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Abstract

Modeling cancer cells is essential to better understand the dynamic nature of brain tumors

and glioma cells, including their invasion of normal brain. Our goal is to study how the mor-

phology of the glioma cell influences the formation of patterns of collective behavior such as

flocks (cells moving in the same direction) or streams (cells moving in opposite direction)

referred to as oncostream. We have observed experimentally that the presence of onco-

streams correlates with tumor progression. We propose an original agent-based model that

considers each cell as an ellipsoid. We show that stretching cells from round to ellipsoid

increases stream formation. A systematic numerical investigation of the model was imple-

mented in R2. We deduce a phase diagram identifying key regimes for the dynamics (e.g.

formation of flocks, streams, scattering). Moreover, we study the effect of cellular density

and show that, in contrast to classical models of flocking, increasing cellular density reduces

the formation of flocks. We observe similar patterns in R3
with the noticeable difference that

stream formation is more ubiquitous compared to flock formation.

Author summary

Self-organization is the formation of large-scale multicellular patterns that result exclu-

sively from the interactions amongst constituent single cells. To establish the existence of

self-organization in brain tumors we used agent-based modeling based on data extracted

from static and dynamic genetically engineered and implantable mouse glioma models.

Implementation of our model in R2
identifies the dynamics that lead to formation of

flocks (cells moving in a single direction), streams (cells moving in two directions), and

cells moving as swarms or scattering. Increasing cellular density reduced formation of

flocks and increased the formation of streams both inR2
and in R3

. These results demon-

strate the detailed mechanism leading to self-organization in brain tumors. As increasing

density of oncostreams correlates with tumor malignancy, we establish a pathophysiologi-

cal link between self-organization of glioma tumors and glioma malignancy. We propose

the dismantling of oncostreams as a new therapeutic approach to the treatment of brain

tumors.
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Introduction

Primary brain tumors are one of the most lethal cancers. In spite of surgery, radiotherapy and

chemotherapy, median survival remains at 14-18 months. The key to develop successful cancer

therapy is to understand the essential mechanisms by which individual cancer cells proliferate,

grow as a tumor, and invade normal brain. It is of particular importance to understand how

individual cell morphology relates to collective macroscopic behaviors (e.g. stream formation,

diffusion behavior). As our data indicate that glioma oncostreams promote tumor growth, this

raises the question of whether cell morphology influences pattern formation and therefore the

overall dynamics of growing tumors. This question is difficult to answer as it requires access to

the time evolution of the positions of the cells in vivo.

We wished to explore the relationship of cell morphology to collective microscopic behav-

ior patterns using mathematical modeling as it has already been successful in the exploration

of various biologically relevant scenarios [1–4]. In particular, agent-based models (modeling at
the microscopic level) are convenient as they incorporate essential features of cell behavior (i.e.

motility, cell-cell interactions, etc.) and have been exploited to understand various self-orga-

nizing dynamical systems (e.g. pedestrians [5], birds [6], fish [7], bacteria [8, 9]).

To investigate the influence of the shape of the cell on tumor dynamics, we modeled cells as

ellipses or ellipsoids. This assumption is motivated by experimental observations (see Fig 1)

where cells within oncostreams display a length to width ratio of 2.7:1. Using ellipsoid shape is

common in the study of bacteria, for instance viscoelastic ellipsoids have been used in [10] or

self-propelled spheres in [11] (see also [12–17]). We were particularly interested in studying

the dynamics in a regime of high cellular density where cells are always in contact with each

other. ‘Stretching’ the cells’ in this regime could potentially increase the formation of streams

since streams would reduce overlapping of elongated cells. Indeed, in the context of soft-mater

with elongated cylinders (e.g. nail, log, rice), stream formations are ubiquitous [18–20].

We propose an agent-based model that utilizes two mechanisms: i) self-propulsion, ii) cell-

cell avoidance due to non-overlapping constraints. Since the cells have an ellipsoid shape, cell-

cell avoidance leads to two possible effects: repulsion (i.e. cells move away from each other)

and steering (cells turn to avoid collision). The larger the eccentricity of the cell, the larger the

Fig 1. Representative areas of elongated cells versus rounded cells found in glioma tumors. Hematoxilin and eosin staining of a

genetic engineered mouse glioma tumor expressing the following genetic lesions: Nras overexpression, shp53 downregulation, shATRx

downregulation). A) Outlines and arrows demarcate multicellular structures formed by elongated cells (�) from areas of rounded cells

(+). Scale bar 50μm. B) Image magnification of (A) highlighting in black broken lines the morphological differences between elongated

(red) and rounded cells (blue). Scale bar 20μm.

https://doi.org/10.1371/journal.pcbi.1007611.g001
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effect on steering. In contrast to classical models of flocking [21, 22], in our model cells do not

take into account the velocity of their neighbors.

