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ABSTRACT

Bladder cancer is one of the most common urinary tract carcinomas in the world. Urine 
metabolomics is a promising approach for bladder cancer detection and marker discovery 
since urine is in direct contact with bladder epithelia cells; metabolites released from bladder 
cancer cells may be enriched in urine samples. In this study, we applied ultra-performance 
liquid chromatography time-of-flight mass spectrometry to profile metabolite profiles of 
87 samples from bladder cancer patients and 65 samples from hernia patients. An OPLS-
DA classification revealed that bladder cancer samples can be discriminated from hernia 
samples based on the profiles. A marker discovery pipeline selected six putative markers 
from the metabolomic profiles. An LLE clustering demonstrated the discriminative power 
of the chosen marker candidates. Two of the six markers were identified as imidazoleacetic 
acid whose relation to bladder cancer has certain degree of supporting evidence. A machine 
learning model, decision trees, was built based on the metabolomic profiles and the six 
marker candidates. The decision tree obtained an accuracy of 76.60%, a sensitivity of 
71.88%, and a specificity of 86.67% from an independent test.

INTRODUCTION

Bladder cancer (BCa) is the ninth most common 
cancer in the world; 429,000 new cases and 165,000 
deaths were estimated in 2012 [1]. According to the most 
recent estimates of the American Cancer Society, in 2016 

there will be 76,960 new cases of BCa and 16,390 deaths 
from BCa annually in the United States [2]. A 2016 official 
report of the Taiwan government said that in Taiwan there 
were 2,055 new cases of BCa (accounting for 2.07% of 
all cancers) and 833 deaths (1.86% of all cancers) in 2013 
[3]. Currently, cystoscopy and cytology are standards for 
BCa detection. Cystoscopy is an invasive, annoying and 
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costly procedure, and may fail to exam certain areas in 
bladder [4]. Cytology is a noninvasive method and often 
serves as an adjunct to a negative cystoscopy study. 
Although cytology has high specificity, its sensitivity is 
not satisfactory, particularly for low-grade tumors [5]. 
Identifying discriminative markers for the noninvasive 
detection of BCa is therefore essential. Several candidate 
protein markers for BCa have been identified from urine 
and bladder cancer cells; these markers are used for the 
initial diagnosis and monitoring recurrence and treatment 
response. Nevertheless, the sensitivity and specificity 
of these markers are not superior to existing detection 
methods, and the clinical utility of these markers has not 
been comprehensively examined [6-9]. Thus, there is a 
compelling need to develop more reliable BCa markers.

One promising approach to the BCa detection and 
marker discovery is to study the urine metabolome during 
the occurrence of the disease. Urine is in direct contact with 
bladder epithelia cells that may give rise to BCa; metabolites 
released from bladder cancer cells may be enriched in 
urine samples. Urine metabolomics have been used in BCa 
detection and marker discovery. Both mass spectrometry 
(MS) and nuclear magnetic resonance (NMR) spectroscopy 
have been applied to identify changes in expression level 
of urinary metabolites [10]. Srivastava et al. [11] used 1H 
NMR spectroscopy to perform urine metabolomic profiling 
against 103 BCa patients and controls. They found that the 
concentration of taurine in urine was significantly elevated 
in BCa samples, and therefore suggested taurine as a putative 
marker. Issaq et al. [12] performed urine metabolomic 
profiling against 48 healthy individuals and 41 patients with 
bladder transitional cell carcinoma by liquid chromatography/
mass spectrometry (LC/MS). The metabolomic profiles were 
subjected to the orthogonal projection to latent structures-
discriminant analysis (OPLS-DA) and principal component 
analysis (PCA). The results of OPLS-DA and PCA showed 
a clear separation between patient and control profiles. 
Pasikanti et al. [13] applied gas chromatography/mass 
spectrometry (GC/MS) to profile urine metabolites of 24 
BCa and 51 non-BCa samples. They selected 11 putative 
markers that were related to glycolysis. Jin et al. [14] applied 
LC/MS to profile metabolites of 138 patients with BCa 
and 121 control subjects. The study identified 12 putative 
markers that were involved in glycolysis and betaoxidation. 
Their multivariate regression analysis also suggested that 
the metabolomic profiles may correlate with survival time. 
Peng et al. [15] developed a quantitative approach, universal 
metabolome-standard (UMS), in conjunction with LC/MS to 
perform metabolomic profiling. The platform was used for 
marker discovery on 91 BCa patients and 99 control subjects. 
They reported 10 putative markers, and some of the markers 
were involved in phospholipid metabolism and glycolysis. 
Shen et al. [16] used LC/MS to perform metabolomic 
profiling against 23 patients with early stage BCa and 
21 healthy controls. They identified six putative markers 
GlyCysAlaLys, nicotinuric acid, AspAspGlyTrp, inosinic 

