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Abstract

Background: PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical
cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on
glucose uptake and cell viability.

Experimental Design: Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell
lines was performed. C33A cells (PIK3CAR88Q and PTENR233*) were treated with increasing concentrations of two allosteric
AKT inhibitors (SC-66 and MK-2206) with or without the glucose analogue 2-deoxyglucose (2-DG). Cell viability and
activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated
by incubation with 18F-fluorodeoxyglucose (FDG). Cell migration was assessed by scratch assay.

Results: Activating PIK3CA (E545K, E542K) and inactivating PTEN (R233*) mutations were identified in human cervical cancer.
SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced
delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 mg/ml-56%) and MK-2206 (30 mM-49%) treatment decreased cell
viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were
combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment.

Conclusions: The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively
block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT
inhibitors may improve response to chemoradiation in cervical cancer.
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Introduction

Globally, cervical cancer is the third most common female

cancer, and it ranks fourth in terms of mortality [1]. Concurrent

chemoradiation (pelvic irradiation with the concurrent adminis-

tration of cisplatin chemotherapy) is the standard of care for

patients with locally advanced cervical cancer. We have previously

demonstrated that the results of post-therapy [18F]-fluoro-deoxy-

glucose-positron emission tomography (FDG-PET) are predictive

of progression-free and overall survival outcomes after chemor-

adiation [2–4]. Presently there are no effective treatment options

available for patients whose tumors fail to respond to traditional

chemoradiation.

Recently, we identified PI3K/AKT pathway alterations in

tumors from patients with a positive post-therapy FDG-PET. We

also observed high p-AKT expression in pre-treatment biopsy

samples, and patients whose tumors expressed high levels of p-

AKT had decreased survival outcomes and increased metastatic

disease after standard chemoradiation [5]. Genetic alterations

leading to activation of the PI3K/AKT/mTOR pathway are

associated with treatment resistance in variety of solid tumors [6].

Several PI3K/AKT inhibitors have been evaluated in clinical

trials for breast and other cancers with positive responses in
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patients with PI3K/AKT alterations [7]. There are reports

suggesting that cancers with PIK3CA mutations are more sensitive

to AKT or PI3K/mTOR inhibitors [8,9].

We hypothesized that PI3K/AKT inhibitors will improve

response to chemoradiation in cervical tumors with PI3K/AKT

pathway alterations. To test for mutations in the PI3K/AKT

pathway, we analyzed 140 pretreatment cervical tumor biopsies

and 8 human cervical cancer cell lines [10]. We then selected the

cervical cancer cell line C33A, which is mutated for both PIK3CA

and PTEN (PIK3CA R88Q, PTEN R233*) and expresses high

levels of p-AKT at baseline, to assess the response to two allosteric

AKT inhibitors, SC-66 and MK-2206.

Materials and Methods

Patients
The study population included 140 patients prospectively

enrolled into tumor banking studies at the time of diagnosis of

cervical cancer (March 1998 through July 2011). Approval from

the institutional Human Research Protection Office was obtained

for this study, and all patients signed informed consent. Clinical

follow-up including FDG-PET imaging was performed for each

patient according to institutional guidelines as previously described

[3]. At the time of last follow up, 76 patients had no evidence of

disease, and 8 patients were alive with disease; 7 patients had died

due to intercurrent illness; 2 patients had died due to treatment-

related toxicity, and 47 patients had died due to cervical cancer.

Median follow up for patients alive at the time of last follow up was

41 months (range 4 to 161 months).

Statistical analysis
Survival and tumor recurrence were measured from the

completion of treatment. The Kaplan-Meier (product-limit)

method was used to derive estimates of survival [11]. Tests of

the equivalence of estimates of survival between patient groups

were performed by the generalized Wilcoxon log-rank test.

Statview version 5.0.1 software (SAS Institute Inc., Cary, NC)

was used for the analysis.

