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Abstract

Purpose

Birdshot Uveitis (BU) is an archetypical chronic inflammatory eye disease, with poor visual

prognosis, that provides an excellent model for studying chronic inflammation. BU typically

affects patients in the fifth decade of life. This suggests that it may represent an age-related

chronic inflammatory disease, which has been linked to increased erosion of telomere

length of leukocytes.

Methods

To study this in detail, we exploited a sensitive standardized quantitative real-time polymer-

ase chain reaction to determine the peripheral blood leukocyte telomere length (LTL) in 91

genotyped Dutch BU patients and 150 unaffected Dutch controls.

Results

Although LTL erosion rates were very similar between BU patients and healthy controls, we

observed that BU patients displayed longer LTL, with a median of log (LTL) = 4.87 (= 74131

base pair) compared to 4.31 (= 20417 base pair) in unaffected controls (P<0.0001). The

cause underpinning the difference in LTL could not be explained by clinical parameters,

immune cell-subtype distribution, nor genetic predisposition based upon the computed

weighted genetic risk score of genotyped validated variants in TERC, TERT, NAF1, OBFC1

and RTEL1.

Conclusions

These findings suggest that BU is accompanied by significantly longer LTL.
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Introduction

Birdshot Uveitis (BU) is an archetypical and clinically well-defined inflammatory eye disease

(uveitis) that damages retina and choroid tissues commonly leading to visual deterioration[1].

Although the cause of BU is not understood, it is characterized by ocular infiltrating and circu-

lating inflammatory T lymphocytes[2–5] and exclusively affects major histocompatibility com-

plex human leukocyte antigen (HLA)-A29-positive individuals[6,7]. BU typically manifests in

the fifth decade of life[8,9]. This might imply that BU is an disease characterized by age-related

failure of immune regulation and progressive chronic subclinical inflammation, eventually

leading to uveitis in genetically susceptible individuals[10,11].

Telomeres are tandem repeat regions at the ends of eukaryotic chromosomes that shorten

with increasing age as part of the normal ageing process[12]. The relative length of cellular

telomeres is therefore considered to be an index for cellular senescence. Excessive erosion of

telomeres in leukocytes was suggested to indicate persistent replicative stress. In line with this,

leukocytes from patients with chronic inflammatory diseases often display an increased rate of

telomere erosion, likely to be caused by persistent inflammation or genetic susceptibility affect-

ing telomere biology genes[12,13].

In this study, we investigated the leukocyte telomere length in a unique cohort of genotyped

BU patients and unaffected healthy controls.

Patients and methods

This study was performed in compliance with the guidelines of the Declaration of Helsinki

and has the approval of Institutional Review Boards and ethical committee of the University

Medical Center Utrecht. After signed inform consent, blood was obtained from 91 unrelated

Dutch BU cases at the Department of Ophthalmology at the University Medical Center

Utrecht, the Eye Hospital Rotterdam and Radboud University Nijmegen Medical Center, the

Netherlands. 150 unrelated Dutch healthy controls all from European ancestry were used as

controls (Table 1). The diagnosis of BU was based on international guidelines[14]. Disease

duration was typically between 5–10 years.

Table 1. Demographics of discovery and replication cohorts investigated in this study.

Birdshot Uveitis Unaffected Control P value

N 91 150

Female/Male (ratio) 69/22 (3.0) 122/28 (4.4) 0.259c

Age (years) 60.5 (9.07) 52.9 (7.16) <0.0001

Leukocyte Telomere Length (base pares) 74460.48 (126832.15) 20310.00 (44573.73) <0.0001

% of patients % of unaffected controls

No systemic treatment 27a 100

Systemic Corticosteroids 25a 0

IMT 31a 0

Systemic Corticosteroids + IMT 17a 0

Active uveitis 20b 0

a IMT = immunomodulatory treatment
b n = 71
c n = 50.

The values are represented in Median (Standard deviation). The significance of the association between patients and unaffected control was tested using

Chi-square test (categorical values) and Mann-Whitney U test (continuous variables).

https://doi.org/10.1371/journal.pone.0176175.t001
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Measurements of absolute telomere length in leukocytes

Whole blood EDTA samples were obtained from all participants. DNA extraction was similar

for cases and controls and conducted by automated magnetic bead-based DNA isolation pro-

tocols (PerkinElmer). DNA concentration was quantified by Qbit Fluorometric Quantitation

(Thermofischer Scientific). Leukocyte Telomere Length (LTL) was measured by Bio-rad cfx-

96 real-time qualitative polymerase chain reaction (qPCR) detection system in duplicates in

two separate experiments.

