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Abstract: Background: The goal of this study was to categorize patients with abnormal serum
phosphate upon hospital admission into distinct clusters utilizing an unsupervised machine learning
approach, and to assess the mortality risk associated with these clusters. Methods: We utilized the
consensus clustering approach on demographic information, comorbidities, principal diagnoses, and
laboratory data of hypophosphatemia (serum phosphate ≤ 2.4 mg/dL) and hyperphosphatemia
cohorts (serum phosphate ≥ 4.6 mg/dL). The standardized mean difference was applied to determine
each cluster’s key features. We assessed the association of the clusters with mortality. Results: In the
hypophosphatemia cohort (n = 3113), the consensus cluster analysis identified two clusters. The key
features of patients in Cluster 2, compared with Cluster 1, included: older age; a higher comorbidity
burden, particularly hypertension; diabetes mellitus; coronary artery disease; lower eGFR; and more
acute kidney injury (AKI) at admission. Cluster 2 had a comparable hospital mortality (3.7% vs.
2.9%; p = 0.17), but a higher one-year mortality (26.8% vs. 14.0%; p < 0.001), and five-year mortality
(20.2% vs. 44.3%; p < 0.001), compared to Cluster 1. In the hyperphosphatemia cohort (n = 7252), the
analysis identified two clusters. The key features of patients in Cluster 2, compared with Cluster 1,
included: older age; more primary admission for kidney disease; more history of hypertension; more
end-stage kidney disease; more AKI at admission; and higher admission potassium, magnesium,
and phosphate. Cluster 2 had a higher hospital (8.9% vs. 2.4%; p < 0.001) one-year mortality (32.9%
vs. 14.8%; p < 0.001), and five-year mortality (24.5% vs. 51.1%; p < 0.001), compared with Cluster
1. Conclusion: Our cluster analysis classified clinically distinct phenotypes with different mortality
risks among hospitalized patients with serum phosphate derangements. Age, comorbidities, and
kidney function were the key features that differentiated the phenotypes.

Keywords: phosphate; hyperphosphatemia; hypophosphatemia; machine learning; artificial
intelligence; clustering; electrolytes; nephrology; precision medicine; personalized medicine;
individualized medicine
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1. Introduction

Phosphate is an essential element in the body and the most abundant intracellular
anion, with the majority of it stored in bones, and < 1% found in the serum [1–5]. Normal
serum phosphate levels are maintained within a relatively narrow range (2.5–4.5 mg/dL)
because they are vital in cellular metabolism, signal transduction, and bone homeostasis [6–10].
Abnormal serum phosphate levels are common, with a prevalence up to 45% in hospitalized
patients [11,12], and are associated with poor clinical outcomes, including cardiovascular
disease [2,3], respiratory failure [13], and increased mortality [7,11,14–17].

The application of machine learning (ML) to medicine recently became more pop-
ular for individualized medicine [18]. The concept of ML is the ability of computers to
distinguish and analyze trends or patterns in data to make predictions without explicitly
being programmed [19]. The use of ML to process large and complex data from elec-
tronic health records (EHRs) has led to advances in precision medicine [20]. Unsupervised
ML techniques have identified novel data patterns and distinct subtypes in different dis-
eases [21–25]. It can identify similarities and differences among multiple data variables
and divide them into meaningful clusters [21,22]. Furthermore, previous investigations
have indicated that distinct subtypes identified by ML consensus clustering algorithms are
associated with different clinical outcomes [26,27]. Given that hospitalized patients with
abnormal serum phosphate are heterogeneous, ML can find distinct clusters with different
clinical outcomes. Identifying these distinct clusters may be beneficial if it can change the
approach to understanding the characteristics of patients with phosphate disorders upon
hospital admission and their associated mortality risks.

This study aimed to use an unsupervised ML consensus clustering algorithm to
classify distinct clusters of hospitalized patients with abnormal serum phosphate upon
admission and assess the associated mortality risk in the identified phenotypes.