Mutational analysis using MALDI-TOF
Tumor biopsies were sectioned and reviewed for tumor cell

content as previously described [5]. Tumor DNA was prepared

using standard methods by the Washington University Tissue

Procurement Core Facility. Assays for a subset of 32 selected

oncogenic mutations (AKT1, AKT2, PIK3CA and PTEN) from [10]

were redesigned into three genotyping multiplexes, using Seque-

nom’s Assay Designer software, version 3.1.2.2. (Sequenom Inc,

San Diego, CA). The multiplexes were designed to use the iPLEX

chemistry. The Sequenom MassARRAY system (http://www.

sequenom.com) employs MALDI-TOF (Matrix-Assisted Laser

Desorption/Ionization – Time of Flight) mass spectrometry to

measure mass differences following single-base additions to

extension primers. Spectral peaks corresponding to expected

masses for each extended primer are transformed into sample

genotype calls. Using the standard iPLEX protocol, the Genotyp-

ing core at Washington University (St. Louis, MO, USA)

processed 15 ng sample DNA per multiplex through the

MassARRAY system. Peak areas representing normal and mutant

base additions were obtained from each sample’s mass spectrum. A

mutation was considered present in a sample when the mutant peak

was responsible for 25% or more of the combined peak areas, and

absent when the mutant peak area was less than 25% of the total. List

of OncoMap mutations that were tested in our multiplexes are

OM_00970-AKT1-E17K, OM_00032-AKT2-S302G,OM_00033-

AKT2-R371H, OM_00241-PIK3CA-R88Q,OM_00242-PIK3CA-

N345K,OM_00243-PIK3CA-C420R, OM_00246A-PIK3CA-E545K,

OM_00248-PIK3CA-H701P, OM_00249-PIK3CA-H1047L, OM_

00250A-PIK3CA-H1047R, OM_00250B-PIK3CA-H1047R,OM_

00251-PIK3CA-H1047Y,OM_01017-PIK3CA-E545A, OM_01018B-

PIK3CA-N1068fs*4,OM_0102-PIK3CA-Y1021C,OM_00839-PTEN-

R173C,OM_00840-PTEN-R173H,OM_00841-PTEN-R233*,OM_00842-

PTEN-R335*, OM_01038-PTEN-K267fs*9 OM_01039-PTEN-

V317fs*3, OM_01069-PTEN-K6fs*4.

Cell culture and Reagents
Cervical cancer cell lines were maintained in IMDM media

(Life Technologies, CA) with 10% heat inactivated FBS and

incubated at 37uC in 5% CO2. SC-66 was purchased from

Biovision (Milpitas, CA) and MK-2206 from Selleck Chemicals

(Houston, TX). 2-Deoxy glucose, protease and phosphatase

inhibitor cocktails were purchased from Sigma (Saint Louis,

MO). All drugs for cell culture were dissolved in dimethyl sulfoxide

(DMSO, Sigma). siRNA oligos against AKT1, AKT2 and RICTOR

were purchased from Sigma (Saint Louis, MO).

Western blotting and membrane isolation
Phosphorylation of AKT and downstream targets of AKT and

mTOR pathway with or without SC-66 (6–10 mg/ml) and MK-

2206 (0–2.5 mM) were determined by western blotting with

primary antibodies against phosphorylated and total forms of

mTOR, p70s6k, 4E-BP1, S6, GSK3-b, FOXO pAKTThr308,

pAKTThr450 and pAKTSer473 (1:1000; Cell Signaling Technology,

MA), total forms of AKT, mTOR and 4-EBP1 (1:1000, Cell

Signaling Technology, MA), total forms of p70s6k and b-Actin

HRP from Santa Cruz Biotechnology, CA and total forms of

PRAS40 and FOXO from millipore (1:5000, Santa Cruz

Biotechnology,CA). b-Actin was used as the internal control. Blots

were probed with HRP-conjugated anti-rabbit (Cell Signaling

Technology, Beverly, MA) or anti-mouse polyclonal IgG second-

ary antibodies (Santa Cruz Biotechnology, CA) for 1 h at RT. For

detection Pierce West Dura substrate (Pierce Biotechnology) was

used according to manufacturer’s protocol and exposed on X-ray

film.

