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Abstract

Mathematical models of infectious diseases exhibit robust dynamics, such as stable

endemic, disease-free equilibriums or convergence of the solutions to periodic epidemic

waves. The present work shows that the accuracy of such dynamics can be significantly

improved by including global effects of host movements in disease models. To demonstrate

improved accuracy, we extended a standard Susceptible-Infected-Recovered (SIR) model

by incorporating the global dynamics of the COVID-19 pandemic. The extended SIR model

assumes three possibilities for susceptible individuals traveling outside of their community:

• They can return to the community without any exposure to the infection.

• They can be exposed and develop symptoms after returning to the community.

• They can be tested positively during the trip and remain quarantined until fully recovered.

To examine the predictive accuracy of the extended SIR model, we studied the preva-

lence of the COVID-19 infection in six randomly selected cities and states in the United

States: Kansas City, Saint Louis, San Francisco, Missouri, Illinois, and Arizona. The

extended SIR model was parameterized using a two-step model-fitting algorithm. The

extended SIR model significantly outperformed the standard SIR model and revealed oscil-

latory behaviors with an increasing trend of infected individuals. In conclusion, the analytics

and predictive accuracy of disease models can be significantly improved by incorporating

the global dynamics of the infection.

1- Introduction

COVID-19 is the recent infectious disease caused by the severe acute respiratory syndrome

novel coronavirus (SARS-CoV-2). Because the transmissibility of this virus is relatively high

and the outbreaks remained undetected for several days, COVID-19 turned into a global pan-

demic. Almost all countries of the world have been exposed to this virus. Since January 2020,

more 256 million individuals have become infected with the COVID-19. The infection has

resulted more than 5 millions death as of December, 2021 [1]. Just in the US, the COVID-19

cases are over 48 millions and more than 786,000 deaths as of December, 2021 [2]. In order to
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reduce the spread of COVID-19, businesses, communities, and governments have imple-

mented different control measures such as mandatory lockdowns, social distancing, avoiding

crowded events, using face masks in public, and vaccination [3]. Nevertheless, control of

COVID-19 remains a major issue in several parts of the world [4].

COVID-19 is mainly transmitted from human-to-human via direct contact with contami-

nated surfaces and through the inhalation of respiratory droplets from infected individuals [5].

About 97% of the infected individuals will recover after period ranging between one to four

weeks. Therefore, the use of mathematical modeling seems to be an appropriate approach to

study COVID-19 transmission dynamics.

Mathematical modeling of infectious diseases has increasingly become an essential tool for

prevention, prediction, and control of infectious diseases [6–8]. Since 1760, when Daniel Ber-

noulli developed the first disease model of smallpox, numerous mathematical models have

been utilized to study disease transmission dynamics, and to predict, assess, and control infec-

tious diseases [9–12].The substance of mathematical modeling lies in formulating a set of

mathematical equations that mimic reality [13]. Mathematical models have been evolved from

small sets of ordinary differential equations to sophisticated compartmental models with sev-

eral equations (see [14–16] for a review).

One of the simplest, yet powerful, disease models is the standard Susceptible-Infected-

Recovered (SIR) model, which was first introduced by Kermack and McKendrick in a series of

three papers [17–19]. In a standard SIR model, the host population is divided into susceptible,

infected and recovered individuals, denoted by S(t), I(t) and R(t), respectively. These quantities

track the numbers of individuals in each compartment over different time periods [20, 21].

The standard SIR model without birth and death is represented by the set of ordinary differen-

tial equations [22]:

dS
dt

tð Þ ¼ � bS tð ÞI tð Þ:

dI
dt

tð Þ ¼ bS tð ÞI tð Þ � gI tð Þ:

dR
dt

tð Þ ¼ gI tð Þ:

ð1Þ

Where β is the average number of susceptible individuals infected by one infectious individual

per contact per unit of time (the transmission rate), and γ is the average number of infected

individuals recovered per unit of time (recovery rate).

For decades, the standard SIR model has been extended to various forms by adding differ-

ent compartments to suit the biological, spatio-temporal and social aspects of the disease

dynamics or to study the impact of intervention strategies on the disease transmission dynam-

ics in different communities [23, 24]. For instance, it has been extended to SIR models with

diffusion [25], contaminated environment [26, 27], delay terms [28], several strains of infec-

tion [29], and multiple routes of infection [30].

Recently, several researchers utilized mathematical modeling to analyze, and predict the

transmission dynamics of COVID-19 pandemic [31–33]. Dynamics of COVID-19 epidemic

has been simulated using different versions of SIR or SEIR (susceptible, exposed, infected and

recovered) models [31, 32]. The main modification include adding asymptomatic and symp-

tomatic infection compartments [33], hospitalization compartment [34], and quarantined and

isolated compartments [31]. These models are presumably able to predict and simulate the

number of infected cases by taking into consideration the asymptomatic and symptomatic
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cases, deaths, needs of beds in hospitals, and effect of control measures and the interventions

to decrease the number of cases.

