorption, and immunomodulation, includ-

ing regulation of the metabolic phenotype of innate and adaptive immune cells [11]. Vitamin D

inhibits the differentiation of tissue-resident antigen-presenting cells (APCs) like dendritic cells

(DCs) and macrophages from monocytes and prevents their maturation. Alternatively, it pro-

motes the formation of tolerogenic DCs from bone marrow derived DCs. Active vitamin D is

also shown to affect the polarization and activation of CD4+ T lymphocytes, inhibit IL-17 pro-

duction from Th17 cells. induced regulatory T-cells and inhibit the production of pro-inflamma-

tory cytokines and chemokines. Additionally, 1,25(OH)2D also suppresses the differentiation of

human B-cells and stimulates the production of immunomodulatory host-defense proteins such

as LL-37 [8, 10, 12, 13]

In the current study, we evaluated the circulating levels of 25(OH)D, the active metabolite

of vitamin D, in a cohort of first-degree relatives (FDR) of INA RA patients, and attempted to

relate these levels to the onset of clinically detectable RA in individuals who ultimately devel-

oped disease.

Methods

Study design

INA study participants were recruited from Cree, Ojibway, and Ojicree communities in Cen-

tral Canada [14, 15]. The Biomedical Research Ethics Board (BREB) of the University of
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Manitoba approved the overall design of the study and consent forms (Ethics: 2005:093, Proto-

col: HS14453). The conduct of the study was guided by the principles of Community Based

Participatory Research, a cornerstone of the Canadian Institutes of Health Research guidelines

for Aboriginal health research (http://www.cihr-irsc.gc.ca/e/29134.html). The study partici-

pants provided informed written consent after the study was explained to them in detail, with

the help of an INA translator from their community, where necessary. The consent form was

approved by the University of Manitoba BREB. For this study, recruitment of study partici-

pants was initiated in 2006 and ended in 2019. Study participants were recruited from 2006 to

2019. For the cross-sectional study, the baseline serum samples of the following 3 groups were

identified: (1) ACPA-positive RA patients, all of whom met the 2010 ACR/EULAR criteria, (2)

ACPA-positive first-degree relatives (FDR) without any clinical evidence of joint or systemic

inflammation and whose serum had detectable levels of ACPA (Table 1), and (3) unaffected

ACPA-negative FDR. Where possible, one sample from the winter and one from the summer

for each FDR was included in the analysis. A subset of FDR who were followed longitudinally

into RA onset, hereby referred to as “progressors”, had serum samples from several preclinical

time points available for analysis, along with a sample from the study visit where they were

first noted to have the onset of joint inflammation (referred as transition point). This was

defined as the presence of one or more swollen joints deemed by the study rheumatologist

(HEG) to represent active synovitis [16].

Sample collection, storage and immunoassays

For this study, we used data and biological samples were obtained from study participants

between 2007 and 2018. Venous blood was collected into SST™ serum separation tubes (BD

Vacutainer Systems) and centrifuged for serum separation as per the manufacturer’s instruc-

tions. Serum was stored at -20˚C until further use. C-reactive protein (CRP) levels were mea-

sured using a human high-sensitivity CRP (hs-CRP) ELISA kit (Biomatik, Canada) as per the

manufacturer’s instructions. ACPA was detected using the BioPlex1 2200 System anti-CCP

Table 1. Clinical characteristics of FDRs and RA patients—All values are reported as median (range).

RA = Rheumatoid Arthritis, RF = rheumatoid factor, anti-CCP = anti cyclic citrullinated protein antibody, CRP = C-

reactive protein, NA = not applicable, BMI = body mass index.