We first investigated numerically inR2
how eccentricity influences flock formation (i.e. all

the cells moving in the same direction) using as an indicator the polarization of the configura-

tion. We observed that increasing eccentricity increases polarization. Surprisingly, this effect

saturates and even becomes counterproductive as flock formation becomes less likely when

eccentricity exceeds a threshold (eccentricity e�.7). Then, we studied how cellular density

affects the dynamics by increasing the number of cells while maintaining the same size of the

domain. Since we do not suppose a mean-field type interaction (there is no averaging in the

interaction), increasing slightly the density could lead to drastic changes [23]. In our dynamics,

we observed the emergence of streams when the density becomes large, meaning that cells are

aligned but not necessarily moving in the same direction. We measure streams using the

nematic average where we identify a vector ω and its opposite −ω.

Beside the influence of cell morphology, the other key component of the dynamics is the

strength of both the repulsive effect and the steering effect, as each determine the two coeffi-

cients α and β, respectively. One could speculate that increasing the steering effect (i.e. larger

β) would enhance alignment and therefore lead to flocks or streams. Our numerical investiga-

tion revealed this not to be the case. Particularly at large densities, it is only when β is small

that a flock or a stream emerge. This result seems counter-intuitive. However, we need to

emphasize that the alignment in our dynamics is only indirect, as cells do not perceive each

other’s velocity. Thus, it is an interplay between spatial constraint and steering that leads to the

emergence of a stream or flock. Increasing a single parameter (repulsion or steering) does not

necessarily enhance alignment.

Stream formation is more challenging to observe in R3 since cells avoiding each other no

longer move aligned or in opposite direction as in R2. However, our simulations show that

flock and stream formation do still occur in R3 providing that we maintain a large density of

cells in the domain.

The complexity of the dynamics uncovered shows that it is difficult to predict a priory the

effect of each mechanism. Therefore, it would be of great interest to develop a multi-scale

approach to study the dynamics from a macroscopic viewpoint [24–27]. Moreover, this will

facilitate data-model comparison [28, 29], as much of the experimental observations are made

at a macroscopic scale. Investigating the partial-differential equation associated with the

dynamics [30–32] could provide a way to bridge this gap.

The manuscript is organized as follows: we first present the agent-based model in section 1,

then we study how the cell morphology influences the dynamics in section 1. A systematic

numerical investigation of the model inR2 varying two key parameters is performed in section

1 which produces several phase diagrams of the dynamics at various densities. We explore the

model inR3
in section 1 and draw our conclusions and future work in section 1.

Material and methods

We propose an agent-based model to describe the motion of individual glioma cells. The

dynamics combine cell-motility (i.e. self-propulsion) and cell-cell interaction (e.g repulsion or

adhesion). Specifically, we consider N cells described with a position vector xi 2 R
d

with d the

spatial dimension (d = 2 or 3), moving with velocity cωi where c> 0 is the speed (supposed

constant) and oi 2 S
d� 1

the velocity direction. The main novelty of the model is to consider an

elliptic or ellipsoid shape for each cell. Thus, we consider two axes denoted a and b for (respec-

tively) the major and minor axis (see Fig 2-left). As two cells cannot occupy the same spatial

position, cells will push each other if they are too close. Thus, we define an interaction potential
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Vi between cells that measures the tension exerted on cell i generated by the surrounding cells:

Vi ¼
XN

j¼1; j6¼i

Fðr2

ijÞ with r2

ij ¼
hxj � xi;oii

a

�
�
�
�

�
�
�
�

2

þ
hxj � xi;o

?
i i

b

�
�
�
�

�
�
�
�

2

: ð1Þ

The quantity rij is referred to as the normalized distance between the centers of the cells i
and j. For instance, if a = b we recover that rij is simply the norm kxj − xik/a. The modification

takes into account that the cell is more sensible to an obstacle in front rather an obstacle on the

side. The model is defined in R2
(i.e. d = 2) and can be generalized to R3

by defining rij as fol-

lows:

r2
ij ¼

1

b2
k xj � xi k

2 � e2½ðxj � xiÞ � oi�
2

� �
ð2Þ

where e 2 (0, 1) is the eccentricity of an ellipse defined as e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2

a2

q

.

To prevent overlapping, the function F has to be singular at the origin. We choose the fol-

lowing smooth function with compact support (see Fig 2-right):

FðsÞ ¼

(
1

s
exp

� 1

1 � s

� �

if 0 < s < 1

0 if s � 1:

ð3Þ

As rij decreases, F increases resulting into repulsion. We have now defined all the quantities

required to define our agent-based model.

Fig 2. Left: a cell i is described by its position xi, orientation ωi and its elliptic shape determined by the two morphological components

a and b. Right: functionF relies spacing between cell rij (1) into tension that generates repulsion when two cells touch each other.

https://doi.org/10.1371/journal.pcbi.1007611.g002
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Definition 1 Consider ðxi;oiÞ 2 R
d � Sd� 1 for i = 1..N and the dimension space d = 2 or

d = 3. The self-propelled dynamics are defined as:

_x i ¼ coi

z}|{
self-propulsion

� arxi
Vi

zfflfflffl}|fflfflffl{
repulsion

ð4Þ

_o i ¼ � bPo?i
ðroi

ViÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

steering
ð5Þ

where α, β and c are positive constant, Vi is the tension defined in (1) and Po?i ¼ Id � oi � oi is
the projector operator onto the the normal plane to ωi (it ensures that ωi stays of norm 1).