Cell viability and Annexin staining
For the cell viability assay C33A cells were treated with the

allosteric AKT inhibitors SC-66 (0.0001 mg/ml–5 mg/ml) and

MK-2206 (125 nM-30 mM) with or without the glucose analogue

2-deoxyglucose (2-DG) (5–20 mM) using dose titration and time

courses. For siRNA experiments, C33A cells were transiently

transfected and assessed for protein expression after 48 hours. Cell

viability was tested using Alamar Blue from Life Technologies,

according to manufacturer’s instructions. Annexin/7-AAD stain-

ing was performed 24 h post-treatment, using a kit from BD,

Biosciences following manufacturer’s instructions, and cells were

analyzed by flow cytometry.

FDG uptake assays
The FDG uptake assay was performed as described previously

[5]. Briefly, cells were seeded and pretreated with the block

(Cytochalasin B) for 30 min followed by AKT inhibitors for an

additional 30 min. After this, 18FDG was added to glucose free

medium for 1 h. Cells were washed, harvested and counted on a

gamma counter.
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Figure 1. PI3K/AKT pathway analysis in cervical cancer cell lines. (A–B) mTOR pathway components and phosphorylated forms of AKT were
tested using commercially available antibodies on eight cervical cancer cell lysates prepared without any treatment. (C) PIK3CA, AKT, and PTEN gene
mutational status of 8 human cervical cancer cell lines.
doi:10.1371/journal.pone.0092948.g001
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Immunofluorescence
In a chamber slide (8-well) 25,000 cells were seeded and treated

with SC-66 1 mg/ml for 3 h and fixed using 4% p-formaldehyde

from Electron Microscopy Sciences (Hatfield, PA) for 10 minutes.

The slides were then blocked in 5% normal goat serum (Jackson

ImmumoResearch, West Grove, PA) for 1 h, followed by extensive

PBS washes. Then primary antibodies Glut1 and Glut4 (Abcam,

Cambridge, MA) were added followed by secondary antibody

conjugate with Alexa Fluor 488 (Life Technologies, Inc., Grand

Island, NY). The slides were finally mounted using Prolong Gold

anti-fade (Life technologies, Inc. Grand Island, NY).

Metabolic assays
Lactate assay was performed using a kit from (Sigma, Saint

Louis, MO) according to manufacturer’s instructions using culture

media collected after deproteinization using 10 kDa spin column

filters. ATP and NADP/NADPH assays were performed using the

commercially available fluorometric kits from (Abcam, Cam-

bridge, MA) according to the manufacturer’s instructions using cell

lysates.

Wound healing assay
One million C33A cells were plated in a 35 mm tissue culture

dish and grown to confluence. Two parallel scratches were made

with a 200 mL pipette tip per dish and the scratch width was

measured to be the baseline [12]. The wound width was measured

at a minimum of six different points for each wound. SC-66 (1 and

2.5 mg/ml) and MK-2206 (2.5 and 5 mM) were added for 24 hr.

The width of the scratches was measured using Qcapture Pro

software and viewed using OLYMPUS 1670 microscope. Percent

wound healing was calculated by dividing the scratch width after

drug addition by the control width minus 100%. The results

presented are mean 6 SEM.

Results

PI3K/AKT/mTOR pathway is active in cervical cancer cell
lines

A panel of human cervical cancer cell lines was tested for the

expression pattern and activation status of PI3K/AKT/mTOR

pathway molecules. Cell lysates were prepared without any

treatment and baseline western blots were performed. P70S6K,

the marker for activation of the mTOR pathway, was phosphor-

ylated in majority of the cell lines except for HeLa, C41 and C33A

where it was found to be weakly phosphorylated (Fig. 1A).

Phosphorylation of 4E-BP1 and S6 were found to be low in the

majority of the cell lines studied. In SiHa and SW756, the

expression levels of non-phosphorylated forms of mTOR, p70s6k,

4E-BP1 and S6 were low compared to the other cell lines. On the

other hand, phosphorylation of mTOR was found to be similar

across the cell lines (Fig. 1A). Baseline expression of phosphory-

lated forms of AKT such as Ser473, Thr308 and Thr450 were

determined. C33A expressed all the three forms of p-AKT. To

determine the status of upstream regulators of AKT such as PI3K

and PTEN, baseline p-PI3K and p-PTEN levels were examined.