acid, trehalose, and ureidosuccinic acid. Wittmann et al. [17] 
applied LC/MS to profile metabolites of 66 BCa and 266 
non-BCa subjects. They identified palmitoyl sphingomyelin, 
lactate, adenosine, succinate, and arachidonate as putative 
markers. The authors also suggested that metabolites related 
to lipid metabolism may be potential BCa markers. Although 
there have been several studies for BCa detection and 
marker discovery based on urine metabolome, further urine 
metabolomic profiling may still yield new putative markers 
due to the variable, dynamic, and diverse nature of urine 
metabolomes.

In this study, we applied ultra-performance liquid 
chromatography time-of-flight mass spectrometry (UPLC-
TOF-MS) to perform metabolomic profiling on 87 samples 
of BCa patients and 65 samples of hernia patients. Statistical 
analysis and cross validation revealed that machine learning 
models built on metabolomic profiles can discriminate BCa 
samples from hernia samples. There were six spectral ions 
selected as putative BCa markers. Two of the marker ions 
were identified as imidazoleacetic acid. The sources of 
imidazoleacetic acid, histidine and histamine, have been 
reported in connection with BCa. The result suggests that 
imidazoleacetic acid has the potential to be a BCa marker.

RESULTS

Subject characteristics

There were totally 152 enrolled subjects, in which 
87 were diagnosed with BCa and 65 diagnosed with 
hernia. Hernia patients served as controls in this study. 
The demographics of enrolled subjects were summarized 
in Table 1. The BCa patients comprised 54 males and 
33 females and had an average age of 68.2±14.5. The 
controls comprised 62 males and 3 females and had 
an average age of 64.6±13.2. Creatinine, an important 
index in urine test, was statistically at the same level in 
BCa patients and controls (p value = 0.203). However, 
Hemoglobin, another important index in urine test, 
was statistically lower in the BCa patients than in the 
controls (p value < 0.001) as hematuria being the 
common finding in BCa. Within all BCa patients, 55 
were diagnosed with early stage BCa tumor and 32 
were diagnosed with advanced stage BCa tumor. The 
early stage BCa tumor denotes the superficial tumor 
without muscle involvement, while the advanced stage 
BCa tumor denotes the tumor invading to muscle layer. 
The 152 subjects were randomly partitioned into two 
sets, training set and testing set. The training set was 
used to select metabolite markers and build a predictive 
model for BCa; the training set contained 105 subjects, 
including 55 BCa patients and 50 hernia patients. The 
testing set was used to evaluate the performance of the 
predictive model built using the training set; the testing 
set contained 47 subjects, including 32 BCa patients and 
15 hernia patients.
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Metabolomic profiling of BCa and hernia urine 
samples

The urine samples of the 152 enrolled patients 
were subjected to the UPLC-TOF-MS analysis for 
metabolomic profiling, and 944219 spectral ions were 
identified for each sample (see Supplementary Tables 
1–4 for BCa samples and Supplementary Tables 5–7 for 
hernia samples). To test whether or not UPLC-TOF-MS-
based metabolomic profiling be an effective approach to 
discriminate BCa samples from hernia samples, we used 
the metabolomic profiles of the training set to construct 
an OPLS-DA [18] model with one predictive component 
and two orthogonal components. The obtained OPLS-
DA score plot was depicted in Figure 1. The satisfactory 
separation (R2Xcum = 0.1, R2Ycum = 0.751, Q2

cum = 0.221) 
between BCa and hernia samples in the plot showed 
the discriminative potential of metabolomic profiling 
in BCa detection.