In order to reduce the tension generated by neighboring cells, a cell can either move away

(i.e. repulsion effect) or change its direction (i.e. steering effect). Both maneuvers are pondered

by the coefficients α and β representing the strength of each effect. Using the expression of Vi

(1), one can deduce an explicit expression of the dynamics (see S1 Text). Notice that if the cell

has a circular shape (i.e. a = b and the eccentricity e = 0), its orientation will remain constant

i.e. _o i ¼ 0. Indeed, in that case, turning will have no effect on the reduction of the tension Vi.

Thus, steering effects can only occur when if a 6¼ b.

Remark 2 Notice that rij cannot be considered a distance between cells i and j as it is not sym-
metric (i.e. rij 6¼ rji in general). Thus, the influence of the cell i on j is in general different from the
cell j on i, i.e Fðr2

ijÞ 6¼ Fðr2
jiÞ.

Results

Eccentricity effect on the dynamics

Eccentricity induces alignment. Our first investigation of the agent-based model (4) and

(5) is concerned with the impact of the morphology of the cell on the global behavior of the

dynamics. As stated above, cells have perfect rounded shape when the two parameters a and b
are equal (i.e. eccentricity e is zero) whereas they have elliptic or ellipsoid shape when a> b
(i.e. e> 0). We varied the eccentricity e and measured how this change affects the cells spatial

configuration.

Before varying the morphological parameters a and b, there are several other parameters to

be determined in our dynamics. When possible, we use experimental values that have been

quantified in vivo. For instance, it has been observed that glioma cell size varies in between

5μm to 20μm for their diameter and their speed varies around 10μm/h[33]. However, some

parameters cannot be inferred from experimental observations such as the strength of the

repulsion α and the steering β. A more detailed investigation of these two parameters will be

conducted in the next section. For now, we fix their values as indicated in Table 1.

Table 1. Parameters used for the simulations of Figs 3 and 5.

Diameter cell (front/back) 2a 8–14 μm
Diameter cell (side) 2b 6–8 μm
Motility c 10μm/h
Length domain O L 300μm
Number of cells N 1000

Cell-cell repulsion F Eq (3)

Strength repulsion α 40μm2/h
Strength steering β 1h−1

https://doi.org/10.1371/journal.pcbi.1007611.t001
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We perform the simulation in a square domain O = [0, L]×[0, L] with periodic boundary

conditions. For the initial condition, the positions of the N particles {xi}{i = 1. . .N} are distributed

uniformly O and their directions {ωi}{i = 1. . .N} are taken randomly on the unit circle S1
. In Fig

3, we draw the final configuration of the dynamics after T = 1000 unit time for two types of

cells: circular shape (a = b = 4μm, e = 0) and elliptic shape (a = 5.5μm, b = 3μm, e = .84). We

observe that circular cells have no particular spatial organization (Fig 3-left) while elliptic cells

have formed clusters moving in the same directions (Fig 3-right). The full simulation is also

available (see S1 Video).

Statistical characterization. To further investigate the dynamics, we introduce several

statistics to characterize the emergent behavior.

Definition 3 Consider a velocity distribution foigi¼1::N 2 S
d� 1

. We denote by ψ the polariza-
tion:

c ¼
1

N

XN

i¼1

oi

�
�
�
�
�

�
�
�
�
�
: ð6Þ

Similarly, we define the nematic polarization [12]:

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h cos ð2yiÞi
2
þ h sin ð2yiÞi

2

q
ð7Þ

where θi is the angle between the direction ωi and the horizontal axis and hi denotes the averag-
ing over the indices i (i.e. h cos ð2yiÞi ¼

1

N

PN
i¼1

cos ð2yiÞ).

We define the configuration as a flocking configuration (i.e. cells moving in the same direc-

tion) when the polarization ψ� 1 and the nematic polarization γ� 1. We define the configu-

ration as a streaming configuration (i.e. cells’ directions are parallel but not necessarily moving

in the same direction) when the nematic polarization γ� 1 and ψ< 1.

Remark 4 The nematic polarization can be generalized in higher dimensions (see S1 Text).

Fig 3. Snapshot of the simulation of the model starting from a uniform distribution. After t = 1000 unit of time, circular cells

(a = b = 4μm, e = 0) do not form any flocking pattern (left) whereas elliptic cells (a = 5.5μm, b = 3μm, e = .84) move in a common

direction (right).

https://doi.org/10.1371/journal.pcbi.1007611.g003
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The previous statistics only involve the velocity of the cells ωi. We propose a third statistics

to also characterize the spatial configuration.

Definition 5 Consider a spatial configuration fxigi¼1...N � R
d and a fixed radius R. We say

that cell i is linked to cell j if the distance between the two particles is less than R. This defines a
relationship (i.e. i* j) with i 6¼ j defined:

i � j if and only if k xj � xi k� R: ð8Þ

Clusters Ck are defined as the connected components for this relationship: two cells i0 and j0
belong to the same cluster if there exists particles i1, . . ., ik (a path) such that

i0 � i1; i1 � i2; � � � ; ik � j0: ð9Þ

The cluster size jCkj denotes the number of cells belonging in the cluster k. The average cluster
size �jCj is defined as the expected cluster size jCkj over all the positions:

�jCj ¼
1

N

XN

i¼1

jCðxiÞj; ð10Þ

where CðxiÞ denotes the cluster containing the cell i.
We illustrate the three statistics used in Fig 4.