Phosphorylated PTEN level was similar across the cell lines, except

for C33A where the level of total PTEN band was minimal. PI3K

was activated in the majority of cell lines studied here. SiHa

exhibited very low PI3K activation (Fig. 1B). All these results

suggest that cervical cancer cell lines have activated mTOR

pathway under basal conditions and wide variations existed in p-

AKT levels.

Sequenom mutational analysis of PIK3CA, PTEN and AKT
genes in cervical cancer

To test for mutations in the PI3K/AKT pathway, we carried

out a Sequenom mutational analysis for oncogenic mutations in

genes PIK3CA, PTEN and AKT. We did not detect any AKT1or

AKT2 mutations in the cervical cancer cell lines. C33A harbored

an R88Q PIK3CA mutation. R88Q is an activating mutation

found in the ABD domain of the p110a subunit of the PIK3CA

gene. This defect is associated with enhanced enzymatic activation

of PI3K protein and AKT activity in vitro [13,14]. We found that

the E545K PIK3CA mutation was present in ME-180 and CaSki

cells (Fig. 1C). The PIK3CA E545K mutation is an activating

mutation in the helical domain of p110a subunit of PI3K protein.

This mutation is known to confer enhanced kinase activity and to

constitutively activate AKT [15]. We also found an R173C PTEN

gene mutation in CaSki and a PTEN R233* mutation in C33A

cells (Fig. 1C). The PTEN R173C mutation is associated with

decreased phosphatase activity against PIP3 [16]. The PTEN

R233* mutation in exon 7 induces a premature stop codon into

the gene, which explains the absence of PTEN protein expression

in C33A cells [17] (Fig. 1B).

Using the Sequenom assay, we then tested for mutations in

PIK3CA, AKT and PTEN genes in 140 pretreatment biopsies

collected at our tumor bank. We did not detect any assayed

mutation in the AKT gene in our patient population. We found

that tumors in 7 out of 140 patients harbored a PIK3CA E545K

mutation and 1 out of 140 had a PIK3CA E542K mutation. We

also found that 1 tumor harbored a PTEN R233* mutation.

Patients with E545K and E542K mutations in PIK3CA were found

to display poor prognosis and shorter disease free survival after

standard chemoradiation (pelvic irradiation and concurrent

cisplatin chemotherapy) (p = 0.05, Fig. 2).

AKT inhibitors SC-66 and MK-2206 induce non-apoptotic
cell death in PIK3CA and PTEN mutant C33A cells

Using C33A cells as a model for PI3K/AKT mutant cervical

cancer, we determined whether tumor cell survival was dependent

on AKT signaling. C33A cells were incubated with increasing

doses of SC-66 and MK-2206 and the viability was determined

after 24 and 48 hrs. Cell viability decreased starting from 1 mg/ml

of SC-66 after 24 and 48 hrs, to 55% and 43% respectively. The

Figure 2. Cervical cancer patients with E545K or E542K mutant
tumors have inferior survival outcomes after standard che-
moradiation (cisplatin plus pelvic RT). Kaplan Meier curve for
progression-free survival for cervical cancer patients with wild type
PIK3CA versus E545K or E542K mutant tumors (p = .05).
doi:10.1371/journal.pone.0092948.g002
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viability at 5 mg/ml of SC-66 was found to be 15% after 24 h

(Fig. 3A). C33A cells were also sensitive to another allosteric AKT

inhibitor, MK-2206. Cell viability was found to decrease starting

with the concentration of 15 mM (58%) and decreasing to 2% by

48 h (Fig. 3B). To confirm that affects on cell viability were due to

AKT inhibition rather than off target effects of SC-66 and MK-

2206, siRNA experiments were performed. As shown in Figure 3C,

C33A cell viability decreased to a similar extent when cells were

transfected with siRNAs resulting in knockdown of AKT1, AKT2,

and RICTOR (Fig. 3D).

