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Abstract
Motion tracking software for assessing laparoscopic surgical proficiency has been proven to be effective in differentiating
between expert and novice performances. However, with several indices that can be generated from the software, there is no
set threshold that can be used to benchmark performances. The aim of this study was to identify the best possible algorithm that
can be used to benchmark expert, intermediate and novice performances for objective evaluation of psychomotor skills. 12 video
recordings of various surgeons were collected in a blinded fashion. Data from our previous study of 6 experts and 23 novices was
also included in the analysis to determine thresholds for performance. Video recording were analyzed both by the Kinovea 0.8.15
software and a blinded expert observer using the CAT form. Multiple algorithms were tested to accurately identify expert and
novice performances. ½ L + 1

�
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�
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J scoring of path length, average movement and jerk index respectively resulted in

identifying 23/24 performances. Comparing the algorithm to CAT assessment yielded in a linear regression coefficient R2 of
0.844. The value of motion tracking software in providing objective clinical evaluation and retrospective analysis is evident.
Given the prospective use of this tool the algorithm developed in this study proves to be effective in benchmarking performances
for psychomotor skills evaluation.
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Introduction

Training and assessment in laparoscopic surgery are increas-
ingly moving towards more objective and criterion-based
evaluation tools. [1–3] Box trainers with cameras, virtual
and augmented reality simulators have facilitated in achieving
objective evaluation of technical skills. [4–7] Recent trends in

surgical training, such as self-directed learning and reflective
practice, indicate a positive effect of repetitive and indepen-
dent practice, which have been made possible with objective
evaluation tools. [8–10] Several objective criteria such as in-
strument movement, procedure time, and procedure specific
risky maneuvers can be extracted from these simulators and
serve as benchmarks for assessing the performance or self-
assessment for progress monitoring. [11, 12] However, the
use of these objective criteria in the operating room to assess
real surgical procedures is currently limited.

It has been proven byYamaguchi et al. that motion tracking
of the surgical instruments can objectively differentiate be-
tween expert and novice surgeons in a skills lab setting. This
has been achieved using specialized instruments using motion
trackers and cameras. [13–16] We have previously used a
motion tracking software which is independent of specialized
equipment and instruments during the procedure and can be
used for retrospective performance analysis using the video
recording of the procedure. [17] In this previous study three
indices were identified, namely ‘path length’, ‘sudden
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movements’ and ‘average movements’, which could be ex-
tracted from the recorded videos classify expert and novice
performances. These indices, however, were procedure spe-
cific and as such required a set of benchmarks to assess indi-
vidual procedures.

Recent advances in image recognition and artificial intelli-
gence (AI) have been proven effective in surgical skills eval-
uation. [18, 19] These systems are more task and procedure
specific, because they evaluate the surgical skills required for
laparoscopic knot tying, suturing or pelvic lymph node dis-
section. But, as with any laparoscopic surgery, skills are
broadly categorized into cognitive and psychomotor skills.
Cognitive skills as such are procedure specific and psychomo-
tor skills are pan-procedural. Thus, the aim of this study is to
develop a new set of benchmarks for psychomotor skills that
scale between novice and expert performance and can be used
in automated assessment tools.

Methods

Protocol

To determine a good threshold for the algorithm, the data has
to be categorized as shown in Table 1. To determine these
thresholds, the data from our previous study [17] was evalu-
ated and recalculated. Three parameters were calculated: ‘Path
length’ (L); ‘Average distance’ (A), which the instrument tip
moved per time frame; and ‘Number of extreme movements’
(J), defined as more than 1.0 cm movement per frame. If the
value of the parameter was above the expert median, a score of
1 was assigned, if it was below the novice median, a score of 0
was assigned. Scores between the two medians were assigned
a score between 0 and 1, scaled linearly. Following, these
scores were weighted using the following equation, to create
a total performance score (p), ranging from 0 to 1:

wl, wandwj, where wl +wa +wj=
1thus:

wlLþ waAþ wj J≔ρ ð1Þ

The aim of this study was to calculate the best weightings
to determine expertise in uncomplicated laparoscopic chole-
cystectomy procedure.