FDR

(N = 77)�
RA

(N = 56)

P-value

Age, mean + SD (years) 45.6 + 12.45 49.22 + 13.11 0.1026d

Sex (female/male) 54/23 45/11 0.186$

DAS28 scores,

mean + SD

- 3.5 + 1.2 -

CRP titer, mg/L, mean + SD 4.8 + 4.51 10.82 +15.2 0.0035 d

RF titer, IU/mL mean + SD 61.5 + 221.16 563.6 + 806 <0.0001d

Anti-CCP titer, U/mL, mean + SD 42.6 + 86.72 169.1 + 109 <0.0001d

BMI, kg/m2,

mean + SD

30.7 + 7.44 30.82 + 6.9 0.7125d

CCP-positive (%) 24 (31.1) 44 (78.6) <0.0001$

RF-positive (%) 17 (22) 48 (85.7) <0.0001$

CCP and RF Positive (%) 9 (11.6) 37(66) <0.0001$

$Analyzed using Chi-square test
dAnalyzed by Mann-Whitney U test

�Do not include progressors

https://doi.org/10.1371/journal.pone.0219109.t001
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reagent kit (Bio-Rad, US) and cutoff levels used were according to the manufacturer’s instruc-

tions. Concentrations of 25(OH)D (OKEH02569; Aviva Systems Biology), PTH (ab230931;

Abcam) and VDBP (DVDBP0B; R&D Systems) were measured using ELISA kits as per the

manufacturer’s instructions. For analysis, serum concentrations of 25(OH)D < 75 nmol/L

were considered to be vitamin D insufficient, while BMI< 30 were considered non-obese and

CRP < 3mg/mL were considered normal [17].

Data analysis & statistics

GraphPad Prism version 8.2 and SPSS 25.0 for windows (IBM Corp, USA) were used for data

analysis and graphical data representation. Continuous variables were presented as mean +

SD. Non-parametric Kruskal-Wallis test with Dunn’s post-hoc method, repeated measures

ANOVA with Greenhouse-Geisser correction, independent samples T-test or Wilcoxon

matched pairs signed rank T-test were used for conducting comparisons as required and P-
values< 0.05 were considered as statistically significant. Linear regression analysis was per-

formed to identify an association model with predictive risk factors of RA.

Results

Characteristics of the study participants

The demographic and clinical characteristics of the study cohort are shown in Tables 1 and 2.

Most of the study cohort in all groups were females and the mean age was 47.8 + 13.2years

(mean + SD), although the mean age of the progressors was younger than the rest of the

cohort. RA patients (N = 56), as a group, had higher CRP and autoantibody levels (both anti-

CCP and RF) than the FDR groups (Table 1). All of the RA patients were on disease-modifying

anti-rheumatic drugs (DMARD) and the mean DAS28 score was 3.5 + 1.2 (Table 1). FDRs

were further categorized as ACPA-/FDR (N = 53) and ACPA+/FDR (N = 54) based on their

positivity for anti-CCP antibodies (Table 2). Our study cohort also included FDR who pro-

gressed to develop RA while being followed longitudinally in the study (progressors; N = 14).

The 14 progressors had a median age of 32 (23–68) years at the time they developed inflamma-

tory arthritis (Table 2).

Table 2. Clinical characteristics of ACPA-/FDRs, ACPA+/FDRs and progressors—All values are reported as median (range). RA = Rheumatoid Arthritis,

RF = rheumatoid factor, anti-CCP = anti cyclic citrullinated protein antibody, CRP = C-reactive protein, NA = not applicable, BMI = body mass index.

ACPA-/FDR (N = 53) ACPA+/FDR (N = 24) P-value Progressors (N = 14)

Age, mean + SD, years 46.1 + 12.5 48.1 + 13.42 0.6208d 41.4 + 12.7

Sex (female/male) 35/18 19/5 0.108$ 11/3

Age at transition, mean + SD, years - - - 35.2 + 11.8#

Disease duration, mean + SD, years - - - 6.1 + 2.6

CRP titer, mg/L, mean + SD 4.7 + 4.77 4.9 + 3.97 0.6362d 11.2 + 11.7#

RF titer, IU/mL, mean + SD - 147.1 + 387.1 0.01d 471.4 + 610.2#

Anti-CCP titer, U/mL, mean + SD 4.5 + 5.66 126.7 + 118.52 <0.0001d 366.9 + 273.7#