The abovementioned extended SIR models contribute to the existing literature. However,

they largely ignore the effects of global dynamics of infection on local communities. The pres-

ence of a global pandemic or a widespread infection can largely influence the dynamics of

infection in a local community. Most communities are well-connected and the assumption

that the disease exists only within the community is invalid [35].

There have been attempts to include the global dynamics in different SIR models [28, 36].

Nevertheless, such extended SIR models have several unknown parameters and poorly fit to

data of host population. Due to lack flexibility and poor fitness to data, there is a need for

develop SIR models that are more practical.

Moreover, regardless of the parameter values, most numerical simulations of SIR models

are limited to three distinct dynamics. The first of these dynamics is the solution curve of

infected individuals may exhibit an epidemic wave before converging to a disease-free equi-

librium [37], secondly, the solution curve of infected converge to an endemic equilibrium

[38], the third of these dynamics is the solution curve of infected converge to periodic epi-

demic waves [39]. For the standard SIR model (1), the dynamics are even more limited.

Namely, the solution curves always represent the same qualitative dynamics: an epidemic

wave of the infectious population, an inverted S shape for susceptible population, and S

shape for the recovered population. Regardless of the set of parameter values and initial

conditions, such qualitative behaviors will always remain the same (see panels Fig 1A–1C).

A quick review of the number of individuals infected with COVID-19, at the country [1],

Fig 1. Qualitative behavior of the standard SIR model remains the same regardless of the parameter values (β and γ). (A) an inverted S-shape occurs for the

susceptible population. (B) a bell-shaped epidemic wave of infected population. (C) a S-shaped curve of a recovered population.

https://doi.org/10.1371/journal.pone.0265815.g001
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State [40], or city level [41], shows that the dynamics of COVID-19 is more complicated

than a single epidemic wave. Therefore, it is essential to include the global dynamics of

infection in a disease model.

The present work aims to address this issue. We extend the SIR model to a new model

that includes the global impacts of the infection and is also capable of fitting well to infec-

tious disease data. To incorporate the global effect and test the predictive accuracies of

the extended model, we selected randomly six cities and states influenced by the COVID-

19 global pandemic: Kansas City, Saint Louis, San Francisco, Missouri, Illinois, and

Arizona.

We assumed three possibilities to consider in the SIR modeling of COVID-19: susceptible

individuals from a local community can travel in and out of their community without any

exposure to COVID-19, they can be exposed to COVID-19 while traveling and develop symp-

toms after they return to their community, or they can be diagnosed with COVID-19 during

their traveling and return to their community after recovery. In the next section we include all

these three possibilities in the extended SIR model.

The rest of the paper is organized as follows. In section. 2, we introduce the extended SIR

model and its formulation. We explain the methodology that was used to fit the extended SIR

model to COVID-19 data. In section. 3, we present the results of our analysis based on the six

cities and states. In section. 4, we provide a discussion of the main results and additional fac-

tors to consider in the modeling process.

2- Materials and methods

2.1 Data

The COVID-19 data used in this study were obtained from the health department of Kansas

City, Saint Louis, San Francisco, Missouri, Illinois, and Arizona [42–45]. The data were dated

from March 10, 2020, to March 7, 2021(a total of 363 days). We did not include data after

March 7, 2021, because our model does not include the effects of vaccination and it would be

inappropriate to include the data thereafter. Specifically, the data variables consisted of date,

total number of cases, new cases, total deaths, new deaths, and total number of individuals

tested for COVID-19.

We used abovementioned data to extract the daily number of recovered, susceptible, and

infected individuals (see S1 File for the algorithms used for generating the data).

Table 1 provides the basic descriptive statistics of Kansas City, Saint Louis, San Francisco,

Missouri, Illinois, and Arizona of daily COVID-19 data of infected individuals.

Observe that the statistics of susceptible and recovered data are comparable (see S1 File for

the basic descriptive statistics). However, the statistics of infected individuals are at a much

Table 1. Descriptive Statistics of Kansas City (KC), Saint Louis (SL), San Francisco (SF), Missouri (MO), Illinois (IL), and Arizona (AZ) daily COVID-19 data from

March 10, 2020 to March 7, 2021.

KC SL SF MO IL AZ

Minimum 1 1 2 0 0 0

Maximum 4109 2201 4600 62456 168855 129240

Mean 1413.140 772.60 1305.50 18395.38 45387.31 31215.03

Median 1280 549 917 15793 27896 16242

Range 4108 2200 4598 62456 168855 129240

Standard Deviation 1137.49 565.87 1141.94 16777.20 42645.57 33702.66

https://doi.org/10.1371/journal.pone.0265815.t001
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lower scale. Details of time series and spatial clusters of COVID-19 infection in Kansas City

have been provided in [46, 47].