2. Methods
2.1. Patient Population

The Mayo Clinic Institutional Review Board approved this study (IRB number 21-
003088 and date of approval; 30 March 2021), and all included patients provided research
authorization. We screened adult patients (age ≥ 18 years) admitted to the Mayo Clinic
Hospital, Rochester, Minnesota, USA, from January 2009 to December 31, 2013. We in-
cluded patients who presented with abnormal admission serum phosphate outside the
normal reference range (2.5–4.6 mg/dL). We excluded patients who did not have a serum
phosphate measurement within 24 h of hospital admission, or that had normal admission
serum phosphate. We separated patients into two cohorts: (1) the hypophosphatemia
cohort (serum phosphate ≤ 2.4 mg/dL), and (2) the hyperphosphatemia cohort (serum
phosphate ≥ 4.6 mg/dL).

2.2. Data Collection

We used our hospital’s electronic database to abstract pertinent demographic informa-
tion, comorbidities, principal diagnoses, and laboratory data, as previously described. The
cluster analysis only utilized data available within 24 h of hospital admission. The initial
laboratory value was selected for use if multiple values were available within the 24-h
time frame. We excluded variables with over 10% missing data. If a variable had absent
data of less than 10%, we imputed the missing data using the random forest multiple
imputation technique before inputting the data into the cluster analysis. We used the
missForest package for missing data imputation.

The outcomes were hospital, one-year, and five-year mortality. Patient death was
obtained from our hospital’s registry and the Social Security Death Index. The last follow-
up date was 31 December 2018. The median follow-up date was 6.1 (IQR 1.8–8.0) years.
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2.3. Cluster Analysis

Unsupervised ML consensus clustering analysis was applied to identify clinical clus-
ters of hypophosphatemia and hyperphosphatemia cohorts [28]. We utilized a prespecified
subsampling parameter of 80% with 100 iterations. The number of possible clusters (k)
was selected to be between 2 and 10 to avoid disproportionate numbers of clusters that
are not clinically meaningful. The ideal number of clusters was ascertained by evaluating
the cumulative distribution function (CDF), the consensus matrix (CM) heat map, cluster-
consensus plots, and the proportion of ambiguously clustered pairs (PAC) [29,30]. The
within-cluster consensus score is defined as the mean consensus value for all pairs of indi-
viduals belonging to the same cluster (range 0–1) [30]. A value that is closer to 1 represents
higher cluster stability [30]. The PAC (range 0–1) is calculated as the proportion of all
sample pairs with consensus values that fall within the predetermined boundaries [29].
A value that is closer to 0 signifies higher cluster stability [29]. The details regarding the
consensus cluster algorithms can be found in the Online Supplementary Materials.

2.4. Statistical Analysis

After cluster identification, we performed analyses to characterize differences among
the clusters. First, we compared the baseline characteristics between the clusters using the
Student’s t-test for continuous variables, and the Chi-squared test for categorical variables.
We used the standardized mean difference of the clinical characteristics between each
cluster and the overall cohort to determine the key features of each cluster. A clinical
characteristic with an absolute standardized mean difference of > 0.3 represented a key
feature for each cluster. Then, we compared hospital mortality and one-year mortality
between the clusters. We evaluated the association of the cluster with hospital mortality
using logistic regression and the reported odds ratio (OR) with a 95% confidence interval
(95% CI). We evaluated the association of the cluster with one-year mortality using Cox
proportional hazard regression and the reported hazard ratio (HR) with a 95% CI. We
did not adjust for differences in the clinical variables between the groups because these
variables were utilized through unsupervised machine learning to identify the clusters.
We used the ConsensusClusterPlus package (version 1.46.0) (https://bioconductor.org/
packages/release/bioc/html/ConsensusClusterPlus.html; accessed on 15 July 2021) for
the consensus clustering analysis. We used R, version 4.0.3 (RStudio, Inc., Boston, MA,
USA), for all analyses.