BMI, kg/m2, mean + SD 31.4 + 8.13 28.9 + 5.2 0.3265d 28.4 + 7.47#

CCP-positive (%) 0 24 (100) <0.0001$ 13 (92.8) #

RF-positive (%) 8 (15%) 9 (37.5) 0.061$ 12 (85.7) #

CCP and RF Positive (%) 0 9 (37.5) <0.0001$ 12 (85.7) #

$Analyzed using Chi-square test
dAnalyzed by Mann-Whitney U test
#Values in samples collected at the time of RA onset

https://doi.org/10.1371/journal.pone.0219109.t002
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Effect of storage time and seasonal variation on circulating levels of 25

(OH)D

As shown in Tables 3 and 4, mean serum 25(OH)D levels were higher in summer than winter

within the entire study population. Further, mean serum concentrations of 25(OH)D were sig-

nificantly higher in samples collected and stored after 2013 (storage period< 5yrs) compared

to samples collected before 2013 (storage period > 5yrs, Table 4). Based on this, we corrected

for the duration of storage by excluding samples collected and stored before 2013.

When we analyzed only samples obtained after 2013, we further observed a trend towards

higher mean 25(OH)D levels during summer months (April-September) compared to winter

months (October-March) in the ACPA- FDR group (140.29 +/- 78.18 vs 110.8 +/- 51.91

(mean +/- SD); P = 0.129). Based on these considerations, our subsequent comparisons

between groups were based exclusively on samples gathered after 2013 during the summer

months.

Circulating levels of 25(OH)D are lower in RA and ACPA+ FDR compared

to ACPA- FDR

We compared circulating 25(OH)D levels in RA patients, ACPA+ FDR, and ACPA- FDR (Fig

1). As a group, RA patients and ACPA+ FDR demonstrated significantly lower levels com-

pared to the ACPA- FDR group (87.48 +/- 32.76 vs 87.98 +/- 59.06 vs 125.86 +/- 67.59 (mean

+/- SD); P = 0.001). There was no significant difference between RA patients and ACPA+ FDR

in their circulating levels of 25(OH)D.

We performed a linear regression analysis to explore potential associations between circu-

lating levels of 25(OH)D and preclinical RA risk factors. In this analysis, circulating 25(OH)D

had a significant inverse association with anti-CCP antibody levels (β = -0.317; P = 0.005) and

positive association with RF antibody levels (β = 0.266; P = 0.017). No other association

reached statistical significance (Table 5).

Circulating levels of 25(OH)D rise in FDR who progressed to develop RA

We tested all available longitudinal samples (before and after 2013) from 14 progressors who

ultimately developed RA for levels of 25(OH)D and VDBP (Fig 2). Samples obtained before

(labelled as T-5, T-4, T-3, T-2 and T-1), and the sample obtained at the time of IA diagnosis

(called as T0) were tested for each progressor. Compared to both pre-RA samples (T2 and T1),

25(OH)D levels in the RA onset sample (T0) increased over time in most progressors

(P = 0.001) as they approached IA transition point (Fig 2A and 2B). 25 (OH) D were signifi-

cantly higher at T0, compared to pre-transition points T-1 and T-2 (p = 0.0010 and p = 0.0017

respectively). Mean time difference between points -1 and 0 was ~19.79 + 10.16 months (mean

+ SD), while the time difference between points -2 and 0 was ~44.75 + 20.18 months (mean

+ SD) respectively (Fig 2B).

Because of the duration of storage effect described above, we further analyzed only samples

from progressors who had all of their samples collected after 2013 (n = 8). In this subset, the

mean time difference between T-1 and T0 was ~18.75 + 12.19 months (mean + SD), while the

Table 3. Effect of season on the distribution of 25(OH)D levels in all the study participants. SD = standard deviation.

Summer Winter

Total N Mean SD Total N Mean SD

Vit D (nmol/L) 131 82.0 61.4 55 57.85 58.65

https://doi.org/10.1371/journal.pone.0219109.t003
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time difference between T-2 and T0 was ~50.0 + 25.14 months (mean + SD) and 29.71 + 16.3

months (mean + SD) between pre-transition points -1 and -2 respectively. This analysis

showed that the rise in 25(OH)D levels at the time of IA diagnosis was clearly evident in this

Table 4. Effect of storage time on the distribution of serum 25(OH)D levels between summer (April-September) and winter months (October–March).