To explore the mechanism through which AKT inhibitors

induce cell death, we performed Annexin/7-AAD staining. Upon

SC-66 (2.5 mg/ml) and MK-2206 (25 mM) treatment there were

very few cells with Annexin only staining and the fraction of cells

with both staining was 35% and less than 20%, respectively. 7-

AAD only staining was close to 80% in MK-2206 treated cells

(Fig. 3E). To further link effects of SC-66 through glucose uptake

inhibition, we combined SC-66 with 2-deoxy glucose (2-DG), a

competitive inhibitor of glucose uptake. By 48 hr after treatment

with SC-66 (0.01 mg/ml) the viability was at 107%, but with the

addition of 2-DG, cell viability decreased to 72% p,0.001

(Fig. 3F). MK-2206 exhibited synergistic effects with 2-DG. After

24 hr, the viability of MK-2206 treated cells was 78% which

decreased up to 40% after addition of 20 mM 2-DG (p,0.001,

Data A in File S1).

Figure 3. Effects of AKT inhibitors on cell viability. (A–B) C33A cells were seeded on to 48 well plates and treated with increasing doses of SC-
66 (0.0001–5 mg/ml) and MK-2206 (1.25–30 mM) in triplicates for 24 and 48 hrs. Viability was measured using Alamar Blue. Percent viability was
calculated based on vehicle treated controls. (C) C33A cells were seeded on to 48 well plates and transfected with oligos against AKT1, AKT2 and
RICTOR and treated with SC-66 (1 mg/ml) and MK-2206 (20 mM) in triplicates for 24. Viability was measured using Alamar Blue. Percent viability was
calculated based on vehicle treated controls and control siRNA transfected controls, p,0.001 for the comparison of control siRNA versus siRNA for
AKT1, AKT2 and RICTOR, SC-661 mg/ml, MK-2206 20 mM. (D) C33A cells were seeded on to 48 well plates and transfected with oligos against AKT1,
AKT2 and RICTOR and lysates were prepared after 48 h and western blots were performed. (E) C33A cells were treated with SC-66 (2.5 mg/ml) and MK-
2206 25 mM for 24 h then stained with Annexin/7-AAD and analyzed by flow cytometry. The graph represents % cell viability. (F) C33A cells were
treated with SC-66 (0.0001 mg/ml–0.1 mg/ml) with or without 20 mM 2-DG for 48 h.
doi:10.1371/journal.pone.0092948.g003
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SC-66 and MK-2206 inhibited mTOR/AKT pathway
effectively in C33A cells

To explore the effects of AKT inhibition on mTOR and its

downstream targets in C33A cells, we examined the phosphory-

lation status of mTOR pathway components by Western blot and

used p70S6K as a marker for mTOR activation [18]. SC-66

completely inhibited p70S6K phosphorylation by 3 hours

(Fig. 4A). MK-2206 inhibited p70S6K activation but there was

slight reactivation by 4 h. MK-2206 inhibited mTOR pathway

components such as mTOR, 4E-BP1 and S6 effectively by

2 hours. MK-2206 inhibition of mTOR pathway appears to be

transient as p70s6k was still active after 4 h (Data D in File S3).

SC-66 and MK-2206 effectively inhibited all the three phosphor-

ylated forms of AKT (Thr308, Thr450 and Ser 473) in a dose

dependant manner suggesting that MK-2206 acts primarily

through mTORC1 (Fig. 4C and Data F in File S3). This is

supported by the observation that SC-66 was more effective in

inhibiting AKT substrates such as PRAS 40, GSK3-b and

FOXO1(Fig. 4B) compared to MK-2206, particularly PRAS40

which is in mTORC1 complex [19] (Data E in File S3). P70S6K

was phosphorylated after 4 h of MK-2206 treatment suggesting

the mTOR pathway inhibition was transient (Supplemental data).

Rapamycin, an mTOR inhibitor, relieves feedback inhibitions

and induces AKT Ser473 phosphorylation in an mTORC2-

dependent manner leading to further AKT activation [20]. To test

for this effect using our inhibitors we performed a longer

incubation of the cells with SC-66 for 18–24 h. We found that

p70S6K, the marker of mTOR activation, was decreased even

after 18 and 24 hrs treatment. SC-66 treatment decreased

activation of AKT substrates, Thr308 and Thr450 by18 and

24 hours. Thr308 levels did go up compared to 3 h sample but still

displayed a decreasing trend at 18–24 h (data not shown). All these

results suggest that SC-66 effectively inhibited both mTORC1/2

and AKT. MK-2206 was found to be acting mainly through

mTORC1 pathway with slight reactivation of the pathway after

4 hours.

