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Abstract

Radiolabelled peptides are used for specific targeting of receptors (over-)expressed by tumour cells. Dependent on
the kind of labelling and the radionuclide used, these compounds may be utilised for imaging or for therapy. A
concise overview is provided on basic principles of designing and developing radiopeptides for these applications.
Furthermore, clinical application of these compounds for imaging and therapy is described. Advantages of the method
compared to other techniques (such as the use of radiolabelled antibodies or antibody fragments) are discussed as well
as pitfalls and limitations.

Keywords: Peptide; receptor; scintigraphy; radiotherapy.

Introduction

Radiolabelled receptor binding peptides have emerged as
a new class of specifically targeting radiopharmaceuticals
for tumour diagnosis and therapy. The peptides are used
as transport vehicles to guide the radionuclides to the
tissues expressing a particular receptor. Small peptides
for receptor imaging and targeted radiotherapy have some
advantages over antibodies, and even antibody fragments.
Due to their small size, peptides show rapid diffusion in
target tissue. They clear rapidly from the blood and non-
target tissues, resulting in high tumour-to-background
ratios. For conventional nuclear medicine imaging, the
peptides may be labelled with γ -emitters such as 111In
and 99mTc. For positron emission tomography (PET),
they should be labelled with positron emitters, such
as 18F, 68Ga, 64Cu. For therapy, β-emitters are used
(90Y, 177Lu) which will destroy tumour tissue while
sparing healthy tissues, depending on the penetration
range of the β-particles. To date, the 111In-labelled
somatostatin analogue octreotide (OctreoScan R©) is the
most successful radiopeptide for tumour imaging and
has been the first to be approved for diagnostic use.
Labelled with the β-emitters 90Y or 177Lu, it has
been used for peptide receptor radiotherapy (PRRT).
Other receptor-targeting peptides such as cholecystokinin

(CCK) analogues, glucagon-like peptide-1 (GLP-1),
bombesin, substance P, neurotensin, and RGD peptides
are currently under development or undergoing clinical
trials. The basic principles for radiopeptide imaging
and PRRT are the same. Therefore, both techniques are
discussed with emphasis upon PRRT.

Regulatory peptides and their receptors

Regulatory peptides are potent small (30–40 amino
acids) messenger molecules binding to specific
G-protein-coupled receptors mainly in the brain and
the gastrointestinal tract. While rapidly penetrating any
tissue (except for the brain, because they cannot cross
the blood–brain barrier due to hydrophilicity), they
are also rapidly degraded and excreted mostly via the
kidneys. The central nervous system and the periphery
form two independent regulatory systems that use the
same messenger molecules without danger of confusing
interaction [1–3]. While degradation and secretion is
necessary for regulatory peptides to play a role as flexible
messenger molecules, their use as radiopharmaceuticals
is massively hampered by their short half-life in blood.
Therefore, most peptides have to be modified to prevent
rapid enzymatic degradation [4,5].

1470-7330/06/020178 + 07 c© 2006 International Cancer Imaging Society



Wednesday 18 October 2006 S179

Application of peptides as
radiopharmaceuticals

Regulatory peptides have to be stabilised for the use
as radiopeptides in order to achieve high tumour-
targeting while rapid (renal) secretion is necessary to
keep background activity low [6]. In addition, during
the radiolabelling procedure the peptide should preserve
its receptor binding affinity and biological activity (the
latter is not essential for targeting, but often goes along
with affinity). To overcome the enzymatic degradation
of peptides, several methods of inhibiting enzymatic
degradation of peptides have been developed (binding
to serum proteins will result in high background-levels
which should be avoided). To achieve this goal, substi-
tution of L-amino acids by D-amino acids, replacement
of amino moieties by imino groups, substitution of
peptide bonds, insertion of artificial amino acids or
amino acid residues with modified side chains, amidation,
cyclisation, and peptidomimetics may be used [4,7]. Apart
from stabilisation, the route and rate of excretion of
peptides can be modified by introduction of specific
hydrophilic or lipophilic amino acid residues into the
peptide-chain [8]. Peptides can also be modified by
linking them to polyethylene glycol (PEG) chains, a
technique called PEGylation [9,10], in order to achieve
stable hydrophilic peptides.

Radiolabelling of peptides

The radiolabelling procedure should not affect the
receptor binding affinity of the peptide while retention
of the tracer within the target cell is warranted [11].
This can be achieved by so-called residualising labels
which are retained in the cell (due to lack of a
metabolic pathway) even if the peptide serving as
carrier is degraded after internalisation. Radiolabelling
of peptides with metals such as 111In or 177Lu is
performed by conjugating peptides with bifunctional
chelators that complex free metal ions. The most widely
used chelators are diethylenetriaminepentaacetic acid
(DTPA) (Fig. 1) and 1,4,7,10-tetraazacyclo-dodecane-
N ′,N ′′,N ′′′,N ′′′′,-tetraacetic acid (DOTA). While the first
is commonly used for imaging due to the simplicity of
the labelling procedure, the latter is used for therapy
due to the higher stability of the radionuclide–chelator
complex [12,13]. DOTA can also be used for labelling with
positron emitters such as 64Cu or 68Ga. For labelling with
99mTc, bifunctional coupling agents may be used such as
MAG3

[14–16] or HYNIC [17,18].