In Fig 5—left, we measure the value of the polarization ψ over time for different shapes of

the cells by varying the coefficients a and b. When the cells have a circular shape (a = b = 4μm,

e = 0), the polarization ψ remains close to zero for all time whereas it increases up to a maxi-

mum close to 1 when the eccentricity is greater than zero. The relation between eccentricity

and polarization is however non-trivial: increasing the eccentricity does not necessarily lead to

large polarization. For instance, the polarization with eccentricity e = .89 is significantly

smaller than with eccentricity e = .84.

To further investigate the relationship between polarization and eccentricity, we plot in Fig

5—right the polarization at the final time for several experiments (changing the seed for the

initial condition) and various eccentricities e. We then perform a local regression (’loess’

method) to estimate the expected polarization ψ as a function of e. We observe that increasing

the eccentricity e leads to larger polarization up to e�.7 but then the polarization quickly

decays for larger eccentricities.

Indirect alignment. In classical models of flocking [21, 22], each individual has access to

the velocity of its neighbors. By relaxing its own velocity toward the average velocity of its

Fig 4. The statistics used to characterize the dynamics: The polarization ψ (6), the nematic polarization γ (7) and

the clustering (8) and (9).

https://doi.org/10.1371/journal.pcbi.1007611.g004
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neighbors, a flock emerges. This begs the question on how individual agents communicate.

However, in the agent-based model we propose (4) and (5), the cell i has no knowledge of the

velocity of any of its neighbors, i.e. ωj is not used to define the evolution of (xi, ωi). Therefore,

it is unclear at first why the dynamics proposed could generate similar flocking patterns.

To address this question, we provide a linear perturbation analysis of the model with

respect to the eccentricity in the case of only two cells i and j. Let’s denote θij the angle between

the direction of the cell ωi and the relative position vector xj − xi (see Fig 6). Thus, one can

Fig 5. Polarization ψ (6) over time while varying the eccentricity of the cell e. Ellipsoid cells that align will lead to an increase of ψ close

to its maximum 1. For the circular cells (blue curve), the polarization remains very low as no streams emerge from the dynamics (left).

The polarization ψ over eccentricity e during the final time t = 1000 of the left figure will form a parabola. By increasing the eccentricity,

there is no fundamental impact on the polarization coefficient of the cells (right).

https://doi.org/10.1371/journal.pcbi.1007611.g005

Fig 6. Indirect alignment of two cells i and j. Both cell i and j will rotate to align with the orthogonal vector to xj − xi.

https://doi.org/10.1371/journal.pcbi.1007611.g006
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write ωi = (cos θij, sin θij)
T using the basis foi; o

?
i g. In particular,

o0i ¼ ð� sinyij; cosyijÞ
T
y
0

ij ¼ o
?
i y
0

ij:

We deduce that:

y
0

ij ¼ b
2e2

b2
F0ðr2

ijÞxijyij:

where xij ¼ hxj � xi;oii; yij ¼ hxj � xi;o
?
i i. Moreover, elementary geometry shows that xij = |

xj − xi| cos θij and yij = |xj − xi| sim θij and thus:

y
0

ij ¼ C sin2yij ; with C ¼ b
e2

b2
F0ðr2

ijÞjxj � xij
2
: ð11Þ

Notice that C� 0 since F0ðr2
ijÞ � 0. As a consequence, if i and j stay close enough (e.g.

r2
ij < 1), there are two stable equilibria for θij at ±π/2. Sketching the phase portrait in Fig 6 indi-

cates that ωi will rotate toward the stable equilibrium to align with (xj − xi)
?. By a similar argu-

ment, ωj will be orthogonal to (xj − xi) as well.

Therefore, instead of a direct alignment between ωi and ωj, we have an indirect alignment:

both vectors will align with (xj − xi)
?. Notice that this indirect form of alignment allows for the

two vectors ωi and ωj to be negatively aligned, i.e. ωi = −ωj which could lead to streaming for-

mation. In dimension larger 2, (xj − xi)
? is an hyperplane, thus even if ωi and ωj become

orthogonal to (xj − xi)
?, it is insufficient to conclude that ωi and ωj will become parallel.

Indeed, as we will show numerically in the next section, one has to consider also the spatial

configuration (e.g. density) to predict whether the dynamics will generate flock or stream

formations.

Density effect

In the previous section, we investigated how cell morphology (i.e. a, b) promotes the emer-

gence of flocking patterns (i.e. cells moving in the same direction). Our formal analyses show

that we could also observe stream formation (i.e. cells moving in opposite directions). In this

section, we will define the conditions under which streams emerge. To define the conditions

which allow the emergence of streams we will study the dynamics of our system as we vary the

parameters α (strength repulsion), β (strength steering) and N (density). We will fix the shape

of the cells with a = 5.5μm and b = 3μm as they are the most common values experimentally.

The range of the parameters are given in Table 2.