To estimate the number of susceptible individuals, we assumed an average incubation

period of 5 days for COVID-19 [48]. We also considered one day for obtaining the COVID-19

test results. Hence, all of those who were tested positive were susceptible from the beginning

until 6 days prior to obtaining the test results. Also, we added the individuals who take the test,

but their results were negative. These individuals had presumably high risk of getting infected

and therefore susceptible. The number of infected individuals were calculated by considering

an average infection period 14 days [49]. Hence, we cumulatively added of new cases for 14

days until they recovered.

2.2 Model formulation

We divided our population of N individuals living in a local community into sup-popula-

tions (i.e., compartments) of susceptible compartment S(t), infected compartment I(t),

and recovered compartment R(t). As shown in Fig 2, the extended SIR model of COVID-

19 transmission assumes three possibilities for susceptible individuals traveling outside

of the community: They can return to the community without any exposure (the net rate

is f(t) = f2(t)-f1(t)), they can be exposed COVID-19 and develop symptoms after return-

ing to the community (the inflow rate of g(t)), or they can be tested positive during their

trip and remain quarantined until fully recovered and thereafter return to the commu-

nity (the inflow rate of h(t)). The extended SIR model is formulated by the following sys-

tem of deterministic non-linear differential equations and Fig 2 gives the flow diagram of

Fig 2. A schematic representation of the extended SIR model coupled with a global SEI model. L and G correspond to the number of individuals in the local

and global communities, respectively.

https://doi.org/10.1371/journal.pone.0265815.g002

PLOS ONE An SIR model to quantify local and global impacts of COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0265815 April 8, 2022 5 / 15

https://doi.org/10.1371/journal.pone.0265815.g002
https://doi.org/10.1371/journal.pone.0265815


the model.

dS
dt

tð Þ ¼ � bS tð ÞI tð Þ þ f tð Þ:

dI
dt

tð Þ ¼ bS tð ÞI tð Þ � gI tð Þ þ g tð Þ:

dR
dt

tð Þ ¼ gI tð Þ þ h tð Þ:

ð2Þ

where β and γ are the same parameters as in system (1). Functions f(t), g(t) and h(t) are

differentiable and bounded functions and take into account the global effects of the

infection. To avoid overfitting, our goal is to estimate f, g and h using least complicated

forms.

Although adding exposed population can provide interesting dynamics, we decided to

exclude the exposed compartment from our modeling. This is due to lack of data associated

with exposed population. Namely, there is no known method of accurately identify the time

series of exposed population in a community. In addition, the more compartments are added

the harder it becomes to accurately estimate the parameter values. In some cases, the confi-

dence intervals of estimated parameter values become extremely large due to high number of

parameters and insufficient amount of data. With this rationale in mind, we therefore employ

a two-step method to estimate the parameters of the model.

Individuals can get infected both within and outside of the community. A standard SIR

model has been considered for progression of infection within the community. The extended

SIR model coupled with a global SEI model where SG, EG, and IG are the global of susceptible,

exposed, and infected compartments respectively, and SL, IL, and RL are the susceptible,

infected, and recovered compartments in the local community, respectively. The extended

model assumes three possibilities for susceptible individuals traveling outside of the commu-

nity: They can return to the community without any exposure (the net rate is f(t) = f2(t)-f1(t)),

they can be exposed to the infection and develop symptoms after returning to the community

(rate of g(t)), or they can be tested positive during their trip and remain quarantined until fully

recovered and thereafter return to the community (rate of h(t)).

2.3 Model fitting

The single-step numerical methods such as linearization and discretization [50] to estimate the

parameter values of model (2) fail to converge, due to high degrees of freedom and unknown

intervals of parameter estimations. We therefore proposed a two-step process for parameters

estimation of model (2). First, we estimated the parameter values of the standard SIR model

(1) and then we determined the functions f(t), g(t) and h(t) using the residual data of S(t), I(t)

and R(t) subpopulations. As mentioned before, we used the COVID-19 data of susceptible,

infected, and recovered individuals in Kansas City, Saint Louis, San Francisco, Missouri, Illi-

nois, and Arizona for an epidemic period starting from March 10, 2020, to March 7, 2021.

In the first step, we numerically solved the system (2) using the MATLAB ode45 solver

which is based on the fourth order Runge-Kutta method. The stability of the method is well

established in [51]. For data fitting, the optimization function “fmincon” was used along with

the common technique of the least-squares method [52, 53]. This method minimizes the sum

of the squared residuals, that is, the difference between model predictions and their corre-

sponding data values. The sum of the squared residuals is calculated using the formula below

E ¼
1

M

XM

I¼1
y � yið Þ

2
ð3Þ
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where M represents the total number of data points considered for fitting and y and yi repre-

sent the values predicted by the model and those from the data, respectively.

We estimated the SIR parameter values by considering the following factors. Several studies

indicated that the COVID-19 transmission rate of infection was 0.5 [54, 55]. Hence, we set β =

0.5. Also, some studies assumed the average recovery period (i.e 1/ γ) is about 7 days [54, 55],

which results in the initial value of γ = 0.13. Also, to be consistent with the data, we set our ini-

tial conditions to the number of susceptible, infected and recovered at = 1. The estimated

model parameters are provided in Table 2.