Summer Winter

> = 5y < = 5y > = 5y < = 5y

Total N Mean SD Total N Mean SD Total N Mean SD Total N Mean SD

Vit D (nmol/L) 30 19.20 16.12 101 100.66 57.36 31 16.84 11.97 25 107.49 53.49

https://doi.org/10.1371/journal.pone.0219109.t004

Fig 1. Cross-sectional analysis of 25(OH)D levels in ACPA-/FDR, ACPA+/FDR and RA patients–Scatter plot

showing the distribution of 25(OH)D levels after correcting for storage and seasonal effect. Data was analyzed by

Kruskal-Wallis test with Dunn’s post-hoc test (��P<0.01, �P<0.05).

https://doi.org/10.1371/journal.pone.0219109.g001
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more recently studied subset (Fig 2C and 2D; p = 0.01 and p = 0.02). To further confirm that

this rise in 25(OH)D levels at the time of IA onset was specific, we analyzed longitudinal sam-

ples from a subset of ACPA- FDR collected at multiple intervals (Fig 2E). These results indicate

Table 5. Relationship between serum 25(OH)D levels (dependent variable) and clinical risk factors associated with RA (independent variables). Linear regression

analysis was performed on log2-transformed values. Log2VitD values were used as dependent variable.

Unstandardized Standardized 95% CI

Model B Std.Error β T Sig. Lower Upper

1 (Constant) 6.750 1.371 4.925 0.000 4.032 9.468

log2CRP -0.082 0.056 -0.144 -1.460 0.147 -0.194 0.029

log2ACPA -0.075 0.026 -0.317 -2.882 0.005 -0.126 -0.023

log2RF 0.097 0.040 0.266 2.424 0.017 0.018 0.176

log2BMI -0.073 0.276 -0.026 -0.264 0.792 -0.621 0.475

https://doi.org/10.1371/journal.pone.0219109.t005

Fig 2. Longitudinal analysis of 25(OH)D levels in progressors. (A) Line graph showing the evolution of 25(OH)D levels over time in progressors (N = 14) prior to RA

onset (T-1 to T-4), at the time of clinical diagnosis of RA onset (T0) and post-onset (T1 and T2) (B) Box-Whiskers plot showing the distribution of 25(OH)D at two time

points prior to RA onset (T-1 and T-2) and at transition point (0). Data was analyzed by analyzed by repeated measures ANOVA using Greenhouse-Geisser model (C)

After correcting for storage effect, line graph showing the evolution of 25(OH)D levels over-time in progressors (N = 8) prior to RA onset (T-1 to T-4), at the time of

clinical diagnosis of RA onset (T0) and post-onset (T1 and T2). (D) Box-Whiskers plot showing the distribution of 25(OH)D at two time points prior to RA onset (T-1

and T-2) and at transition point (T0), in samples collected after 2013. (E) Box-Whiskers plot showing the distribution of 25(OH)D in ACPA-/FDR collected at 3

different time points. Data was analyzed by repeated measures ANOVA with Geisser-Greenhouse correction.

https://doi.org/10.1371/journal.pone.0219109.g002
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that that 25(OH)D concentrations in these individuals remained relatively stable over time

indicating that the phenomenon observed in the progressor is specific to that subset.

As the bioavailability and biological activity of 25(OH)D is dependent on the circulating

levels of VDBP with 85% of 25(OH)D being bound to VDBP[18], we tested VDBP levels in the

same samples to determine whether the levels of this glycoprotein followed a similar pattern to

the free 25(OH)D that were measured. This analysis showed that VDBP levels remained stable

over time (Fig 3A and 3B; p = 0.432), even as 25(OH)D increased in the progressor group.