Identification of candidate markers for BCa 
detection

Since metabolomic profiling revealed a certain 
degree of discriminative power in BCa detection, we 
would like to further select discriminative markers from 
metabolomic profiles. We applied a screening pipeline to 
perform the marker selection. The pipeline consisted of the 
following four steps.

1.	 Selection by detection count. An ion was 
considered as a marker candidate only if it had a nonzero 
intensity in more than half of the training samples.

2.	 Selection by fold change. The fold changes 
of all training samples were first subjected to a log 
transformation and then underwent a fitting of Gaussian 
distribution. Ions with positive log ratios and located 
beyond one standard deviation from the mean of the 
distribution were regarded as significantly up-regulated 
and chosen as marker candidates. Down-regulated ions 
were not taken into consideration because we may not sure 
whether a metabolite was not expressed or our instrument 
missed detecting it.

3.	 Selection by statistical test. We applied Wilcoxon 
rank sum test [19] to assess the discriminative power of 
ions; ions with p value < 0.05 were selected as marker 
candidates.

4.	 Selection by the area under the receiver 
operating characteristic curve. Ions with an area under 
the receiver operating characteristic curve (AUC [20]) ≥ 
0.7 were selected as marker candidates.

The screening pipeline selected six candidate ions 
from 944219 spectral ions (Table 2). The training set 
accordingly underwent a locally linear embedding (LLE) 
clustering [21] based on the six candidates to validate 
the discriminative power of the selected markers. The 
clustering result was shown in Figure 2, which revealed a 
good separation between BCa and hernia samples.

Performance of the BCa detection model

On the basis of the six selected marker candidates, 
we constructed a predictive model, decision tree, for 
the detection of BCa. The workflow of the detection 
model construction was depicted in Figure 3. Each 

Table 1: Patient characteristics

BCa Hernia p value

# of subjects 87 65

Age ± SD 68.2±14.5 64.6±13.2 0.117

Gender

  Male 54 (62%) 62 (95%)

  Female 33 (38%) 3 (5%)

Creatinine 1.40 1.11 0.203

Hemoglobin 12.33 13.67 < 0.001*

Tumor stage

  Early1 55

  Advanced2 32

* Statistically significance, as hematuria being the common finding in BCa
1 Early stage: superficial tumor without muscle involvement
2 Adcanced stage: tumor invasion to muscle layer
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sample was characterized by the six candidates only. 
To limit overfitting, the training set of 105 samples was 
first subjected to a 5-fold cross validation to evaluate 
the stability and generalization of decision tree model. 
Following the cross validation, a decision tree was 
constructed using the whole training set. We finally 
conducted an independent test to evaluate the performance 
of the constructed decision tree using the testing set of 47 
samples.

In the 5-fold cross validation, the training set was 
randomly partitioned into 5 folds of equal size; each fold 
contained 21 samples, including 11 BCa samples and 10 
hernia samples. In the cross validation, each fold was in 
turn used for decision tree evaluation and the remaining 
4 folds were used for decision tree construction. The 
evaluation results of the 5-fold cross validation were listed 
in Table 3. The average accuracy of the cross validation 
was 84.76% with 1.75% standard deviation, which showed 
a stable performance of the decision tree approach. The 
cross validation also reported a stable sensitivity (81.82% 
± 1.61%) and specificity (88.00% ± 2.74%). When the 

final decision tree was evaluated by the testing set of 
47 samples, the predictive model received an accuracy 
of 76.60%, a sensitivity of 71.88%, and a specificity of 
86.67%, respectively.