3. Results
3.1. Hypophosphatemia Cohort

There were 41,273 hospitalized patients with available admission serum phosphate
measurements. Of these, 3113 (8%) patients presented with hypophosphatemia upon
hospital admission. The mean age was 61 ± 17 years. 53% were male. The mean estimated
glomerular filtration rate (eGFR) was 82 ± 29. The mean admission serum phosphate was
2.0 ± 0.4 mg/dL (Table 1).

The CDF plot demonstrates the consensus distributions for each hypophosphatemia
cluster (Figure S1). The delta area plot, in turn, demonstrates the relative change in area
under the CDF curve (Figure S2). The most significant changes in area occurred between
k = 2 and k = 4. Beyond this range, the relative increment in area was significantly smaller.
The CM heatmap ( Figures 1A and S3–S10) reveals that the clustering algorithm identified
two clusters with sharp boundaries (Figure 1A), representing excellent cluster stability
over repeated iterations. Cluster 2 also had the highest mean cluster consensus score,
representing high stability (Figure 2A). Favorable low PACs were demonstrated for two
clusters (Figure S11). Thus, the consensus clustering analysis from available hospital
admission baseline characteristics identified two clusters that best represented the data
pattern of our patients admitted with hypophosphatemia.

https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
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Table 1. Clinical characteristics.

Patient
Characteristics

Hypophosphatemia Cohort Hyperphosphatemia Cohort

Overall
(n = 3113)

Cluster 1
(n = 1505)

Cluster 2
(n = 1608) p-Value Overall

(n = 7252)
Cluster 1
(n = 3662)

Cluster 2
(n = 3590) p-Value

Age (years) 60.6 ± 17.3 49.3 ± 14.8 71.2 ± 11.9 <0.001 59.7 ± 17.5 53.6 ± 17.1 66.0 ± 15.8 <0.001

Male sex 1652 (53) 759 (50) 893 (56) 0.004 3975 (55) 1890 (52) 2085 (58) <0.001

Race

0.001 0.02
White 2849 (92) 1348 (90) 1501 (93) 6539 (90) 3303 (90) 3236 (90)
Black 53 (2) 32 (2) 21 (1) 169 (2) 69 (2) 100 (3)

Others 211 (7) 125 (8) 86 (5) 544 (8) 290 (8) 254 (7)

Principal diagnosis

<0.001 <0.001

Cardiovascular 367 (12) 121 (8) 246 (15) 1214 (17) 472 (13) 742 (21)
Endocrine/metabolic 151 (5) 75 (5) 76 (5) 407 (6) 173 (5) 234 (7)

Gastrointestinal 562 (18) 302 (20) 260 (16) 892 (12) 542 (15) 350 (10)
Genitourinary 78 (3) 19 (1) 59 (4) 799 (11) 80 (2) 719 (20)

Hematology/oncology 459 (15) 175 (12) 284 (18) 1496 (21) 1118 (31) 378 (11)
Infectious disease 359 (12) 163 (11) 196 (12) 340 (5) 68 (2) 272 (8)

Respiratory 216 (7) 84 (6) 132 (8) 313 (4) 123 (3) 190 (5)
Injury/poisoning 513 (16) 338 (22) 175 (11) 1051 (14) 600 (16) 451 (13)

Other 408 (13) 228 (15) 180 (11) 740 (10) 486 (13) 254 (7)

Charlson
Comorbidity Score 2.1 ± 2.6 0.9 ± 1.5 3.1 ± 2.8 <0.001 2.5 ± 2.6 1.8 ± 2.4 3.1 ± 2.8 <0.001

Comorbidities
Hypertension 1555 (50) 374 (25) 1181 (73) <0.001 4189 (58) 1472 (40) 2717 (76) <0.001

Diabetes mellitus 615 (20) 112 (7) 503 (31) <0.001 2028 (28) 559 (15) 1469 (41) <0.001
Coronary artery

disease 507 (16) 50 (3) 457 (28) <0.001 1558 (21) 422 (12) 1136 (32) <0.001

Congestive heart
failure 153 (5) 10 (0.7) 143 (9) <0.001 722 (10) 99 (3) 623 (17) <0.001

Peripheral vascular
disease 87 (3) 5 (0.3) 82 (5) <0.001 351 (5) 75 (2) 276 (8) <0.001