N N
HOOC

HOOC COOH COOH Thr(ol) Thr LysCys

OC DPhe Phe-DTrpCys
N

Figure 1 The chemical structure of DTPA-DPhe1-
octreotide. The chelator DTPA is conjugated to the
peptide via the DPhe in position 1 of the peptide.

Somatostatins

Somatostatin is a cyclic 14 amino acid discovered in
1973. In the central nervous system, somatostatin acts
as a neurotransmitter [19]. Somatostatin receptors are
expressed in most neuroendocrine tumours. Five subtypes
of human somatostatin receptors (hSSTR) have been
identified [20] and natural somatostatin has a high affinity
for all of them. Due to the low metabolic stability of
somatostatin-14, by rational design the somatostatin ana-
logue octreotide was developed showing enhanced sta-
bility towards enzymatic degradation [21]. By N-terminal
conjugation of octreotide to the chelator DTPA, the so-
called pentreotide was developed enabling radiolabelling
with 111In [22,23]. For PRRT, DOTA-conjugated somato-
statin analogues have been developed [24–29]. 99mTc-
HYNIC-D-Phe1-Tyr3-octreotide has been developed for
imaging which shows some advantages over 111In-
labelled compounds (lower radiation exposure, higher
spatial resolution) [30,31]. For PET imaging, compounds
have been developed labelled with 68Ga, 64Cu, and
18F [32–39]. In comparison to conventional imaging,
sensitivity is improved. Especially 68Ga is a promising
compound because it can be eluted from Ge/Ga genera-
tors even in PET centres without an on-site cyclotron.

Scintigraphic imaging of tumours

Clinical somatostatin receptor scintigraphy (SRS)
with 111In-DTPA-octreotide mainly visualises tumours
expressing somatostatin receptor subtype 2 (sstr2) (and
also 5 (sstr5)) as octreotide does not have a high affinity
to the other somatostatin receptor subtypes [40]. sstr 2
is expressed by a large variety of tumours, especially
neuroendocrine tumours, lung cancer, breast cancer,
differentiated thyroid cancers, but also meningiomas,
well-differentiated astrocytomas, pituitary tumours, or
malignant lymphomas and several others [41–46]. In
some gastrointestinal neuroendocrine tumours, it is
considered the diagnostic gold-standard [47–49] while
in other tumours such as insulinomas or medullary
thyroid carcinoma, the sensitivity is below 50% [47,50–52].
In dedifferentiating tumours, the somatostatin receptor
expression may be lost resulting in low sensitivity of
diagnostic imaging while in these cases PRRT will not be
of help [52]. For imaging with positron emitters, octreotide
analogues have been developed. As already stated above,
these show an increased sensitivity as compared to 111In-
labelled octreotide.

Peptide receptor radionuclide therapy
(PRRT)

Peptides used for PRRT need to be designed for high
tumour retention. Therefore, it is crucial to use residu-
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alising labels for binding of therapeutic radionuclides,
usually β-emitters. The basic principles of labelling
of radiopeptides have already been described. The
β-emitters that are suited for therapeutic use and the most
frequently used to date are 90Y (βmax 2.3 MeV, t1/2 64
h), 186Re (βmax 1.1 MeV, t1/2 91 h), 188Re (βmax 2.1
MeV, t1/2 17 h), 131I (βmax 0.6 MeV, t1/2 192 h), and
177Lu (βmax 0.5 MeV, t1/2 161 h). For PRRT, 90Y and
177Lu have most widely been used. As high energy β

radiation has a long penetration range in tissue, it is less
efficient when treating smaller tumour lesions (<1–2 g)
as much of the energy is deposited outside the lesion.
Therefore, high energy particles such as 90Y have been
considered more appropriate for the treatment of larger
tumours (with a heterogeneous receptor distribution)
whereas low energy particles such as 177Lu may be more
suitable for the treatment of small lesions [53]. Indeed, it
has been shown that the combination of radionuclides
with different β-energies and particle ranges may have
good potential to achieve higher cure rates in tumours of
differing sizes [54]. However, clinical trials are awaited to
support these findings.

Apart from β-emitters, the auger-emitter 111In has
also been used for PRRT; 111In emits γ -rays as well
as conversion and auger electrons, the latter being
responsible for the therapeutic effects [55]. Furthermore,
pre-clinical data exist about the use of α-emitters (211At,
213Bi) for PRRT [56,57]. α-emitters may be able to induce
more damage to tissue due to the higher energy deposition
in relation to the short range of about 50 µm in tissue [58].

To date, clinical trials have been performed
using mainly 90Y and 177Lu as emitters bound to
octreotide analogues (mostly DOTA-Tyr3-octreotide
(DOTATOC) [59] and DOTA-Tyr3-Thr8-octreotide
(DOTATATE) [60]).