DISCUSSION

High-throughput chemical analysis techniques, 
such as MS and NMR, have made urine metabolomics 
a quick and simple alternative to BCa detection and 
biomarker discovery [11-17]. In this study, we also 
found six ion candidates (2.56 min: 314.085 m/z), (3.65 
min: 165.007 m/z), (3.65 min: 183.018 m/z), (15.23 
min: 323.056 m/z), (19.42 min: 213.146 m/z), and 
(2.04 min: 106.950 m/z). Only ions (3.65 min: 165.007 
m/z) and (3.65 min: 183.018 m/z) were identified as 
imidazoleacetic acid (Supplementary Figures 1 and 2), 
and others were unknown metabolites. It is noteworthy 
that although studies reported in [14-17] as well as ours 
all targeted on urine metabolome, the signatures identified 
by these studies were quite different from each other. The 

Figure 1: OPLS-DA score plot of the BCa and hernia metabolomic profiles. Each box represents the metabolomic profile of 
944219 spectral ions of an individual subject. There are 87 blue boxes representing BCa patients and 65 red boxes representing hernia 
patients.
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Figure 2: LLE plot of the BCa and hernia profiles of marker candidates. Each dot represents the profile of six marker 
candidates of an individual subject. There are 87 blue dots representing BCa patients and 65 red dots representing hernia patients.

Table 2: Candidate ions for BCa detection

Candidate ions # BCa # Hernia Ratio p value AUC

2.56 min: 314.085 m/z 46 25 1.27 2.62E-05 0.73

3.65 min: 165.007 m/z 38 21 2.24 5.14E-05 0.72

3.65 min: 183.018 m/z 39 23 2.85 7.32E-05 0.72

12.53 min: 194.117 m/z 42 22 11.20 8.15E-05 0.72

19.42 min: 213.146 m/z 55 50 1.47 2.52E-04 0.71

2.04 min: 106.950 m/z 50 36 1.41 4.06E-04 0.70

# BCa: Number of BCa samples containing the ion
# Hernia: Number of hernia samples containing the ion
Ratio: expression fold change of ions in BCa samples to hernia samples
p value: received from Wilcoxon rank sum test
AUC: area under the receiver operating characteristic curve

Figure 3: The decision tree construction and evaluation workflow. First, the training set of 55 BCa and 50 hernia samples was 
subjected to a procedure of decision tree construction with 5-fold cross validation to evaluate the stability and generalization of the decision 
tree model. Second, the whole training set was used to build a final decision tree. Finally, an independent test was performed on the testing 
set of 32 BCa and 15 hernia samples to validate the final decision tree.
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difference may originate from various factors. First, there 
is no standard of sample acquisition, including patient 
characteristics (age, gender), cancer characteristics 
(histological type, advancement), and time of collection 
(before or after surgery) etc. Second, different platforms 
were used to profile urine metabolites. NMR, LC/MS, 
and GC/MS can have different separation techniques, 
chromatographic modes, and mass accuracy and 
resolution. Third, the environmental stress and food intake 
greatly impact on the composition of metabolome. These 
factors all increased the diversity of metabolomic profiles 
obtained from different laboratories. Most importantly, 
statistical approaches are very sensitive to data, different 
control groups might lead to different results. Jin et al. 
[14] used healthy individuals and patients with hematuria 
as control subjects. Peng et al. [15] used hernia, urinary 
tract infection, and hematuria patients as control subjects. 
Wittmann et al. [17] used hematuria patients, individuals 
with a history of BCa but no current disease, and healthy 
individuals as control subjects. Shen et al. [16] used 
healthy individuals as control subjects. In this study, we 
used hernia patients as control groups. All these studies 
used different configurations of control groups, and 
reasonably identified different metabolite signatures 
for BCa.

Our only identified metabolite, imidazoleacetic 
acid, derives from the oxidation of histamine [22]. 
Mast cells have been reported to be associated with 
bladder carcinoma [23]. Moreover, the overexpression 
of cyclooxygenase-2 driven by keratin 5 promoter causes 
spontaneous inflammation and is related to hyperplasia and 
carcinomas in urinary bladders [24]. Histamine, primarily 
released by mast cells in inflammatory processes, may 
therefore be a potential marker of BCa [25]. Histamine is 
derived from the decarboxylation of histidine by histidine 
decarboxylase (HDC) [26]. HDC has been reported to 
expressed in melanoma [27] and human small cell lung 
carcinoma [28]. Histidine has been identified as potential 
marker for BCa [29]; Putluri et al. [30] compared the 
metabolomic profiles of normal, benign adjacent, and 

cancerous bladder tissues, and found that histidine was 
increased in bladder tumors relative to benign adjacent 
tissues. Alberice et al. [31] further extended the knowledge 
regarding relevance of histidine with respect to the 
progression of BCa. Imidazoleacetic acid was reasonably 
enriched in our BCa metabolome since the overexpression 
of its sources, histidine and histamine, has been shown in 
connection with BCa.