SC-66 inhibited glucose uptake and membrane
translocation of glucose transporters

Glucose uptake was tested by performing in vitro FDG uptake

assays in the presence and absence of the SC-66 (35 mg/ml). We

Figure 4. Effect of SC-66 on mTOR signaling. (A–C) C33A cells were treated with increasing concentrations of SC-66(6–10 mg/ml) for 3 h and
lysates were prepared for western blot.
doi:10.1371/journal.pone.0092948.g004
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found that SC-66 inhibited glucose uptake significantly as

evidenced by reduced counts per minute (Fig. 5A). Further we

determined the effect of SC-66 on Glut1 and Glut4 translocation

to the membrane. For this a membrane cytoplasm fractionation

was carried out after treating cells with SC-66 (5 mg/ml) for 24 h.

SC-66 inhibited Glut1 and Glut4 translocation from the cytoplasm

to the membrane as determined by Western blot (Fig. 5C). We

confirmed this with immunofluorescent staining (Fig. 5D). All

these results suggest that mTOR inhibition by SC-66 resulted in

decreased glucose uptake through Glut1 and Glut4 retention

within cytoplasm.

Figure 5. Effects of SC-66 on glucose transport. A) C33A cells were treated with SC-66 (35 mg/ml) or block (cytochalasin B) for 30 minutes prior
to incubation with 18F-fluorodeoxyglucose as described in the methods section. The graph represents counts per minute values, p,0.01 for the
comparison of FDG alone (cells only) versus FDG + SC-66. B) C33A cells were treated with SC-66 (0–5 mg/ml) for 3 and 24 h and Glut1 levels were
analyzed by western blot. C) C33A cells were treated with SC-66 (0, 1 and 5 mg/ml) for 24 h. Membrane and cytosol fractions were prepared using a
kit (MemPER) from Peirce Biotechnology. These subcellular fractions were then mixed with sample buffer and incubated at 65uC for 20 mins before
loading onto the gels for western blot for Glut1 and Glut4. D) Immunofluorescence was performed on C33A cells after treating them with SC-66
(1 mg/ml) for 3 hours in a chamber slide.
doi:10.1371/journal.pone.0092948.g005
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AKT inhibitor SC-66 inhibits glycolysis
To determine whether AKT inhibition resulted in reduced

glycolysis, we measured ATP and NADPH levels after SC-66

treatment. We found that ATP levels were decreased significantly

after SC-66 treatment, and NADPH levels were increased,

suggesting that alternative pathways of glucose metabolism, such

as the pentose phosphate shunt, may be more active in C33A cells

when AKT signaling is suppressed (Fig. 6A and 6B). Total lactate

levels were also decreased in C33A cells after treatment with SC-

66 (Fig. 6C and 6D). All these results indicate that inhibition of

AKT suppresses glycolysis in C33A cells. To evaluate for

downstream effects on tumor cell metabolism, we monitored the

activation status of a substrate of AKT, ATP-citrate lyase (ACL)

after SC-66 treatment. C33A cells were incubated with increasing

doses of SC-66 and western blots were performed. SC-66 inhibited

ACL phosphorylation by 5 and 24 hours, suggesting that

inhibition of AKT may also influence other aspects of tumor cell

metabolism, including lipid synthesis (Fig. 6E).

SC-66 reduces migration of C33A cells in vitro
There are reports showing the role of AKT in the metastatic

process including cell migration and invasion [21]. To study the

effects of SC-66 and MK-2206 on cell migration we treated cells

with 1 mg/ml SC-66 and 2.5 mM MK-2206 for 24 h and

performed a scratch assay. We found that SC-66 inhibited the

migration of cells about 50% compared to control whereas MK-

2206 did not have any effect (Fig. 7).

Discussion

In this study, we performed mutational analysis of 140

pretreatment tumor biopsies and 8 human cervical cancer cell

lines to screen for mutations in the PI3K/AKT pathway. This is

the first study, to our knowledge, to comprehensively analyze

mutations in the PI3K/AKT pathway in human cervical cancer.