As circulating 25(OH)D levels are also influenced by the levels of parathyroid hormone

(PTH), we measured PTH levels, both cross-sectionally and longitudinally. PTH levels were

significantly higher in RA patients, compared to ACPA- and ACPA+/FDRs. However, no

change was observed between ACPA- and ACPA+/FDR (Fig 4A). By Spearman rank correla-

tion analysis, we observed a significant correlation between lower 25(OH)D levels and

increased PTH concentrations in RA patients (r = 0.3609; P = 0.0063; Fig 4B), indicating the

presence of secondary hyperparathyroidism. No such association was observed in ACPA

+/FDR samples (r = -0.031; P = 0.897). In progressors, PTH levels showed an increasing trend,

albeit insignificantly, at T0, compared to pre-transition points T-1 and T-2 (p = 0.28 and

p = 0.3 respectively, Fig 4C and 4D). Interestingly, Spearman rank correlation analysis demon-

strated a significant positive correlation between 25(OH)D and PTH levels in progressors at

the time of RA onset, indicating a crosstalk between these molecules (r = 0.6227; P = 0.02; Fig

4E).

Discussion

We surveyed the serum levels of 25(OH)D in a cohort of INA RA patients and their unaffected

FDR having no clinically detectable joint inflammation. We tested 25(OH)D levels at different

preclinical stages of disease evolution, both cross-sectionally and longitudinally. The cross-sec-

tional analysis provided insights into the relationship between 25(OH)D levels and RA autoan-

tibodies, in the presence and absence of clinical disease. A longitudinal analysis of preclinical

samples from individuals who eventually developed IA provided the unique opportunity to

examine the association of vitamin D status and disease onset.

We quantified free 25(OH)D levels in circulation as an indicator of vitamin D status. Con-

sidered as the predominant circulating form of vitamin D, free/unbound 25(OH)D concentra-

tions in serum are directly reflective of the available vitamin D while having a longer half-life

compared to other vitamin D metabolites, making it well suited to assess the overall vitamin D

status [19]. While ~0.01–0.03% free unbound 25(OH)D is available in the circulation, 85–90%

25(OH)D is bound to VDBP and 10–15% exists in an albumin-bound form [11]. Circulating

levels of free 25(OH)D are known to fluctuate based on several factors such as season, dietary

intake of vitamin D, and intensity of ultraviolet radiation in sunlight [20, 21]. While we were

unable to account for all of these variables in our analysis, a number of them were particularly

relevant to the findings of this study.

Unexpectedly, we demonstrate that in a cohort of longitudinally followed individuals who

ultimately developed IA, 25(OH)D levels consistently increased as they approached disease

onset, with the highest concentrations being detected at the time they were deemed to have the

onset of IA. This finding was demonstrated in almost all of the “progressors” who were stud-

ied. The 25(OH)D levels did not decrease in any of these individuals, although the magnitude

of the increase varied considerably. Moreover, there was no consistent change in the levels of

either the carrier protein VDBP or PTH in the longitudinal sample analysis. This intriguing

increase in 25(OH)D levels at disease onset is particularly noteworthy since our cross-sectional

analysis of patients with established RA demonstrated significantly lower levels of 25(OH)D

Vitamin D levels in preclinical rheumatoid arthritis
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compared to a cohort of seronegative, unaffected controls. The latter finding echoes the results

of other cross-sectional studies of RA patients and controls [22–26].

Circulating 25(OH)D concentrations in RA patients are known to be associated with the

presence of ACPA and RF [27, 28]. However, current evidence is conflicting on the role of 25

(OH)D and vitamin D during the preclinical stages of RA [29, 30]. In our INA cohort, we

show that 25(OH)D concentrations in seropositive FDR, as with RA patients, are lower than in

seronegative FDR. Longitudinal analysis of 25(OH)D levels in progressors demonstrates that

there is a consistent increase in levels at the onset of inflammatory arthritis compared with ear-

lier time points.

In attempting to explain this unexpected finding, several possibilities can be considered.

One important consideration is the potential confounding effects of duration of sample stor-

age and seasonal variation on 25(OH)D levels. It is conceivable that 25(OH)D levels

“appeared” to increase because of a decay in this analyte in older stored samples from the same

individuals. We clearly demonstrate this duration of storage effect in samples stored > 5 years,

with older samples having lower levels. Our data contrasts that of previous publications sug-

gesting that duration of sample storage had minimal impact on 25(OH)D stability [20, 31],

although this decay may be less likely to occur if samples are stored at -80˚C. Our analysis of

the subgroup of 8 progressors whose samples were all gathered within the most recent five-

year timeframe all showed increasing 25(OH)D levels at the time of IA onset. Moreover, this

increase in levels was not observed in the longitudinal samples of seronegative individuals who

did not develop IA. Together, these observations suggest that this phenomenon cannot be

explained on the basis of time in storage of the samples.