Emergence of streams. To illustrate the formation of streams (see Eqs (4) and (5)), we

perform simulations within the parameter constraints of: α = 100, β = .1 (strong repulsion, low

Table 2. Parameters used for the simulations of Figs 7–13.

Diameter cell (front/back) 2a 11μm
Diameter cell (side) 2b 6μm
Motility c 10μm/h
Length domain O L 300μm
Number of cells N 1000 − 2000

Cell-cell repulsion F Eq (3)

Repulsion strength α 10 − 200 μm2/h
Steering strength β .1 − 10 h−1

https://doi.org/10.1371/journal.pcbi.1007611.t002
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steering). In Fig 7, we illustrate snapshots of three simulations where we increase the density

from N = 1000 to N = 2000 at t = 1000 unit time. Cells are color coded by orientation: we deter-

mine the nematic average direction Onem (see S1 Text) and then color each cell i blue if hωi,

Onemi>0 or in red if hωi,Onemi<0.

We notice that when the number of particles is low with N = 1000 (Fig 7a), almost all the

cells are perfectly aligned in the same direction leading to a flocking configuration. The evolu-

tion of the polarization ψ given in Fig 8 confirms this observation since ψ becomes close to 1

for N = 1000. As we increase the density with N = 1500 (Fig 7b), we observe that the number of

cells moving in the opposite direction becomes larger making the polarization decay to only ψ
= .2. Finally in the case where N = 2000 (Fig 7c), the number of cells moving in opposite direc-

tion becomes balanced and we observe the formation of a stream where the flow inside the

domain is bidirectional. Indeed, the polarization ψ is close to zero for N = 2000 where the

nematic polarization γ is around.9 (see S2 Video).

Local minimum for the energy. We conclude that increasing the density of cells is the

underlying mechanism for stream formation. However, one has to notice that we always use as

initial configuration random configurations for the velocities ωi. If one would start from a

Fig 7. Snapshots of the simulation of the dynamics at t = 1000 unit time for various cell densities (N = 1000, 1500

and 2000). Red cells are moving in opposite direction to the blue cells. Flocking appears when the density is low (A)

but then the dynamics start to converge to stream formation as we increase the density (B-C).

https://doi.org/10.1371/journal.pcbi.1007611.g007

Fig 8. Polarization ψ and nematic polarization γ for the simulations of Fig 7. A flock occurs at low density (i.e. N = 1000) where ψ and γ
converge approximately to 1, whereas streams emerge at larger density (i.e. N = 1500 and N = 2000).

https://doi.org/10.1371/journal.pcbi.1007611.g008

PLOS COMPUTATIONAL BIOLOGY Self-organization in brain tumors: Influences of cell morphology and cell density

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007611 May 7, 2020 10 / 22

https://doi.org/10.1371/journal.pcbi.1007611.g007
https://doi.org/10.1371/journal.pcbi.1007611.g008
https://doi.org/10.1371/journal.pcbi.1007611


perfect flock with no overlapping (i.e. ωi = O for all i and rij > 1 for all i, j), then the configura-

tion will remain in this configuration, it will be simply transported with a constant velocity.

Thus, we will not observe the formation of a stream even at large cell density (e.g. N = 2000).

In other words, the flocking configuration can be a globally stable configuration. In contrast,

in a stream formation, the cells at the border between regions moving in opposite direction are

in an unstable equilibrium (see Fig 6). Therefore, if the steering coefficient β remains small

enough, the streaming configuration will be maintained, the non-overlapping physical con-

straint (through the repulsion α) prevents the cells from turning.

Another formal justification for the emergence of the stream configuration comes from the

total potential energy V (1):

V ¼
XN

i¼1

Vi ¼
XN

i;j¼1; j6¼i

Fðr2

ijÞ; ð12Þ

with rij given by (1). The dynamics (4) and (5) is a gradient descent of the potential V (i.e.

x0i ¼ � arxi
Vi; o

0
i ¼ � bPðroi

ViÞ) combined with a free transport component (i.e. x0i ¼ coi).

The gradient descent decays the potential V whereas the free transport could either increase or

decrease V. But as we increase α, the dynamics become more likely to become fixed in a local

equilibrium (i.e. stream). Perturbations to the free transport component of the dynamics will

be insufficient to move the configuration away from a local equilibrium (see Fig 9). However,

on a large time scale, it is still possible that a stream configuration would eventually become a

flock. The reverse situation, a flock becoming a stream, is unlikely as it would require an

increase in the potential energy V. Since the dynamics is not conservative, we cannot rule out

this scenario but numerically we haven’t observed such transition.

Phase diagram. We have identified two configurations: flocking when the cells are aligned

(i.e. ψ� 1, γ� 1), stream when the cells are moving in opposite directions (i.e. γ� 1). The

convergence of the dynamics toward one of these configurations depends on the density N

Fig 9. Sketch representation of the potential energy V (12) over the configuration space {(xi,ωi)}i = 1,. . .,N. Stream

can be seen as local equilibrium whereas flock are global equilibrium. When the parameter α (repulsion) is increased,

the stream configuration become more stable.

https://doi.org/10.1371/journal.pcbi.1007611.g009
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(Figs 7 and 8) and on the parameters α and β. We would like to study the effects of repulsion

and alignment (i.e the coefficients α and β resp.) for the three distinct cases of N.