Briefly, the length of telomeres—long repetitive hexamer (TTAGGG) sequences–can be

accurately determined by using a calibration curve based on linear serial dilution of a synthetic

84-mer (14 consecutive TTAGGG sequences) oligonucleotide (Geneworks, Adelaide, Austra-

lia) with a predetermined molecular weight per reaction (60x10-12 gr of telomere oligomer or

1.36x109oligomers). The total number of base-pares in the highest standard can be calculated

as ((1.36x109 molecules of oligomer) x (84 oligomer length) = 1.18x108 kilo base-pares).

The relative telomere length per sample is extrapolated from serial dilutions of the synthetic

standard in each qPCR measurement. Similarly, a synthetic standard was also designed for the

single copy house-keeping gene 36B4.

Absolute telomere base-pares per genome are quantified by subdividing the total number

of telomere base-pares from 36B4 (which has only one copy per gene) following; Telomere

length/house-keeping gene = telomere length per genome [15,16]. LTL for each individual in

the study are outlined in S1 Table.

Isolation of mononuclear immune cell subsets

Peripheral blood mononuclear cells (PBMCs) of 9 BU patients and 15 matched healthy indi-

viduals (S2 Table) were sorted to obtain immune cell-subtypes separately. PBMCs were iso-

lated through Ficoll (Ficoll-Paque Plus, GE Healthcare). In order to sort out the CD3+/CD56-/

CD4+ for T helper lymphocytes, CD3+/CD56-/CD8+ for Cytotoxic T lymphocytes, CD19+/

CD20+ for B lymphocytes, CD14+ monocytes, CD3-/CD56+ NK cells and CD123 (IL3RA)+ /

CD304 (BDCA4)+ pDCs, Fluorescence Activated Cell Sorting (FACS) (FACSAria III, BD Bio-

sciences) was implemented.

Human TERT gene expression measurements

Human telomerase (hTERT) gene expression levels of the sorted cell subsets were quantified

by qPCR (Taqman Beadchip, applied Biosystems) according to the specific protocol indicated

by the manufacturer by Quantstudio (Biosystems). Gene expression was normalized to Glucu-

ronidase Beta (GUSB) and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH).

Statistical analysis

IBM SPSS Statistics v20 (SPSS, Chicago, IL) and Graphpad Prism v6 (GraphPad Software, San

Diego, California) were used for statistical analyses as indicated in the results section. The telo-

mere length data were natural log transformed to achieve a normal distribution. The Spear-

man’s Rank-Order correlation was implied to test the association between leukocyte count of

untreated patients and LTL. The blood leukocyte count (�10^9/L) was assessed in the clinic

simultaneous to patients visit. We computed a weighted genetic risk score (wGRS) in the 91

BU cases using genotype data from these cases obtained in a previous genome-wide associa-

tion study[17] to test the cumulative effect of validated SNPs associated with telomere length

[18] compared to an equivalent number of Dutch controls[17]. We calculated a weighted

mean of genotype dosage across seven established risk alleles (Table 2) by multiplying the
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number of risk alleles at each locus (0, 1, 2) for the corresponding OR per allele and then sum-

ming the products[17]. We used a T-test to assess the differences between the mean absolute

values of wGRS.

Results

Table 1 provides demographic characteristics of the BU and control cohorts. After quality con-

trol, we analysed LTL data in 91 cases and 150 controls (S1 Table). Gender was equally distrib-

uted between BU and controls (Chi-Square Test, P = 0.259). The mean ages (range) of patients

with BU and controls were 60.6 (30–84) and 52.9 (31–59) years, respectively. Although the age

groups of the cases and controls were generally matched, the mean age of the BU cohort was

significantly higher (P<0.0001).

The telomere length data were natural log transformed to achieve a normal distribution. As

expected, a weak inverted linear correlation with age and LTL was demonstrated with LTL =

-0.009767�age + 5.498; R2 = 0.045 (P = 0.04) for BU patients and LTL = -0.009610�age + 4.95;

R2 = 0.038 (P = 0.02) for unaffected controls (Fig 1). Telomere length decreased with similar

Table 2. Seven validated SNPs17 used to compute the genetic risk score (GRS) in BU and controls.