We also demonstrate that samples gathered during the winter months, on average, exhibit

lower levels of 25(OH)D compared to samples gathered in the summer months, results that

are consistent with published literature in other populations, including in other INA commu-

nities [32, 33]. Of note, we show that a majority of our study participants had summer concen-

trations of 25(OH)D that were greater than 75nmol/L, with only 34% demonstrating levels

deemed to be in the vitamin D insufficiency range. These results are consistent with studies in

other INA communities [34]. Nevertheless, our analysis suggests that seasonal variation does

Fig 3. Longitudinal and cross-sectional analysis of VDBP. (A) Line graph showing the evolution of VDBP levels over-time in progressors (N = 14) prior to RA onset

(T-1 to T-4), at the time of clinical diagnosis of RA onset (T0) and post-onset (T1 and T2) (B) Box-Whiskers plot showing the distribution of VDBP at two time points

prior to RA onset (T-1 and T-2) and at transition point (T0). Data was analyzed by analyzed by repeated measures ANOVA using Greenhouse-Geisser model.

https://doi.org/10.1371/journal.pone.0219109.g003
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not account for the observed rise at the time of IA onset. Factors like increased exposure to

sunlight or dietary intake of vitamin D supplements are insufficient as 25(OH)D levels

remained consistently increased over a long period of time extending up to ~19months pre-

ceding onset of clinically detectable symptoms.

Previously, we showed that single-nucleotide polymorphism Fok1 (rs2228570) within the

VDR gene is significantly associated with RA onset in INA population [35]. Additionally, sys-

temic inflammation, obesity, and PTH levels have been associated with changes in circulating

vitamin D levels. [12, 36–42]. We demonstrate a positive and significant correlation between

PTH and 25(OH)D levels in RA patients and progressors at T0, thus corroborating this

hypothesis. These factors can regulate the concentrations and/or the activity of 25-D-hydoxy-

lases and 1,25-D-hydroxylases involved in vitamin D metabolism leading to either an impaired

cellular uptake of 25(OH)D from circulation or conversion to metabolically active 1,25(OH)2-

D. Additional investigations are warranted to identify how these factors might regulate the

mechanisms underlying increased 25(OH)D concentrations.

In summary, we show that 25(OH)D levels are reduced in seropositive INA RA patients

and unaffected seropositive FDR. Surprisingly we demonstrate a consistent increase in 25

Fig 4. Longitudinal and cross-sectional analysis of PTH. (A) Scatter plot showing the distribution of circulating PTH levels in ACPA-/FDR, ACPA+/FDR and RA

patients. Data was analyzed by Kruskal-Wallis test with Dunn’s post-hoc test (����P<0.0001; �P<0.05; ns = non-significant) (B) Scatter plot showing Spearman rank

correlation analysis between PTH and 25(OH)D levels in RA patients. (C) Line graph showing the evolution of PTH levels over-time in progressors (N = 14) prior to RA

onset (T-1 to T-4), at the time of clinical diagnosis of RA onset (T0) and post-onset (T1 and T2) (B) Box-Whiskers plot showing the distribution of PTH at two time

points prior to RA onset (T-1 and T-2) and at transition point (T0). Data was analyzed by analyzed by repeated measures ANOVA using Greenhouse-Geisser model. (E)

Scatter plot showing Spearman rank correlation analysis between PTH and 25(OH)D levels in progressors at time of RA onset (T0).

https://doi.org/10.1371/journal.pone.0219109.g004
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(OH)D levels at the time of onset of inflammatory arthritis compared to earlier preclinical

time points. Future studies are required to understand the basis for this increase in 25(OH)D

levels and the potential link with the break in immune tolerance preceding RA onset.
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