In the second step, we fitted the global effect of infection on the community by estimating

functions f(t), g(t) and h(t) in model (2).

Although model selection can be done using Akaike’s Information Criteria (AIC) and

Bayesian Information Criteria (BIC) methods, we used MATLAB curve fitting toolbox to mea-

sure the goodness of fit (adjusted R2, sum of the squared residuals, etc.) to find the optimal

forms of functions f(t), g(t) and h(t). Specifically, the model fitting resulted in the following

forms:

f tð Þ ¼ l1t þ l2:

g tð Þ ¼ a1 b1 cos b1T þ c1ð Þ þ a2 b2 cos b2T þ c2ð Þ þ a3 b3 cos b3T þ c3ð Þ:

h tð Þ ¼ p1t þ p2:

3- Results

Using the COVID-19 data of each city and states, we estimated the functions corresponding to

the global effects f(t), g(t) and h(t) in model (2) using the abovementioned two steps in Kansas

City, Saint Louis, San Francisco, Missouri, Illinois, and Arizona. The estimated net rate for the

susceptible individuals who can return to the community without any exposure is given by f(t)
= λ1 t + λ2. The estimated net rate of the individuals who exposed to the infection and develop

symptoms after returning to the community is given by g(t) = a1b1cos(b1T+c1)+ a2b2 cos(b2T
+c2)+ a3 b3cos(b3T+c3)., and the estimated net rate of the individuals who tested positive dur-

ing their trip and remain quarantined until fully recovered and thereafter return to the com-

munity is given by h(t) = p1t + p2. All parameter estimations of step 1 and step 2 are

summarized in Tables 2 and 3, respectively. From Table 2, we noticed that the transmission

rate in the states; Missouri, Illinois, and Arizona are much higher than the cities; Kansas City,

Saint Louis, and San Francisco, which is due to the larger population size of states and cities.

Note that the estimated values for recovery rates are different than those of the standard SIR

model because of the recovery rate is influenced by the global effects. In Table 3, there are

three parameters, a, b and c where a represents the amplitude of each wave for each city or

Table 2. Estimated parameter values of model (2) based on data of Kansas City (KC), Saint Louis (SL), San Francisco (SF), Missouri (MO), Illinois (IL), and Arizona

(AZ).

Parameter Description KC SL SF MO IL AZ

λ1 Linear recruitment rate 100 99.9997 71.42 -20 600 -20

λ2 Constant recruitment rate -0.2481 -0.3278 -0.0809 -1.32 8.62 -10

β Transmission rate 2.9�10−16 5.49�10−4 4.9�10−4 8.23 8.22 3.998

γ Recovery rate� 7.3�10−15 0.1275 1.97�10−9 1.003 1.002 0.59

p1 Linear flow of recovered 0.633 0.288 0.553 10.2 23.92 14.92

p2 Constant flow of recovered -8.01 2.876 -15.17 -477.6 -1190 -729.9

� The estimated values for the recovery rates are different than those of the standard SIR model.

https://doi.org/10.1371/journal.pone.0265815.t002
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state, b represents the frequency of each wave, and c represents the phase shift of each wave.

Also, the value of T represents the period of each wave. For instance, the state of Missouri and

the city of Kansas City have almost the same of three periodic epidemic waves of COVID-19.

One happens every two years, the other epidemic wave every four months and half, and the

last wave every nine months. The periodic waves could be associated with several factors such

Table 3. Estimated parameter values of the global functions f(t), g(t) and h(t) based on data of Kansas City (KC), Saint Louis (SL), San Francisco (SF), Missouri

(MO), Illinois (IL), and Arizona (AZ).

Parameters KC SL SF MO IL AZ

a1 2412 5763 1929 3.28�104 8.69�104 6.65�104

b1 0.009 0.0149 0.005 0.009 0.0051 0.0142

c1 2.548 1.75 2.94 2.43 2.794 2.008

T1 = 2π/b1 698 421.5 1256 698 1231.4 442.2

a2 609.1 416.6 1.41�104 7048 3.85�104 3.007�105

b2 0.046 0.05 0.037 0.048 0.031 0.027

c2 -1.81 3.58 -4.875 3.88 -3.53 -2.812

T2 = 2π/b2 136.5 125.6 169.7 130.8 202.6 232.6

a3 826.1 5072 1.42�104 1.3�104 2.03�104 2.7�105

b3 0.025 0.017 0.037 0.025 0.048 0.029

c3 3.64 -1.70 4.48 -2.4 -2.47 0.138

T3 = 2π/b3 251.2 369.4 169.7 251.2 130.8 216.5

Note: See the supplementary document for the goodness of fit (R2).

https://doi.org/10.1371/journal.pone.0265815.t003

Fig 3. The extended SIR model fitted to the COVID-19 data of susceptible subpopulation in (A) Kansas City, (B) Saint Louis, (C) San Francisco, (D) Missouri, (E)

Illinois, and (F) Arizona.

https://doi.org/10.1371/journal.pone.0265815.g003
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as, traveling, major social events, infection prevention policies, changes to the coronavirus

itself, and the increase of people who become susceptible because they have not developed

some immunity. [56].