With this aim, we fix the shape of the cells (a = 5.5μm and b = 3μm) and make a systematic

analysis by varying continuously α 2 [0, 200] and β 2 [0, 10]. For each value of α and β, we per-

form 5 simulations and compute several statistics after t = 1000 unit of time. For instance, in

Fig 10 (top-left) we plot the polarization ψ depending on α and β in the case N = 1000. The

scatter plot represents all the data points (αj, βj, ψj). Notice that for a given set (α, β) we find

varying polarization ψ due to random initial conditions. We represent the average polarization

hψi as a surface computed from the 5 final configurations with similar parameters (α, β). To

reduce the fluctuation, we estimate a local averaging (’loess’) in Fig 10 (top-right) which makes

possible the estimation of a smooth region where the polarization ψ is higher than a given

threshold. Regarding the use of averaging or smoothing, we observe that the polarization is

surprisingly small when β is large and α small. There is also another region where the polariza-

tion decays when α is large and β is small.

A better visualization is to draw the polarization ψ as a heat-map depending on α and β (Fig

10 center-left). Through the use of smoothing, we can also estimate contours at different

thresholds (ψ = .5 and ψ = .8). We proceed similarly with the nematic polarization γ (7) in Fig

10 center-right. We notice that in contrast to the polarization ψ, the nematic polarization

remains large even when β is small and α is large: indeed, this is the regime where we observe

the formation of streams.

Finally, we also use a third statistic to characterize the configuration using the average clus-

ter size �jCj (10). We use the radius R = 10μm to define the clusters (i.e. two cells are connected

if their distance kxj − xik is less than 10μm). The average size cluster �jCj is then estimated in

Fig 10 (bottom). We observe two regions: cluster sizes are (relatively) smaller when α is small

and independent of β. Thus, the repulsion α governs the formation of clusters.

We combine the three statistics (polarization ψ, nematic polarization γ, cluster size) to cre-

ate a phase diagram in the parameter space (α, β). Three regions are delimited:

i). flocking: {a, b such that ψ>.8},

ii). streaming: {a, b such that γ>.7 and ψ<.8},

iii). scattering: {a, b such that �jCj < 600}.

The results are given in Fig 11. For most of the parameters α and β, the dynamics converge

to a flock.

Performing a similar investigation for N = 1500 and N = 2000 lead to drastically different

results. The regions where flocking occurs are more narrow (Fig 12a). But surprisingly stream

formation is still occurring for all values of α as long as the steering coefficient β is small

enough (Fig 12b). Only the cluster formation through the statistic �jCj remains similar (see Fig

12c) as in the case N = 1000. As a result, the phase diagrams for N = 1500 and N = 2000 contain

a large region not identifiable as either flock or stream (Fig 13). Notice that increasing density

does not penalize the formation of streams in the region where β is small and α is large.

Dynamics in 3D

Finally, we would like to study the dynamics (4) and (5) inR3. There are several key differences

between R2 and R3 for the dynamics. Our formal discussion in see section 1 showed that the

dynamics enforce that nearby cells (denoted i and j) must have their velocity (ωi and ωj)

orthogonal to their relative position (xj − xi). InR2
, we concluded that nearby cells must be

aligned at equilibrium, i.e. ωi = ωj or ωi = −ωj. This is no longer the case in R3
: ωi and ωj could
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Fig 10. Top-left: for each pair α, β, we estimate the polarization ψ (scatter point) at the end of 5 simulations. The average is then computed to construct

a surface plot. Top-right: we use a local regression (’loess’) to estimate ψ as a function of α and β reducing the fluctuation. Center-left: heat-map

representation of the polarization ψ as a function of a, b using the smooth estimation of ψ. The contour ψ = .8 will be used to determine the region when

the dynamics generate flock. Center-right: we perform a similar analysis as the left figure using the nematic polarization γ. Bottom: the average size

cluster �jCj (10) for various values of α and β. The estimation has been smoothed using local regression (’loess’). We then deduce the region when the

cluster size is below a certain threshold.

https://doi.org/10.1371/journal.pcbi.1007611.g010
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be orthogonal to (xj − xi) without being aligned. Therefore, it is uncertain if one should observe

the emergence of flock or stream formations in R3
.

Another difference inR3
is that the nematic polarization γ is no longer defined as a velocity

vector ω in S2
is defined using two angles instead of one. However, we have provided an alter-

native quantity denoted J in S1 Text. We also use a smaller domain for our simulation in order

to keep the same density as in R2
(maintaining a similar ratio “volume occupied/volume

domain”); thus we reduce the size of the box to L = 70μm. Otherwise, the other parameters

remain those of the previous simulations (see Table 3), in particular we use α = 100 and β = .1

to be in the regime more susceptible of stream formation (at least inR2
).