Stroke 201 (6) 29 (2) 172 (11) <0.001 532 (7) 139 (4) 393 (11) <0.001
End-stage kidney

disease 91 (3) 9 (0.6) 82 (5) <0.001 1178 (16) 91 (2) 1087 (30) <0.001

Dementia 46 (1) 4 (0.3) 42 (3) <0.001 77 (1) 16 (0.4) 61 (2) <0.001
COPD 298 (10) 65 (4) 233 (14) <0.001 766 (11) 268 (7) 498 (14) <0.001

Cirrhosis 147 (5) 58 (4) 89 (6) 0.03 284 (4) 69 (2) 215 (6) <0.001
Cancer 782 (25) 193 (13) 589 (37) <0.001 2014 (28) 1131 (31) 883 (25) <0.001

Leukemia/lymphoma 242 (8) 101 (7) 141 (9) 0.03 385 (5) 172 (5) 213 (6) 0.02

Alcohol use 322 (10) 222 (15) 100 (6) <0.001 415 (6) 206 (6) 209 (6) 0.72

Laboratory test
eGFR (mL/min/1.73

m2) 82 ± 29 100 ± 22 64 ± 24 <0.001 55 ± 39 86 ± 27 23 ± 17 <0.001

Potassium (mEq/L) 3.9 ± 0.6 3.8 ± 0.6 4.0 ± 0.7 <0.001 4.5 ± 0.8 4.2 ± 0.6 4.8 ± 0.9 <0.001
Magnesium (mg/dL) 1.8 ± 0.3 1.8 ± 0.3 1.8 ± 0.4 0.73 2.0 ± 0.5 1.8 ± 0.3 2.1 ± 0.5 <0.001

Albumin (g/dL) 3.3 ± 0.5 3.3 ± 0.6 3.3 ± 0.4 0.89 3.4 ± 0.5 3.5 ± 0.5 3.3 ± 0.5 <0.001
Total calcium

(mg/dL) 8.7 ± 0.9 8.5 ± 0.8 8.9 ± 1.0 <0.001 8.8 ± 0.8 8.9 ± 0.7 8.8 ± 0.9 <0.001

Phosphorus (mg/dL) 2.0 ± 0.4 2.0 ± 0.4 2.1 ± 0.3 <0.001 5.5 ± 1.2 5.0 ± 0.6 5.9 ± 1.5 <0.001

Medication
ACEI/ARB 974 (31) 199 (13) 775 (48) <0.001 2916 (40) 1062 (29) 1854 (52) <0.001

Diuretics 1013 (33) 234 (16) 779 (48) <0.001 3036 (42) 947 (26) 2089 (58) <0.001

Acute kidney injury 501 (16) 74 (5) 427 (27) <0.001 3358 (46) 259 (7) 3099 (86) <0.001
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Figure 1. (A) Consensus matrix heat map displaying consensus values on a white to blue color scale for each cluster of
patients with hypophosphatemia; (B) Consensus matrix heat map displaying consensus values on a white to blue color
scale for each cluster of patients with hyperphosphatemia.

Figure 2. (A) Bar plots representing the mean consensus score for hypophosphatemic patients per
different numbers of clusters (ranging from 2 to 10); (B) Bar plots representing the mean consensus
score for hyperphosphatemic patients per different numbers of clusters (ranging from 2 to 10).
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Cluster 1 had 1505 (48%) patients, while Cluster 2 had 1608 (52%) patients. As
shown in Table 1, the clinical characteristics between the two identified clusters in the
hypophosphatemia cohort were significantly different. On the basis of the standardized
mean difference shown in Figure 3, the key features of patients in Cluster 2, compared with
Cluster 1, included: older age; a higher comorbidity burden, in particular hypertension;
diabetes mellitus; coronary artery disease; lower eGFR; more acute kidney injury (AKI)
at admission; more use of angiotensin converting enzyme inhibitors (ACEI)/angiotensin
receptor blockers (ARB); and diuretics before admission.