The panel of Fig 3A–3F shows that the extended SIR model of the susceptible solution

curve fits well to the data of susceptible subpopulation in the cities and states. Likewise, S7

Table in S1 File shows the goodness of fit of susceptible subpopulation for Kansas City, Saint

Louis, San Francisco, Missouri, Illinois, and Arizona data where R2 = 0.9909, 0.9911, 0.9802,

0.9878, 0.9761, 0.9583, respectively. (See S7 Table in S1 File).

Similarly, the panel of Fig 4A–4F shows the extended SIR model in the subpopulations of

recovered individuals fits well to the data and have a goodness of fit R2 = 0.9873, 0.9893,

0.9804, 0.9844, 0.9748, 0.9606, respectively (See S7 Table in S1 File).

The panel of Fig 5A–5F shows that the dynamics of COVID-19 in the cities and states are

more complicated than a single epidemic wave as common in the standard SIR model. The

extended model is capable of revealing the underlying behaviors hidden in the data. Also, the

extended SIR model in the subpopulations of infected individuals fits well to the data and have

goodness of fit R2 = 0.9542, 0.9287, 0.962, 0.9438, 0.9015, 0.9492 for Kansas City, Saint Louis,

San Francisco, Missouri, Illinois, and Arizona data, respectively. (See S7 Table in S1 File).

Therefore, the inclusion of global effects to the SIR model can substantially improve the pre-

dictive accuracy of the model.

Fig 4. The extended SIR model fitted to the COVID-19 data of recovered subpopulation in (A) Kansas City, (B) Saint Louis, (C) San Francisco, (D) Missouri, (E)

Illinois, and (F) Arizona.

https://doi.org/10.1371/journal.pone.0265815.g004
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4- Discussion

The present work highlights the importance of including global dynamics of infection in disease

models to achieve higher predictive accuracies. We introduced a two-step algorithm for accu-

rate estimation of infection parameters by considering both global and local effects of the infec-

tion spread in SIR models. The first step leads to estimation of local parameters (i.e., the

transmission and recovery rates, β and, respectively) whereas the second step incorporates the

global effects of the infection (i.e., estimation of functions f(t), g(t) and h(t)). To test the method-

ology, we applied the two-step model fitting algorithm to the extended SIR model (2) using

Kansas City, Saint Louis, San Francisco, Missouri, Illinois, and Arizona data from March 10,

2020, to March 7, 2021. As shown in the panels of Figs 3–5, the two-step method resulted in

solution curves that fit well to the COVID-19 data. The goodness of fit becomes more apparent

when it is compared to that of the standard SIR model. Therefore, we compared the standard

SIR model with the extended SIR model using the first 212 Kansas City COVID-19 data. As

shown in Fig 6A and 6B, the solution curves of the standard SIR model poorly fit to the

COVID-19. Moreover, Table 4 shows the comparisons of model fitness for the standard and

extended SIR model. The extended SIR model of the susceptible solution curve has R2 = 0.9905

while in standard model R2 = 0.1551. Similarly the extended SIR model outperformed the stan-

dard SIR model in the subpopulations of recovered individuals (R2 = 0.9912 versus R2 = 0.47),

and the subpopulation of infected individuals (R2 = 0.7083 versus R2 = -258.65). Note that the

negative R2 value is because the classical SIR model does not follow the trend of the data.

In addition to higher predictive accuracies of the extended SIR model (2), the solution

curves revealed oscillatory behaviors with an increasing trend of infected individuals. This

Fig 5. The extended SIR model fitted to the COVID-19 data of infected subpopulation in (A) Kansas City, (B) Saint Louis, (C) San Francisco, (D) Missouri, (E)

Illinois, and (F) Arizona.

https://doi.org/10.1371/journal.pone.0265815.g005
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contrasts with the standard SIR model, where regardless of chosen parameter values, the solu-

tion curves always exhibit the same qualitative behaviors (see Fig 1A–1C).

Although the standard SIR has been proven useful to study local dynamics of various infec-

tions, it fails to capture the global effects of a widespread disease. The failure of standard SIR

model to forecast the COVID-19 pandemic can be described by a variety of factors. One of

these factors is that the standard SIR model assumes the population is closed, isolated, and

ignores the effects of the global dynamics of infection on neighboring communities which is

not a valid assumption [35]. Hence, by including the global infection effects in the disease

models, we can identify underlying mechanisms governing the dynamics of infectious

diseases.

In spite of several studies indicate that include temperature factor in the SIR model could

potentially improve the model outcomes [57], recent studies suggested that the temperature

has no influence on the propagation of the COVID-19 virus [58, 59]. In fact, some strains of

the virus alter depending on their environments. They may live and grow in a variety of geo-

graphical areas or temperatures. Outside of laboratory tests, there is no way to anticipate how

the virus would react in heat and humidity or even cold and dry temperatures.