First the original participant data from our previous
study was used to determine the expertise thresholds as
described above. [17] Following, a blinded evaluation of

twelve new videos was performed by both the tracking
system and the Competency Assessment Tool (CAT) for
laparoscopic cholecystectomy by a blinded assessor to
correlate the data. The videos were rated with the new
weighting equation and evaluation for a significant cor-
relation. These results were then compared to the previ-
ously recorded experience of the surgeon or surgical
resident performing the procedure to determine whether
the algorithm had correctly identified their level of psy-
chomotor skills expertise.

Participants

This study uses data from the six ‘experts’ (>200 lapa-
roscopic procedures performed) and 23 ‘novices’ (<10
laparoscopic procedures performed but with a surgical
background) in our previous study, to create thresholds
for expertise. [17] These thresholds were then tested on
an additional twelve blinded video recordings of six sur-
geons and six surgical residents, conducting an uncom-
plicated laparoscopic cholecystectomy procedure at the
Catharina Hospital, Eindhoven, The Netherlands. This
was to assess, by blinded trial, the ability of this
thresholding algorithm in determining the psychomotor
skills demonstrated in the procedure. All participants
gave their consent for the video recording of the proce-
dures used in this study and hospital ethics committee
approval was obtained.

Data extraction and statistics

The tracking data of the instrument movements during the
surgical procedure was extracted from the recorded videos
using Kinovea 0.8.15 software. Both the thresholding calcu-
lations and extracted data were analyzed, including linear re-
gression analysis, using MATLAB (R16b).

Results

Threshold Determined

Data from the tracking software was processed using the
thresholding function and Equation described in the methods
section, various weightings were evaluated and compared to
the correct categorization to identify the best assessment algo-
rithm (Table 2).

Set 5 resulted in the most correctly categorized videos,
which concluded in the following Algorithm:

Assessment score (0–1): Score = ½ L + 1
�
3
A + 1

�
6
J

Table 1 Ideal thresholding output from the algorithm

Threshold Category Procedures performed

p > =2/3 Expert 200 or more procedures

p < =1/3 Novice 10 or fewer procedures
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Validity of assessment algorithm

Twelve videos were analyzed using the new algorithm with
the tracking system and scored using the CAT form by a
blinded expert assessor. The thresholding algorithm catego-
rized the twelve videos as five experts, five intermediates
and two novices. The expert-assigned CATscores support this
ordering as shown in Table 3. Upon unblinding the data, all
the videos identified as expert videos were indeed performed
by experienced surgeons and had the top four CATscores. The
other videos evaluated were in fact performances of surgical
residents with an intermediate or novice level. Those identi-
fied as novices by the algorithm scored the lowest CAT score
assigned by the expert assessor. One surgeon was identified as
intermediate according to the algorithm, but also scored the
lowest CAT score of the surgeons and had a very high jerk
index.

Significance level

The CAT Tool is a comprehensive assessment tool that as-
sesses performance across the three tasks in laparoscopic

cholecystectomy in exposure of the cystic duct and artery,
cystic pedicle dissection and resection of the gallbladder.
[20] These tasks are further evaluated across different indices
such as usage of instruments, handling of tissue, errors oc-
curred and the end-product. For this study, we only considered
the scoring across the usage of instruments and handling of
tissue as they determine the psychomotor skills. Figure 1 de-
picts the linear regression curve plotted using the CAT score
and the algorithm yielding a coefficient R2 of 0.844.

Performance scoring

Scoring systems provide reference for ideal performance and
serve as an indicator for measuring learning curve progression
and consistency in performance. Upon analysis of the results
from the algorithm and correlation with the CAT we propose
the following range of scores as derived when using the algo-
rithm for assessing psychomotor skills in laparoscopic
cholecystectomy:

Expert performance: 0.65 and above
Intermediate performance: 0.35–0.65
Novice performance: 0.35 and below

Table 2 The values of the weighting parameters for the thresholding and the corresponding number of correctly identified experts and novices

Set Path length (L) Average distance (A) Extreme movements (J) Correctly Identified