First, we investigate the model with N = 1000 cells (low density). We plot the final configu-

ration at t = 1000 unit times starting from two different initial conditions in Fig 14. As in Fig 7,

we color code the cells depending on their orientation to help visualize cells moving in oppo-

site directions. Notice that cells do not necessarily move parallel to each other (they can move

orthogonal to each other). But after a transient period, only one or two directions remain as

cells form either a flock or a stream. Indeed, we observe the formation of a flock (Fig 14-top

left) and of a stream (Fig 14-top right). Note that even when the flock develops (top left), few

isolated cells (red) are still moving in opposing direction to to the main flow (blue). Thus,

flock and stream configurations can emerge when the cell density is low.

The situation is different when we increase the density to N = 1500 and N = 2000. In this

case we only observe the formation of streams (see Fig 14-bottom). Similar to the situation in

R2
, increasing the density reduces the possibility for the cells to rotate and therefore streams

are more likely to occur. Plotting the time evolution of both the polarization ψ and nematic

Fig 11. Combining the results of Fig 10, we create a phase diagram consisting of three regions for the

configuration: Flocking (ψ>.8), streams (γ>.7 and ψ<.8) and scattering ( �jCj < 600).

https://doi.org/10.1371/journal.pcbi.1007611.g011
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Fig 12. A) Average polarization ψ for various parameters α and β with N = 1500 and N = 2000. Notice that the polarization is significantly smaller

compared to the case N = 1000 (Fig 10). B) Nematic polarization γ for N = 1500 and N = 2000. γ remains close to 1 for any values of α when β is

small. C) The average cluster size �jCj behave similarly as in the case N = 1000 with smaller clustering for small value of α.

https://doi.org/10.1371/journal.pcbi.1007611.g012
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polarization J in Fig 15 confirms our observations. The quantity J always converges to 1

whereas the nematic polarization ψ stays low except when N = 1000.

Discussion

Whether self-organization exists in brain tumors is incompletely understood. The identifica-

tion of multicellular structures in brain tumors suggest that single cells are able to coalesce into

multicellular patterns, possibly as a result of self-organization. We have recently described

such multicellular structures within gliomas [34]. As these structures are reminiscent of

streams described in other systems, we have labeled these structures oncostreams. Onco-

streams extend over 100–500μm long and 50–200μm wide, and contain elongated cells. In this

work we aimed to understand the role of the elongated morphology of cells within such onco-

streams in the formation of the multicellular patterns, and whether these patterns are the result

of self-organization operating within gliomas.

We propose an agent-based model that describes the motion of cancer cells and the emer-

gence of pattern formation within gliomas. In our model, the morphology of the cells plays a

key role in glioma pattern formation since cell eccentricity allows the cells to align (indirectly)

Table 3. Parameters used for the simulations inR3 (Figs 14 and 15).

Diameter cell (front/back) a 11μm
Diameter cell (side) b 6μm
Motility c 10μm/h
Length domain O L 300μm
Number of cells N 1000 − 2000

Cell-cell repulsion F Eq (3)

Repulsion strength α 100μm2/h
Steering strength β .1h−1

https://doi.org/10.1371/journal.pcbi.1007611.t003

Fig 13. Phase diagram when the total number of cells N is 1500 (left) and 2000 (right). As we increase the density, the regions for flocking

configurations drastically reduce. However, streams are still form when β is small.

https://doi.org/10.1371/journal.pcbi.1007611.g013
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to each other and eventually coalesce to form a flock or a stream. In the special case where cells

are circular, cells cannot align and thus no flock or stream can formed. The emergence of such

multicellular patterns is also governed by additional parameters, i.e. α (repulsion), β (steering),

and cell density. Several phase diagrams summarizing the effects of these parameters have

Fig 14. Snapshots of simulation inR3 at t = 1000 unit time with number of particles N equal to 1000 (top), 1500 and 2000 (bottom). Flocking and

streaming appear when the number of particles is low depending on the initial condition (top left and top right respectively). Whereas only stream

emerges when the number of particles is higher, N equal 1500 and 2000 (bottom—left and right respectively). We color code the cells in blue or red

depending on the direction in comparison to the nematic average (see S1 Text).

https://doi.org/10.1371/journal.pcbi.1007611.g014
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been estimated for various densities. In contrast to mean-field type models, the density drasti-

cally changed the dynamics. Flocking configurations became more sparse and streams’ density

increased as cellular density increased. This has important biological implications as the den-

sity of gliomas is constantly changing.

We have discovered that glioma oncostreams indeed display characteristics of self-organi-

zation. Namely, our data strongly suggest that the emergence of the large-scale structures

within brain tumors, flocks and streams, result from intercellular interactions. As the density

of flocks and streams correlates with glioma aggressiveness, we can link the macroscopic

behavior of brain tumors to the intercellular interactions of individual glioma cells. The forma-

tion of large scale patterns that result from intercellular interactions, and the fact that these

structures determine glioma behavior, i.e., growth, invasion, aggressiveness, allow us to con-

clude that gliomas display clear evidence of self-organization, and that tumor self-organization

plays an important role in tumor malignity.

Most of our experimental work was performed using mouse tissues and genetically engi-

neered mouse models of brain tumors. However, the recognition of oncostreams in human

malignant gliomas [35] strongly suggests that human brain tumors can also self-organize into

structures that influence tumor malignity. We suggest that a novel approach to the treatment

of brain tumors was to disassemble the oncostreams. Ongoing molecular studies of onco-

streams indicate that this is feasible. Our data make important biological predictions.