The inability of the standard SIR model to fit there COVID-19 data has been identified by

other researchers [60]. Nonetheless, the presence of a breakpoint due to strong policy

Table 4. Comparisons of model goodness of fitness for the standard and extended SIR models.

Fitness Extended Standard

Corrected AIC 3.2799e+03 4.3130e+03

AIC 3.0351e+03 4.0689e+03

SSR (R2) for S 3.22e+09 (0.9905) 5.0377e+08 (0.1551)

SSR (R2) for I 4.1249e+05 (0.7083) -1.5064e+08 (-258.65)�

SSR (R2) for R 3.51e+09 (0.9912) 1.6640e+09 (0.4700)

� The standard SIR model has an extremely poor fitting with respect to the infected individuals.

https://doi.org/10.1371/journal.pone.0265815.t004

Fig 6. The standard SIR model fitted to fitted Kansas City COVID-19 data. (A) The standard SIR model poorly fits to the susceptible and recovered data. (B)

The standard SIR model has poor fitness to data of infected population.

https://doi.org/10.1371/journal.pone.0265815.g006
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interventions, mentioned in [60], does not necessarily reduce the prevalence of infection in a

community dealing with a pandemic.

In conclusion, including the global dynamics of the infection and applying the two-step

model fitting algorithm can enable us to extract vital information (e.g., presence of epidemic

waves) from the data.
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37. Köhler-Rieper F, Röhl CHF, De Micheli E. A novel deterministic forecast model for the Covid-19 epi-

demic based on a single ordinary integro-differential equation. The European Physical Journal Plus

[Internet]. 2020; 135(7):599. Available from: https://doi.org/10.1140/epjp/s13360-020-00608-0 PMID:

32834915

38. Sirijampa A, Chinviriyasit S, Chinviriyasit W. Hopf bifurcation analysis of a delayed SEIR epidemic

model with infectious force in latent and infected period. Advances in Difference Equations [Internet].

2018; 2018(1):348. Available from: https://doi.org/10.1186/s13662-018-1805-6 PMID: 32226452

39. Oluyori DA. Backward and Hopf bifurcation analysis of an SEIRS COVID-19 epidemic model with satu-

rated incidence and saturated treatment response. 2020;1–26. Available from: https://www.medrxiv.

org/content/10.1101/2020.08.28.20183723v1.full.pdf.

40. Wu SL, Mertens AN, Crider YS, Nguyen A, Pokpongkiat NN, Djajadi S, et al. Substantial underestima-

tion of SARS-CoV-2 infection in the United States. Nature Communications [Internet]. 2020; 11

(1):4507. Available from: https://doi.org/10.1038/s41467-020-18272-4 PMID: 32908126

41. MARC. Kansas City Region COVID-19 Data Hub [Internet]. Available from: https://marc2.org/covidhub/

.

42. City of Kansas City Health Department Data. KCMO COVID-19 Case,Death and Trends Data [Internet].

Available from: https://data.kcmo.org/Health/COVID-19-Case-Death-Trends-by-Date/nfta-sjx6.

43. Saint Louis Health Department. Saint Louis COVID-19 Data [Internet]. [cited 2021 Nov 1]. Available

from: https://www.stlouis-mo.gov/covid-19/data/index.cfm.

PLOS ONE An SIR model to quantify local and global impacts of COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0265815 April 8, 2022 14 / 15