Cluster 1 had a hospital mortality of 2.9%, whereas Cluster 2 had a hospital mortality
of 3.7% (p = 0.17) (Figure 4A). There was no difference in hospital mortality between Cluster
1 and Cluster 2. In contrast, Cluster 1 had a one-year mortality of 14.0% and a five-year
mortality of 20.2%, whereas Cluster 2 had a one-year mortality of 26.8% and a five-year
mortality of 44.3% (p < 0.001) (Figure 4B).

Cluster 2 had a higher one-year mortality and five-year mortality, when compared to
Cluster 1, with HRs of 2.10 (95% CI 1.75–2.52), and 2.56 (95% CI 2.24–2.93), respectively
(Table 2a).

Table 2. Mortality per cluster in hypophosphatemia and hyperphosphatemia.

Hospital
Mortality

OR
(95% CI)

One-Year
Mortality

HR
(95% CI)

Five-Year
Mortality

HR
(95% CI)

(a) Hypophosphatemia cohort

Cluster 1 2.9% 1 (ref) 14.0% 1 (ref) 20.2% 1 (ref)

Cluster 2 3.7% 1.32
(0.89–1.96) 26.8% 2.10

(1.75–2.52) 44.3% 2.56
(2.24–2.93)

(b) Hyperphosphatemia cohort

Cluster 1 2.4% 1 (ref) 14.8% 1 (ref) 24.5% 1 (ref)

Cluster 2 8.9% 4.06
(3.18–5.17) 32.9% 2.63

(2.36–2.93) 51.1% 2.58
(2.38–2.79)

3.2. Hyperphosphatemia Cohort

A total of 7252 patients presented with hyperphosphatemia upon hospital admission.
The mean age was 60 ± 18 years. 55% were male. The mean eGFR was 55 ± 39. The mean
admission serum phosphate was 5.5 ± 1.2 mg/dL (Table 1).

The CDF plot demonstrates the consensus distributions for each hyperphosphatemia
cluster (Figure S12). The delta area plot, in turn, demonstrates the relative change in area
under the CDF curve (Figure S13). The most significant changes in area occurred between
k = 2 and k = 4. Beyond this range, the relative increment in area was significantly smaller.
The CM heatmap (Figures 1B and S14–S22) reveals that the clustering algorithm identified
Cluster 2 with sharp boundaries (Figure 1B), representing excellent cluster stability over
repeated iterations. Cluster 2 also had the highest mean cluster consensus score, repre-
senting high stability (Figure 2B). Favorable low PACs were demonstrated for two clusters
(Figure S23). Thus, the consensus clustering analysis from the available hospital admission
baseline characteristics identified two clusters that optimally represented the data pattern
of our patients admitted with hyperphosphatemia.
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Figure 3. Standardized mean differences across the two clusters for each baseline variable for patients
with hypophosphatemia and hyperphosphatemia. The x axis represents the standardized differences
value, and the y axis represents baseline variables. The dashed vertical lines signify the standardized
differences values of <−0.3 or >0.3. Abbreviations: AG, anion gap; AKI, acute kidney injury; BMI,
body mass index; CHF, congestive heart failure; Cl, chloride; COPD, chronic obstructive pulmonary
disease; CVA, cerebrovascular accident; DM, diabetes mellitus; ESKD, end stage kidney disease; GFR,
glomerular filtration rate; GI, gastrointestinal; Hb, hemoglobin; HCO3, bicarbonate; K, potassium;
ID, infectious disease; MI, myocardial infarction; Na, sodium; PVD, peripheral vascular disease; RS,
respiratory system; SID, strong ion difference.
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Figure 4. (A) Hospital mortality and (B) one-year and five-year mortality among two clusters of admission hypophos-
phatemia; (C) Hospital mortality and (D) one-year and five-year mortality among two clusters of admission hyperphos-
phatemia.