We identified multiple mutations in the PI3K/AKT pathway in

human cervical cancer specimens, including activating mutations

in PIK3CA (E545K, E542K) and inactivating mutations in PTEN

(R233*). Mutational analysis of cervical cancer cell lines revealed

additional defects. C33A cells have both an R233* PTEN

mutation and an R88Q PIK3CA mutation [22].

The present study was also designed to test the hypothesis that

cervical cancer cells with altered AKT activation would be

sensitive to AKT inhibitors. SC-66 and MK-2206 effectively

induced cell death in C33A cells through a non-apoptotic

mechanism. SC-66 was found to be a potent mTORC1/2

inhibitor. SC-66 effectively inhibited p70s6k and 4E-BP1

mTORC1 substrates, in addition to inhibiting Ser473 and

Thr308 phosphorylation of AKT, and activation of AKT

substrates such as PRAS40, GSK3-b and FOXO. SC-66 displayed

synergistic effects with 2-DG, and SC-66 inhibited further

downstream events such as translocation of glucose transporters

to the membrane which resulted in decreased glucose uptake. In

addition, inhibition of AKT reduced glycolysis as evidenced by

decreased ATP and lactate levels, and increased activity of

alternative metabolic pathways resulting in increased cellular

NADPH. These results suggest that AKT inhibitors decrease

cervical cancer viability by interfering with cellular glucose

metabolism. We hypothesize that cervical cancers with PI3K/

AKT pathway alterations are dependent upon high rates of

glucose uptake and glycolysis for survival. It should be noted that

activation of Akt by PTEN loss and/or PIK3CA mutations would

bypass the need for the activation of growth factor receptors (i.e.

IGF-1R) to initiate the PI3K/Akt/mTOR signaling cascade. In

this manner, cervical cancer cells are able to upregulate glucose

import and metabolism even in the absence of the appropriate

external signals.

Previously it has been shown that inhibition of mTORC2 leads

to rapid inhibition of AKT Ser473 phosphorylation, which

accelerates the destabilization process of Thr308 site phosphoryla-

tion [23]. In accordance with this, we also observed that SC-66

mediated a concomitant reduction in phosphorylation of Ser473

and Thr308 in C33A cells. Earlier work from others suggested that

dephosphorylation of AKT at Thr308 site leads to more profound

inhibition of AKT function than would be seen from dephosphor-

ylation of AKT at Ser473 alone [23]. Thr308 is a residue in a key T-

loop of the AKT protein and considered as a better indicator of

AKT kinase activity. There are discordant data on the Ser473

phosphorylation and AKT kinase activity [24,25]. Our results show

that SC-66 inhibits all of the three phosphorylated forms of AKT.

There are reports that mTORC2 is required for development of

certain cancers with PTEN loss [26]. C33A cells are PTEN

defective, and we found that SC-66 is a potent mTORC2

inhibitor. The PTEN R233* mutation found in C33A cells can

lead to greater intracellular accumulation of PIP3 resulting in

enhanced PI3K signaling and PDK-1-mediated AKT Thr308

phosphorylation [25,27,28]. We speculate that SC-66 exerts its

inhibitory effect on AKT Thr308 phosphorylation indirectly by

acting as a PDK-1 inhibitor. SC-66 might not be as efficient as an

inhibitor of PDK-1 as it is for mTOR and AKT, and this explains

the slightly higher Thr308 levels observed after longer incubation.

Moreover, we observed that SC-66 is a potent cell death inducer

by 24 h, thus reactivation of AKT may not be an issue in vivo. In

concordance with this notion, we found that in mice treated with a

combination of cisplatin and SC-66, all p-AKT forms were

inhibited compared to the monotherapy counterparts. This is true

for the mTOR pathway components such as p70s6k, 4E-BP1 and

S6 as well (data not shown).