MATERIALS AND METHODS

Chemicals

All chemicals and solvents were purchased from 
Sigma–Aldrich (St. Louis, MO, USA). The chemicals 
were all analytical grade. Water, acetonitrile containing 
0.1% formic acid and water containing 0.1% formic acid, 
were of CHROMASOLV grade.

Sample preparation

All urine samples were collected at Chang Gung 
Memorial Hospital, Taoyuan, Taiwan. The study protocol 
was approved by the Medical Ethics and Human Clinical 
Trial Committee at Chang Gung Memorial Hospital (IRB 
approval number 103-3878B). A total of 87 BCa patients 
containing either non-muscle invasive or muscle invasive 
diseases were recruited in this study. Additionally, 65 
hernia patients were recruited as controls from cancer 
patients with comparable age and exactly the same 
procedures of urine sample collection in the first morning 
after admission before surgical intervention. The diagnosis 
of BCa was all pathologically proven of urothelial 
carcinoma after transurethral biopsy or resection of tumor. 
The urine will discard and exclude for further analysis if 
the diagnosis was not confirmed. If muscle invasion was 
identified, radical surgery to remove entire bladder would 
be suggested but not always be performed according to 
the decision of patient and family. In the control cohort, 
all hernia patients were checked for any previous cancer 

Table 3: Performance of decision trees reported by the 5-fold cross validation

Iteration Accuracy Sensitivity Specificity

1 85.71% 81.82% 90.00%

2 82.14% 79.55% 85.00%

3 86.90% 84.09% 90.00%

4 83.33% 81.82% 85.00%

5 85.71% 81.82% 90.00%

Average 84.76% ± 1.75% 81.82% ± 1.61% 88.00% ± 2.74%

Accuracy–the probability that a sample is correctly classified; Sensitivity–the probability that a BCa sample is correctly 
classified as BCa; Specificity–the probability that a hernia sample is correctly classified as hernia.
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history and would be excluded if positive past history. 
Cells and debris were removed by centrifugation (5,000 
× g for 30 min at 4 °C). This was done within one hour 
after sample collection [32]. The sample was then kept at 
–80 °C for long-term storage. Before mass spectrometry 
analysis, the sample was thawed on 4 °C. Freezing-point 
depression was measured to determine osmolalities of 
samples using an Advanced Instruments Osmometer 
Model 3320 (Norwood, MA). All the samples were 
normalized by diluting their osmolalities to 250 mOsm/kg. 
50 μL of urine was diluted with 200 μL of methanol 
and centrifuged at 13,200 × g for 15 min at 4 °C. The 
supernatant was dried using N2. The sample was re-
dissolved with 50 μL solvent consisting of MeOH: H2O 
(2:1 v/v) and centrifuged at 13,200 × g for 15 min at 4 °C; 
the supernatant from this centrifugation was used directly 
for LC-MS analysis. Equal amount of urine from each 
sample in the analysis were mixed as the quality control 
(QC) sample [33].