Our model achieves flocking through cells of an eccentricity larger than 1, and parameters

which determine cell repulsion, and cell steering. No function of cell adhesion is included into

the model. This strongly suggests that the molecular intercellular interactions leading to

stream and flock formation may regulate the degree of intercellular adhesion. It will be impor-

tant to investigate the molecular basis of stream and flock formation in gliomas. The cytoskele-

ton is also likely to play a central role in stream and flock formation as the eccentricity has an

optimal value to form oncostreams, and that, once exceeded, the capacity to form oncostreams

decreases. Molecular mechanisms that might optimize cell eccentricity are currently not

understood, and might yield important results concerning the molecular mechanisms that are

necessary to form oncostreams and flocks.

Fig 15. The evolution of the polarization ψ and the nematic polarization J for the simulations presented in Fig 14. When the

number of particle is low (N = 1000), flock and stream emerge depending on the initial condition leading to an average value for ψ is

around 0.6 and J close to 1. However, for larger density (N = 1500 and N = 2000), only streams emerge since the low polarization ψ is

low and the nematic polarization J is close to 1.

https://doi.org/10.1371/journal.pcbi.1007611.g015
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Our data also suggest that intra-glioma dynamics are cell density dependent, as the direc-

tionality of the cells changes significantly upon increases of cell density. As intraglioma

dynamics are important to tumor growth and invasion, changes achieved by therapeutic cyto-

toxic agents, may not eliminate glioma growth, but rather alter its organization and direction-

ality. As methods become available to affect the overall organization of gliomas, we suggest

that the effects on intratumoral dynamics be considered in terms of drugs’ mechanisms of

action. Increasing density is also likely to affect the overall macroscopic tumor growth, as

flocks (which move in one direction), are able to convert into streams (which move in two

directions). As a consequence, the quality and distribution of tumor growth may change in

response to partial cytotoxicity to a diffuse tumor capable of growing in more directions as it

invades surrounding normal brain.

The phase diagrams indicate the potential existence of critical points and phase transitions

at which non-aligned cells can become aligned and form a flock or a stream, a relationship

which is also dependent on glioma cell density. The existence of critical points will be impor-

tant as they might regulate the sudden scattering of cells, or their organization into patterns of

collective motion that are likely to determine tumor growth.

Our work proposes a number of extensions which will be pursued in the future. For

instance, it will be important to mix cells with different shapes (i.e., with different values for α
and β) since not all the cells are identical (see for instance [36]). We will also study how cell

eccentricity varies over time and even whether it influences cell mitosis, and/or the birth/death

cycles. Increasing the density is also challenging numerically as the dynamics become singular

when two cells overlap which is more likely with a birth process. To avoid this complication,

one could explore a continuous description of the dynamics through a Partial Differential

Equation (PDE) [30–32]. Such PDE description might provide some hindsight about the

emergence of flock or stream in certain regimes (e.g. α� 1, β� 1).

Adding cell divisions will also raise new questions such as how fast do cell spread depending

on their distance to the center of the tumor. It is yet to be determined whether cells will move

faster close to the center (large density) or at the periphery of the tumor (low density).

Another extension of the model would consist in adding a “contact inhibition of locomo-

tion” (CIL) to the cells [37]. The main idea is that cells would reduce their self-propulsion as

they experience contact. As a result, we would expect that the perturbation due to the free

transport component (see Fig 9) would be reduced and therefore flocks and streams would be

more likely to occur at larger density. Such behavior would be consistent with experimental

observations where 2D-cell layer clusters have been observed at large density [38].

In summary, through a detailed investigation of patterns of glioma growth and agent-based

mathematical modeling we explain the importance of cell shape during glioma growth, and its

consequences for glioma self-organization, aggressiveness and invasion. The long term conse-

quences of glioma self-organization will impact our understanding of glioma biology, and sug-

gest novel treatments.

Supporting information

S1 Text. Explicit expression of the model and definition of nematic average.

(PDF)

S1 Video. Circles VS ellipses. Numerical simulation comparing the dynamics with circles (i.e.

a = b = 4μm) and ellipses (a = 5.5μm, b = 3μm). Fig 3 corresponds to a screenshot of this video

taken at t = 1000 unit time.

(AVI)

PLOS COMPUTATIONAL BIOLOGY Self-organization in brain tumors: Influences of cell morphology and cell density

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007611 May 7, 2020 19 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007611.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007611.s002
https://doi.org/10.1371/journal.pcbi.1007611


S2 Video. Stream formation. At large density, stream formations are more likely to occur (see

also Fig 7). After a transient time, the dynamics generate streams that move in opposite direc-

tion. Cells have been colored depending on their direction: blue cells are the one moving to the

right, red cells move left and white cells move up or down.

(AVI)
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18. Börzsönyi T. and Stannarius R. Granular materials composed of shape-anisotropic grains. Soft Matter,

9(31):7401–7418, 2013. https://doi.org/10.1039/c3sm50298h
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