1 1/3 1/3 1/3 20/24

2 1/3 1/6 1/2 18/24

3 1/3 1/2 1/6 19/24

4 1/6 1/3 1/2 15/24

5 1/2 1/3 1/6 23/24

6 1/6 1/2 1/3 18/24

7 1/2 1/6 1/3 21/24

Table 3 The weighted score is the score calculated using the data extracted for the video and the thresholding equation, performance algorithm

Video Score performance algorithm Category Identified by thresholds CAT Score Actual video category

1 1.00 Expert 21 Surgeon

2 1.00 Expert 22 Surgeon

3 1.00 Expert 20 Surgeon

4 0.86 Expert 19 Surgeon

5 0.67 Expert 20 Surgeon

6 0.63 Intermediate 19 Surgeon

7 0.54 Intermediate 17 Resident

8 0.41 Intermediate 14 Resident

9 0.36 Intermediate 14 Resident

10 0.35 Intermediate 13 Resident

11 0.09 Novice 14 Resident

12 0.00 Novice 13 Resident

Along with the category that this score yields (from Table 1). The Expert CAT score for that video is also shown and whether the video was, in fact,
performed by an experienced surgeon or a student
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Discussion

Traditionally assessing surgical skills requires expert assess-
ment through standardized validated tools such as the
Competency Assessment Tool (CAT) and Objective
Structured Assessment of Technical Skills (OSATS)
[20–22]. Objective evaluation of laparoscopic skills using mo-
tion analysis has been limited to VR simulators and robotic
surgery [23]. The transfer of these evaluation criteria to clin-
ical laparoscopic surgery has been limited by the use of addi-
tional equipment and costs [24].

Computer vision techniques and AI have shown promising
results in identifying procedure specific evaluations [18, 19].
Their strengths lie in detecting cognitive and clinical skills in
addition to error recognition. AI can also effectively segment
procedural steps for easy access and indexing for future refer-
ence [25]. However, these systems do not identify psychomo-
tor skills that can be applied pan procedurally which can serve
as an important indicator for learning curve monitoring in the
clinical context.

Based on our previous study on the feasibility of the
Kinovea software [17], the thresholds for the expertise levels
were determined using results therefrom. This study was
procedure-specific using uncomplicated laparoscopic chole-
cystectomy in the clinical setting. The thresholds were set
based on a new algorithm, which was validated by comparing
it with both objective expert assessors (p = 0.01, R^2 = 0.844).
Overall, the current threshold algorithm seems to provide a
potential objective assessment tool for psychomotor skills
evaluation. The algorithm is weighted on the importance of
each of the indices identified and the rate in which these make
up the expertise of the performance.

However, this study has shown the potential value of the
Kinovea tracking software to rapidly evaluate one’s psycho-
motor skills automatically of a laparoscopic procedure, retro-
spectively, without the need for additional equipment during

the procedure. Moreover, because the scoring is by assessing
surgical videos retrospectively, there is no need for the use of
other equipment or the stress of being watched by an assessor.
Surgical trainees in a skills lab setting are used to objective
metric scores as part of their self-improvement on VR and AR
simulators and this new assessment method could be devel-
oped to act as a bridge to clinical settings; having value in both
self-assessments, for improving the learning curve and as a
tool for measuring psychomotor skills.

Limitations

Whilst the algorithm presents a promising first step towards
bridging the gap between true objective evaluation from the
skills lab to the operating theatre, the current calculations used
in this study are limited in their application to assessing psy-
chomotor skills required for laparoscopic cholecystectomy.
Furthermore, as they represent a broad average of movement,
these indices do not currently provide an indication of errors
or potential errors. However, in combination with computer
vision techniques and AI that are proven to recognize proce-
dure and task specific errors based on image recognition, this
algorithm could in the future be developed to serve in provid-
ing a more comprehensive evaluation of laparoscopic skills,
similar to that of VR simulators, in a clinical setting.
Furthermore, with the new insights of this study in the cate-
gorization of the importance of performance indices, it could
be transferred to other laparoscopic procedures.

Conclusion

The value of motion tracking software in providing objective
clinical evaluation and retrospective analysis is evident. Given
the prospective use of this tool the algorithm developed in this
study proves to be effective in benchmarking performances
for psychomotor evaluation of laparoscopic skills.
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The linear trendline has a regression coefficient of determination (R2) of
0.844
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