https://www.cambridge.org/core/article/understanding-the-role-of-cleaning-in-the-control-of-salmonella-typhimurium-in-growerfinisher-pigs-a-modelling-approach/0583A9978A127B4F47482EE6A8B048DF
https://doi.org/10.1017/S0950268813001805
http://www.ncbi.nlm.nih.gov/pubmed/23920341
http://europepmc.org/abstract/MED/21764472
https://doi.org/10.1016/j.prevetmed.2011.06.008
https://doi.org/10.1016/j.prevetmed.2011.06.008
http://www.ncbi.nlm.nih.gov/pubmed/21764472
https://ui.adsabs.harvard.edu/abs/2018JMP....59a1513Z
https://doi.org/10.1080/17513758.2012.693206
http://www.ncbi.nlm.nih.gov/pubmed/22881277
https://www.cambridge.org/core/article/effectiveness-of-environmental-decontamination-as-an-infection-control-measure/FA961694D9AAE4773379262975087191
https://www.cambridge.org/core/article/effectiveness-of-environmental-decontamination-as-an-infection-control-measure/FA961694D9AAE4773379262975087191
https://www.cambridge.org/core/article/effectiveness-of-environmental-decontamination-as-an-infection-control-measure/FA961694D9AAE4773379262975087191
https://doi.org/10.1017/S0950268811000604
http://www.ncbi.nlm.nih.gov/pubmed/21676360
http://www.sciencedirect.com/science/article/pii/S1007570420301350
https://doi.org/10.1016/j.cnsns.2020.105303
https://doi.org/10.1016/j.cnsns.2020.105303
http://www.ncbi.nlm.nih.gov/pubmed/32355435
https://doi.org/10.4178/epih.e2020026
http://www.ncbi.nlm.nih.gov/pubmed/32375455
https://doi.org/10.1002/jgf2.382
http://www.ncbi.nlm.nih.gov/pubmed/33457150
https://doi.org/10.1155/2020/9136157
http://www.ncbi.nlm.nih.gov/pubmed/33062043
https://doi.org/10.1038/s41598-021-84055-6
http://www.ncbi.nlm.nih.gov/pubmed/33633275
http://aimsciences.org//article/id/d99e6db9-456f-4a01-add9-e0b99b823bb4
https://doi.org/10.1140/epjp/s13360-020-00608-0
http://www.ncbi.nlm.nih.gov/pubmed/32834915
https://doi.org/10.1186/s13662-018-1805-6
http://www.ncbi.nlm.nih.gov/pubmed/32226452
https://www.medrxiv.org/content/10.1101/2020.08.28.20183723v1.full.pdf
https://www.medrxiv.org/content/10.1101/2020.08.28.20183723v1.full.pdf
https://doi.org/10.1038/s41467-020-18272-4
http://www.ncbi.nlm.nih.gov/pubmed/32908126
https://marc2.org/covidhub/
https://data.kcmo.org/Health/COVID-19-Case-Death-Trends-by-Date/nfta-sjx6
https://www.stlouis-mo.gov/covid-19/data/index.cfm
https://doi.org/10.1371/journal.pone.0265815


44. San Francisco Department Health. San Francisco COVID-19 data [Internet]. [cited 2021 Nov 1]. Avail-

able from: https://sf.gov/resource/2021/covid-19-data-and-reports.

45. The Atlantic. The COVID Tracking Project [Internet]. [cited 2021 Nov 1]. Available from: https://

covidtracking.com/data.

46. AlQadi H, Bani-Yaghoub M, Balakumar S, Wu S, Francisco A. Assessment of Retrospective COVID-19

Spatial Clusters with Respect to Demographic Factors: Case Study of Kansas City, Missouri, United

States. Vol. 18, International Journal of Environmental Research and Public Health. 2021. https://doi.

org/10.3390/ijerph182111496 PMID: 34770012

47. AlQadi H, Bani Yaghoub M, Wu S, Balakumar S, Francisco A. Prospective Spatial–Temporal Clusters

of COVID-19 in Local Communities: Case Study of Kansas City, Missouri, United States. Epidemiology

and Infection [Internet]. 2022 Mar 9 [cited 2022 Mar 12];1–24. Available from: https://www.cambridge.

org/core/product/identifier/S0950268822000462/type/journal_article. https://doi.org/10.1017/

S0950268822000462 PMID: 35260205

48. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19)

outbreak. Journal of Autoimmunity [Internet]. 2020; 109:102433. Available from: http://www.

sciencedirect.com/science/article/pii/S0896841120300469. https://doi.org/10.1016/j.jaut.2020.102433

PMID: 32113704

49. Qin J, You C, Lin Q, Hu T, Yu S, Zhou X-H. Estimation of incubation period distribution of COVID-19

using disease onset forward time: A novel cross-sectional and forward follow-up study. Science

Advances [Internet]. 2020 Aug 1; 6(33):eabc1202. Available from: http://advances.sciencemag.org/

content/6/33/eabc1202.abstract. https://doi.org/10.1126/sciadv.abc1202 PMID: 32851189

50. Ramsay JO, Hooker G, Campbell D, Cao J. Parameter estimation for differential equations: a general-

ized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology)

[Internet]. 2007 Nov 1; 69(5):741–96. Available from: https://doi.org/10.1111/j.1467-9868.2007.00610.x.

51. May R, Noye J. The Numerical Solution of Ordinary Differential Equations: Initial Value Problems. In:

Noye J, editor. Computational Techniques for Differentail Equations [Internet]. North-Holland; 1984. p.

1–94. (North-Holland Mathematics Studies; vol. 83). Available from: http://www.sciencedirect.com/

science/article/pii/S0304020808712003.

52. Byrd RH, Hribar ME, Nocedal J. An Interior Point Algorithm for Large-Scale Nonlinear Programming.

SIAM Journal on Optimization [Internet]. 1999 Jan 1; 9(4):877–900. Available from: https://doi.org/10.

1137/S1052623497325107.

53. Waltz RA, Morales JL, Nocedal J, Orban D. An interior algorithm for nonlinear optimization that com-

bines line search and trust region steps. Mathematical Programming [Internet]. 2006; 107(3):391–408.

Available from: https://doi.org/10.1007/s10107-004-0560-5.