Cluster 1 had 3662 (51%) patients, while Cluster 2 had 3590 (49%) patients. As
shown in Table 1, the clinical characteristics between the two identified clusters in the
hyperphosphatemia cohort were significantly different. Based on the standardized mean
difference shown in Figure 3, the key features of patients in Cluster 2, when compared with
Cluster 1, included: older age; more primary admission for kidney disease; more history of
hypertension, and end-stage kidney disease; more AKI at admission; more use of diuretics;
and higher admission potassium, magnesium, and phosphate.

Cluster 1 had a hospital mortality of 2.4%, whereas Cluster 2 had a hospital mortality
of 8.9% (p < 0.001) (Figure 4C). Cluster 2 had a higher hospital mortality when compared
with Cluster 1, with an OR of 4.06 (95% CI 3.18–5.17). Similarly, Cluster 1 had a one-year
mortality of 14.8%, and a five-year mortality of 24.5%, whereas Cluster 2 had a one-year
mortality of 32.9%, and a five-year mortality of 51.1% (p < 0.001) (Figure 4D). Cluster 2 had
a higher one-year and five-year mortality when compared with Cluster 1, with HRs of 2.63
(95% CI 2.36–2.93), and 2.58 (95% CI 2.38–2.79), respectively (Table 2b).

4. Discussion

The unsupervised ML consensus clustering approach offers the ability to more effi-
ciently analyze, identify, and classify groups of patients based on phenotypic features in
large volumes of data. [21–24] In this study, the unsupervised ML consensus clustering
algorithm was applied to classify patients with phosphate disorders into unique clusters.
Age, comorbidities, and kidney function were the important features used to differentiate
the phenotypes of phosphate disorders upon hospital admission, both hypophosphatemia
and hyperphosphatemia. These produced clusters of phosphate disorders had high cluster
stability, with different patients’ characteristics. In addition, these distinct clusters were
also associated with different hospital and one-year mortality risks.

The kidney is an important regulator of phosphorus homeostasis, and hypophos-
phatemia can be caused by poor phosphorus intake/intestinal absorption, redistribution
from extracellular to intracellular compartments (refeeding syndrome and respiratory alka-
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losis), and/or excessive urinary phosphate excretion [7,16,31]. Upon hospital admission,
the findings of our ML consensus clustering suggest that kidney functions (surrogates
included baseline eGFR and AKI on admission) played an important role in differentiating
the phenotypes of patients with hypophosphatemia.

Patients in Cluster 1 of hypophosphatemia had a higher baseline eGFR and a lower
incidence of AKI. Compared with Cluster 2, patients in Cluster 1 were younger and had
fewer medical comorbidities. These patients had a higher history of alcohol use and had
more principal diagnosis of injury. Underlying mechanisms of hypophosphatemia in alco-
holic patients include inappropriate renal phosphate excretion, enhanced cellular uptake
of phosphorus, and decreased gastrointestinal phosphate absorption [31,32]. Alcoholic
patients commonly have reduced serum calcium, phosphate, and potassium levels [32], as
was also demonstrated in our patients in Cluster 1. Furthermore, the majority of these pa-
tients also had hypoalbuminemia. Thus, it is possible that alcoholism played an important
role in the development of hypophosphatemia in this patient population.

Conversely, Cluster 2 of hypophosphatemia, compared with Cluster 1, included: older
age; lower eGFR; more AKI at admission; a higher comorbidity burden, particularly hy-
pertension; diabetes mellitus; and coronary artery disease. While patients with reduced
kidney functions commonly have hyperphosphatemia [9], hypophosphatemia can also be
found in patients with CKD or AKI upon hospital admission, especially among those with
malnutrition [16]. Compared with Cluster 1, Cluster 2 had more principal diagnoses of
cardiovascular, genitourinary, and hematoma oncology. Hypophosphatemia in Cluster 2
could be a surrogate marker of illness, or related to comorbidities and their treatment [7,33].
For instance, diabetes mellitus being treated with insulin therapy is another common
comorbidity that is associated with hypophosphatemia. In addition, among patients with
cardiovascular diseases, hypophosphatemia may be the result of coexisting alkalosis, phar-
macological treatments (such as diuretics), a reduced intestinal absorption of phosphate, or
secondary to sympathetic nervous system activation [34].