Metabolite identification and quantitation by 
mass spectrometry

All samples were analyzed by using an UPLC-TOF-
MS system for further identification and quantitation of 
metabolites. The UHPLC system (Ultimate 3000; Dionex, 
Germany) equipped with a C18 reversed-phase column 
(2.1 × 100 mm, 1.8 μm, HSS-T3; Waters, Milford, 
MA, USA) was coupled with a hybrid Q-TOF mass 
spectrometer (maXis impact, Bruker Daltonics, Bremen, 
Germany) with an orthogonal electrospray ionization 
(ESI) source. The product ion spectra were acquired 
by either an ion trap MS (HCT ultra, Bruker Daltonics, 
Bremen, Germany) or an LTQ-Orbitrap XL (Thermo 
Scientific, San Jose, CA, USA). The selection of mass 
spectrometer was depending on the abundance of the ion 
itself; the ions with high abundances were acquired by 
the ion trap MS, and the ions with low abundances that 
cannot be detected by ion trap MS were acquired by LTQ-
Orbitrap XL MS. The gradient of LC was that the initial 
flow rate was 0.1 mL/min of 99% solvent A (0.1% formic 
acid) and 1% solvent B (acetonitrile with 0.1% formic 
acid). A volume of 1 μL of sample was injected. After 
injection, solvent B was maintained at 1% for 5 min, then 
increased to 50% during a span of 9 min, then to 90% 
over 6 min, and finally to 99% over a period of 12 min 
after which this percentage composition was held for 1 
min. The flow rate was changed to 0.5 mL/min, and after 
5 min reduced to 0.1mL/min. After 0.1 min, solvent B was 
reduced back down to 1% and held at this percentage for 
7 min.

The Q-TOF mass spectrometer was operated in 
positive ion mode using the m/z range 50–1000 at 1 
Hz (summation value of 9839) for urine screening. The 
capillary voltage of the ion source was set at +3300 V, 
and the endplate offset was 500 V. The nebulizer gas flow 

was 1 bar and drying gas flow was 8 L/min. The drying 
temperature was set at 200 °C. The radio frequencies 
(RF) of Funnel 1 and Funnel 2 were both 100 Vpp. The 
hexapole RF was 120 Vpp and the low mass cutoff of 
quadrupole was 30 m/z. The product ion spectra were all 
acquired with the default setting of mass spectrometer. 
Instrument calibration was performed externally prior to 
each batch run with 1 mM sodium formate solution in 
isopropanol/water (9:1, v/v). The spectra from 30 min to 
32 min of each LC/MS analysis were the sodium formate 
clusters; these spectra were averaged for calibration [34]. 
The spectra of each run were calibrated automatically by 
using Profile Analysis 2.0 (Bruker Daltonics, Bremen, 
Germany), and high-precision calibration method was 
applied for the instrument calibration. Before batch 
analysis, the QC sample was injected 10 times to condition 
the UPLC column. The sample injection sequence was 
randomized, according to the suggestions of Want et al., 
to reduce the effect of contamination from the previous 
injection(s) [33]. After every 10 urine sample analyses, 
the QC sample was injected to check the stability of 
the system through the whole analysis. Each identified 
spectral ion was denoted by (x min: y m/z) and implicitly 
with its intensity, where x and y were the retention time 
and m/z of the ion, respectively. All identified ions in a 
spectrum formed a metabolomic profile of a sample and 
were subjected to the following marker selection pipeline. 
The selected ions were regarded as marker candidates 
and searched against databases Metlin and HMDB for 
metabolite identification [35-37]. Marker candidates were 
further confirmed by interpreting their product ion spectra 
and/or matching with the retention time and exact masses 
of authentic standards.

Bioinformatics and statistical analysis

The supervised discriminant analysis OPLS-DA 
and the unsupervised learning approach LLE were used 
to measure the degree of separation between metabolomic 
profiles of BCa and hernia samples. Three-parameter 
Gaussian fitting, Wilcoxon rank sum test, and AUC 
were used to select significantly up-regulated marker 
candidates. In three-parameter Gaussian fitting, we tried 
to find the mean, amplitude, and standard deviation that 
best described our log ratios as a Gaussian distribution. 
The decision tree algorithm C4.5 was used to construct our 
BCa detection models. C4.5 algorithm builds a decision 
tree by calculating the gain ratio of features from training 
data [38]. In this study, R version 3.3.2 [39] was used to 
perform OPLS-DA, LLE, Wilcoxon rank sum test, and 
AUC calculation. J48 program in the WEKA data mining 
toolkit was used to build our decision tree; J48 is an 
open source Java implementation of the C4.5 algorithm 
[40]. The accuracy, sensitivity, and specificity were 
used to evaluate the performance of our decision trees. 
The accuracy is the probability that a sample is correctly 
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predicted. The sensitivity is the probability that a BCa 
sample is correctly predicted as BCa. The specificity is 
the probability that a hernia sample is correctly predicted 
as hernia.
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