54. Cauchemez S, Fraser C, Van Kerkhove MD, Donnelly CA, Riley S, Rambaut A, et al. Middle East respi-

ratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and

transmissibility. The Lancet Infectious Diseases [Internet]. 2014; 14(1):50–6. Available from: http://

www.sciencedirect.com/science/article/pii/S1473309913703049. https://doi.org/10.1016/S1473-3099

(13)70304-9 PMID: 24239323

55. Chen T-M, Rui J, Wang Q-P, Zhao Z-Y, Cui J-A, Yin L. A mathematical model for simulating the phase-

based transmissibility of a novel coronavirus. Infectious Diseases of Poverty [Internet]. 2020; 9(1):24.

Available from: https://doi.org/10.1186/s40249-020-00640-3 PMID: 32111262

56. Maragakis L. Coronavirus Second Wave, Third Wave and Beyond: What Causes a COVID Surge.

Johns Hopkins; 2021.

57. Huang D, Tao H, Wu Q, Huang S-Y, Xiao Y. Modeling of the Long-Term Epidemic Dynamics of COVID-

19 in the United States. Vol. 18, International Journal of Environmental Research and Public Health.

2021. https://doi.org/10.3390/ijerph18147594 PMID: 34300045

58. Jamil T, Alam I, Gojobori T, Duarte CM. No Evidence for Temperature-Dependence of the COVID-19

Epidemic [Internet]. Vol. 8, Frontiers in Public Health. 2020. p. 436. Available from: https://www.

frontiersin.org/article/10.3389/fpubh.2020.00436. https://doi.org/10.3389/fpubh.2020.00436 PMID:

32984240

59. Kassem AZE. Does Temperature Affect COVID-19 Transmission? [Internet]. Vol. 8, Frontiers in Public

Health. 2020. p. 934. Available from: https://www.frontiersin.org/article/10.3389/fpubh.2020.554964.

https://doi.org/10.3389/fpubh.2020.554964 PMID: 33425828

60. Kim YJ, Seo MH, Yeom HE. Estimating a breakpoint in the pattern of spread of COVID-19 in South

Korea. International Journal of Infectious Diseases. 2020 Aug 1; 97:360–4. https://doi.org/10.1016/j.ijid.

2020.06.055 PMID: 32569839

PLOS ONE An SIR model to quantify local and global impacts of COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0265815 April 8, 2022 15 / 15

https://sf.gov/resource/2021/covid-19-data-and-reports
https://covidtracking.com/data
https://covidtracking.com/data
https://doi.org/10.3390/ijerph182111496
https://doi.org/10.3390/ijerph182111496
http://www.ncbi.nlm.nih.gov/pubmed/34770012
https://www.cambridge.org/core/product/identifier/S0950268822000462/type/journal_article
https://www.cambridge.org/core/product/identifier/S0950268822000462/type/journal_article
https://doi.org/10.1017/S0950268822000462
https://doi.org/10.1017/S0950268822000462
http://www.ncbi.nlm.nih.gov/pubmed/35260205
http://www.sciencedirect.com/science/article/pii/S0896841120300469
http://www.sciencedirect.com/science/article/pii/S0896841120300469
https://doi.org/10.1016/j.jaut.2020.102433
http://www.ncbi.nlm.nih.gov/pubmed/32113704
http://advances.sciencemag.org/content/6/33/eabc1202.abstract
http://advances.sciencemag.org/content/6/33/eabc1202.abstract
https://doi.org/10.1126/sciadv.abc1202
http://www.ncbi.nlm.nih.gov/pubmed/32851189
https://doi.org/10.1111/j.1467-9868.2007.00610.x
http://www.sciencedirect.com/science/article/pii/S0304020808712003
http://www.sciencedirect.com/science/article/pii/S0304020808712003
https://doi.org/10.1137/S1052623497325107
https://doi.org/10.1137/S1052623497325107
https://doi.org/10.1007/s10107-004-0560-5
http://www.sciencedirect.com/science/article/pii/S1473309913703049
http://www.sciencedirect.com/science/article/pii/S1473309913703049
https://doi.org/10.1016/S1473-3099(13)70304-9
https://doi.org/10.1016/S1473-3099(13)70304-9
http://www.ncbi.nlm.nih.gov/pubmed/24239323
https://doi.org/10.1186/s40249-020-00640-3
http://www.ncbi.nlm.nih.gov/pubmed/32111262
https://doi.org/10.3390/ijerph18147594
http://www.ncbi.nlm.nih.gov/pubmed/34300045
https://www.frontiersin.org/article/10.3389/fpubh.2020.00436
https://www.frontiersin.org/article/10.3389/fpubh.2020.00436
https://doi.org/10.3389/fpubh.2020.00436
http://www.ncbi.nlm.nih.gov/pubmed/32984240
https://www.frontiersin.org/article/10.3389/fpubh.2020.554964
https://doi.org/10.3389/fpubh.2020.554964
http://www.ncbi.nlm.nih.gov/pubmed/33425828
https://doi.org/10.1016/j.ijid.2020.06.055
https://doi.org/10.1016/j.ijid.2020.06.055
http://www.ncbi.nlm.nih.gov/pubmed/32569839
https://doi.org/10.1371/journal.pone.0265815