Efficacy of PRRT

PRRT is mostly performed in patients with neuroen-
docrine tumours of the gastrointestinal tract as well as
carcinoid tumours of other localisations. The effects of
PRRT—as the effects of any other anti-cancer therapy—
vary dependent on the size of the tumours, the stage
of disease, differentiation of the tumour cells, and
other factors. Using [90Y]DOTA-Toc, response rates
obtained range from ∼6% to ∼30% for partial remissions
while stable disease has been found in 52–88% of the
patients [28,59,61]. Complete remissions may be achieved
in single patients. However, some studies fail to report
the number of patients with progressive or stable disease
prior to therapy [28,61]. Other studies report on the use
of DOTATATE for PRRT, labelled either with 90Y or
177Lu. Independent of the radionuclide used, the response
rate is reported to be in the range of 30–40% for partial
remissions and stable disease in prior progressive patients
has been reported in ∼40–50% [62–64]. Randomised
controlled clinical trials to find the optimal treatment

scheme for PRRT are missing so far, probably also due
to the limited number of patients.

Apart from somatostatin analogues, other peptides have
been used for PRRT. 90Y-labelled minigastrin has been
used successfully in patients with medullary thyroid
carcinoma with response rates above 30% [65,66]. The
response rate dropped when 111In was used instead of 90Y
as radionuclide in gastrin receptor-targeted therapy [67].

Toxicity of PRRT

Haematological toxicity

Acute haematological toxicity is usually mild, no matter
which of the radionuclides is used. WHO grade 3–4
toxicity may be reached in up to 15% of the patients [61].
However, certain dosage limits need to be respected. In
single patients with previous chemotherapy, myelodis-
plastic syndromes have been observed [64]. Especially
with 111In used as radionuclide, if a limit of 100 GBq
or 3 Gy bone marrow dose had been exceeded, patients
developed myelodisplastic syndrome [68].

Renal toxicity

Dose-limiting renal toxicity is probably the most
important issue in toxicity of PRRT. This toxicity is
attributable to the re-absorption of radiolabelled peptides
in the renal tubuli via megalin [69], leading to a relatively
high radiation dose to the glomeruli that may result in
an irreversible loss of kidney function. In comparison
to β-emitters, the Auger emitter 111In does not show
considerable renal toxicity because due to the shorter
range of the radiation, the glomeruli are preserved. The
tubular epithelia which are damaged, on the other hand,
quickly recover [11]. Due to the better results of PRRT
using 177Lu or 90Y, renal toxicity needs to be reduced
for effective tumour treatment. Therefore, positively
charged amino acids but also plasma-expanders have
been used successfully to reduce kidney re-absorption
of radiolabelled octreotide analogues [70–73]. Cumulative
activity of 90Y applied to single patients should not
exceed 7.4 GBq/m2 as this will probably increase the risk
of renal failure [74].

Liver toxicity

Liver toxicity may occur in single patients with liver
metastases undergoing PRRT. However, it will always
remain difficult to reliably detect liver toxicity of PRRT
itself because an increase in liver parameters could also
be attributable to liver damage due to metastatic disease.
Single patients with extensive metastases to the liver and
acute liver failure, however, have been described [61].
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Figure 2 A patient with medullary thyroid car-
cinoma metastasised to the mediastinum and the
right axilla. Pre-therapeutic planar scans show high
uptake of 111In-DTPA-D-Glu1-Minigastrin into the
tumours (top) while uptake is much lower after
three cycles of therapy with 111In-DTPA-D-Glu1-
Minigastrin (bottom). CT scans showed stable disease
in this previously progressive patient.

Future developments

A number of new radiopeptides are currently under
development. CCK2 binding peptides have been used
in imaging and therapy (Fig. 2) [65–67,75]. Early clinical
studies with bombesin analogues in patients with invasive
prostate carcinoma are currently underway [76]. 90Y-
labelled substance P has been used for intracavitary
brachytherapy of high grade gliomas [77] although
systemic application of this compound may cause
considerable side-effects [78]. However, local application
into tumour tissue does not cause these problems. In pre-
clinical studies, GLP-1 analogues have been used for
the detection of insulinomas and radiometal-labelled ana-
logues have been developed [79–81]. Recently, two studies
with 99mTc-labeled VIP analogs in patients with high
grade spindle cell sarcoma, ductal epithelial hyperplasia,
and colorectal cancer suggest that this radiopeptide
may be valuable for clinical application [82,83]. Pre-
clinical studies with 111In-labelled DTPA- and DOTA-
conjugated neurotensin analogues suggest that these
may be applied in the management of patients with
exocrine pancreatic cancer [84]. Finally, RGD peptides
targeting the αvβ3 integrin preferentially expressed on
proliferating endothelial cells [85] are under development.
These peptides may offer a wide clinical application
in quickly proliferating tumours [86,87]. In a study with
patients using an 18F-labelled RGD peptide, uptake
patterns were detected differing from [18F]FDG uptake.
Therefore, this new compound will probably lead to

new insights into individual tumour biology (growth rate,
neovascularisation, etc.). It may furthermore be possible
to non-invasively characterise tumours for optimisation
of therapy [87].
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