Despite the conflicting data on the impacts of hypophosphatemia on patient sur-
vival [12,35–43], when compared with patients with normal phosphate levels, studies
have demonstrated that hypophosphatemia is also associated with increased hospital mor-
tality [12,16,35–43]. Furthermore, severe hypophosphatemia has been reported to cause
rhabdomyolysis, respiratory failure, and metabolic encephalopathy [4,31]. Our current
study additionally assessed the mortality risks among these two clusters of hypophos-
phatemia with different phenotypes. While we found a comparable in-hospital mortality
risk among these two clusters, the patients in Cluster 2 carried a higher one-year mortality
compared to Cluster 1, despite having less severity of hypophosphatemia. This is likely
due to the effects of old age and comorbidities.

Causes of hyperphosphatemia include: decreased GFR; exogenous phosphate sources
(phosphate supplement, phosphate enemas, high phosphate diet): an endogenous load
of phosphate (tumor lysis syndrome and rhabdomyolysis); and increased tubular phos-
phate reabsorption [9,16]. As demonstrated in the ML consensus clustering analysis of
hypophosphatemia, the phenotypes of patients with hyperphosphatemia upon admission
were also mainly influenced by baseline eGFR and AKI upon admission, dividing hyper-
phosphatemic patients into two clusters. Given that urinary phosphate excretion is the
key mechanism in maintaining serum phosphate levels [11], decreased GFR in patients
with AKI or CKD can result in hyperphosphatemia [44,45]. Conversely, acute hyperphos-
phatemia itself can result in AKI from acute phosphate nephropathy [46–49]. The key
features of the patients in Cluster 2 included: older age; more history of hypertension;
reduced eGFR; more AKI at admission; and higher admission potassium, magnesium, and
phosphate levels, when compared with Cluster 1. Primary admission for genitourinary,
mainly kidney failure, is an important feature of Cluster 2, while patients in Cluster 1 had
higher primary admission for hematoma/oncology. Cluster 2 had both a higher hospital
and one-year mortality compared with Cluster 1. While both the short- and long-term
mortality among patients in Cluster 2 could have been the result of the effects of older age,
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comorbidities, and AKI [50], these patients also had a higher degree of hyperphosphatemia,
which was associated with worse clinical outcomes, including cardiovascular events and
mortality [51–54].

There were several limitations to our current study. First, the data from our study are
from a single center that may be unique to our patient population (the predominant popu-
lation in our study was Caucasian). Second, the ML clustering approach was conducted
at the time of hospital admission to allow application of this study to clinical practice
and future studies. Future studies should include an evaluation as to whether the early
recognition of mortality risk in hospitalized patients with distinct phenotypes of phos-
phate disorders would permit earlier intervention and the mitigation of mortality. Third,
some laboratory investigations that may have affected the phosphate levels or helped
to determine the causes of phosphate disorders, were not commonly performed upon
admission (urine phosphate excretion, parathyroid hormone, 25-hydroxyvitamin D level,
arterial blood gases, fibroblast growth factor 23 (FGF23)) and, thus, were not included in
our ML clustering algorithm. Lastly, data on medications that can alter phosphate levels,
such as insulin, phosphate supplement, phosphate binders, were limited in our database.
Thus, future studies are needed to assess whether these variables could have improved
the discriminatory ability of the clusters we identified. Nevertheless, our ML clustering
approach successfully identified clusters with distinct phenotypes among hospitalized
patients with phosphate disorders that indicated different mortality risks.

5. Conclusions

ML consensus clustering analysis identified distinct clusters of hospitalized patients
with admission phosphate disorders. Age, comorbidities, and kidney function were the
key features used to differentiate the phenotypes of phosphate disorders upon hospital
admission. Furthermore, the distinct phenotypes of phosphate disorders have differing in-
hospital and one-year mortality risks. Future studies on interventional targets to improve
the outcomes of phosphate disorders may be potentially beneficial for focusing on patients
with phenotypes of high mortality risks.
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