AKT2 stimulates glucose uptake through the glucose transport-

er 4 (Glut4) translocation to membrane via a substrate called

Syntaxin interacting protein (Synip) [29]. Membrane localization

of AKT2 is a pre-requisite for Glut4 translocation in response to

glucose uptake [30]. SC-66 effectively inhibited Glut1 and Glut4

membrane translocation, a key step mediated by AKT for glucose

uptake. AKT activation leads to increased Glut1 expression and

translocation to the membrane resulting in greater glucose uptake [31].

Our results indicate that SC-66 also inhibited Glut1 protein expression,

suggesting that in C33A cells Glut1 expression is AKT-dependent.

In our study we also show that 2-DG enhanced MK-2206- and

SC-66-induced cell death. It is known that glucose deprivation

mimicked by glycolytic inhibitors causes cytotoxicity by inducing

oxidative stress in human cancer cells [32], and cisplatin is known

Figure 6. Effects of SC-66 on glucose metabolism. (A–B) C33A cells were seeded in T 25 cm2 tissue culture flasks, treated with SC-66 and
intracellular NADPH levels and ATP were determined. The graph represents ATP and NADPH mM levels based on standard curve, p,0.01 for the
comparison of control versus SC-66 10 mg/ml 1 and 3 h and p,0.001 for control versus 30 mg/ml for ATP levels; p,0.01 for the comparison of control
versus SC-66 5 mg/ml 3 h and p,0.01 control versus 10 mg/ml 3 h for NADPH levels. (C–D) C33A cells were seeded in T 25 cm2 tissue culture flasks,
treated with SC-66 and excreted lactate levels were measured in nM concentrations using a standard curve, p,0.001 for the comparison of control
versus SC-66 5 and10 mg/ml. (E) C33A cells were treated with increasing concentrations of SC-66 (0–5 mg/ml) for 5 h and 24 h and lysates were
prepared for western blot.
doi:10.1371/journal.pone.0092948.g006
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to disrupt thiol metabolism and to enhance oxidative stress [33].

We hypothesize that combining cisplatin, SC-66/MK-2206 and 2-

DG will display synergistic effects (Data B in File S1 and Data C in

File S2). This synergy could be explained as disruption of cellular

thiol pools and enhancement of oxidative stress by cisplatin and

2-DG respectively. Interestingly, treatment with Akt inhibitors does

not render C33A cells resistant to death associated with glucose

withdrawal, and we have observed induction of autophagy in

response to MK2206 treatment. Additional studies will be needed to

further characterize the role of autophagy in C33A cell survival.

Figure 7. Effects of SC-66 and MK-2206 on cell migration. C33A cells were treated with A) SC-66 (1 and 2.5 mg/ml) and B) MK-2206 (2.5 and
5 mM) for 24 h. Percent wound healing was calculated as described in methods section, p,0.0001 for the comparison of control versus 1 ug SC-66
and p,0.0001 for control versus 2.5 ug SC-66.
doi:10.1371/journal.pone.0092948.g007
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Our preliminary studies based on Sequenom assays confirm

that PIK3CA and PTEN genes are mutated in cervical cancer

patients with poor progression free survival after standard

chemoradiation. Frequency of the PI3K/AKT pathway mutations

in human tumors widely vary in different types of cancer [10].

Recently, McIntyre et al described that PIK3CA E545K mutational

status was associated with response to chemoradiation in cervical

cancer patients [34]. A more comprehensive analysis of mutations

in a larger cohort of patients is required to establish the link

between PI3K/AKT pathway mutations and treatment outcome.

If these results are validated, PI3K/AKT pathway mutations may

be used in the future to select tumors at risk for treatment failure

using standard chemoradiation (pelvic irradiation and concurrent

administration of cisplatin chemotherapy).Our results suggest that

AKT inhibitors could improve response to chemoradiation in

cervical cancer for appropriately selected patients. It is possible

that the mutations reported here (PIK3CAE545K, PIK3-

CAE542K and PTEN R233*) may used in the future to select

patients for targeted treatment with PI3K/AKT pathway inhib-

itors. Experiments are ongoing to determine the appropriate

timing of AKT inhibition in the context of pelvic irradiation on

chemotherapy.

Supporting Information

File S1 Contains Data A and B.

(TIF)

File S2 Contains Data C.

(TIF)

File S3 Contains Data D, E, and F.

(TIF)
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