Allele Frequency

Gene Chromosome SNP Risk allele BU Controls Odds ratio P value*

TERC 3 rs10936599 T 0.28 0.23 1.30 0.12

TERT 5 rs2736100 A 0.55 0.52 1.16 0.36

NAF1 4 rs7675998 A 0.22 0.21 1.12 0.58

OBFC1 10 rs9420907 A 0.82 0.84 0.81 0.30

ZNF208 19 rs8105767 A 0.74 0.73 1.10 0.57

RTEL1 20 rs755017 A 0.86 0.89 0.78 0.28

ACYP2 2 rs11125529 C 0.89 0.88 1.25 0.35

The significance of the association between patients and unaffected control was tested using Chi-square test. (P<0.05).

https://doi.org/10.1371/journal.pone.0176175.t002

Fig 1. Dot plot showing natural log transformed leukocyte telomere length of Dutch BU patients

(diamonds) and Dutch controls (empty circles).

https://doi.org/10.1371/journal.pone.0176175.g001
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rates in BU patients and healthy participants (difference in slopes ~ P = 0.97) with an annual

loss of [assuming (10β1–1)×100%] ~2.22% of telomere length in BU patients and 2.19% in con-

trols. BU patients displayed longer LTL (in base pair [bp]) with a median of log (LTL) = 4.87

(= 74460 bp) compared to 4.31 (= 20310 bp) in the control group (P<0.0001, Fig 2). Age-

adjusted telomere length computed by residuals derived from the linear model also supported

significantly longer LTL (>3 times [bp]) in BU (median log (LTL) = 4.630 = 42658 bp) com-

pared to controls (median log (LTL) = 4.216 = 13366 bp) (P<0.0001, Fig 3). In line with previ-

ous observations[19–21], age explained very little of the total variability of LTL (adjusted

R2<0.04 in cases and controls, Fig 1). To avoid over-fitting due to large residuals, we conserva-

tively did not correct for age in subsequent analyses.

The LTL was similar between men and women in both BU (median log (LTL) = 4.985 vs.

4.830, P = 0.328) and controls (4.310 vs. 4.310, P = 0.664, Fig 3A). We also did not observe a

Fig 2. Median of log transformed leukocyte telomere length (kilo base-pairs) values represented on scatter dot plot

showing (A) BU patients and healthy controls (P <0.0001, T-test) and (B) after adjustment for age (P <0.0001).

https://doi.org/10.1371/journal.pone.0176175.g002

Fig 3. Median of natural log transformed leukocyte telomere length (kilo base-pairs) of BU patients and controls according to (A) gender (male (M)

and female (F), P = 0.328) (B) presence of leucocytosis (C) and sytemic treatment (no treatment, (cortico)steroids, immune-modulatory treatment

(IMT) and IMT + steroids).

https://doi.org/10.1371/journal.pone.0176175.g003
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difference in LTL between patients with (n = 34) and without leucocytosis (n = 57) at the time

of sampling (Fig 3B). To investigate if treatment affected LTL, we subdivided the patients

according to available treatment data of 71 cases (Fig 3C). All of the treatment groups, includ-

ing patients who did not have a history of systemic treatment displayed significantly longer

LTL (Fig 3B). The mean LTL of patients treated with immune-modulatory treatment (IMT)

was slightly higher compared to other treatment regimes, but did not reach statistical signifi-

cance (P>0.06, Fig 3C).

We had the opportunity to study telomere length and expression of telomere biology genes

in sorted immune cell subsets of 9 BU and 15 healthy individuals. LTL differences between

CD4+ and CD8+ T lymphocytes, CD19+ B lymphocytes, CD14+ monocytes, CD3-/CD56+ nat-

ural killer (NK) cells and CD123+/CD304+ plasmacytoid dendritic cells (pDC) of BU patients

and healthy individuals did not reveal statistically significant differences in telomere length (S2

Table). Also, in contrast to house-keeping genes (GUSB and GAPDH), hTERT gene expression

was not detected in these cell subtypes (S1 Fig). Six of these BU patients were naïve to systemic

treatment and revealed slightly higher leukocyte count and a positive correlation (r = 0.551,

P>0.05) between leukocyte count and LTL. However, this observation is underpowered due to

low number of untreated patients in which leukocyte count is quantified.

Seven validated genetic variants that are known to be involved in telomere biology (TERC,

TERT, NAF1, OBFC1 and RTEL1) have been shown to significantly affect telomere-length in

age-related diseases[18]. Because BU displayed longer LTL, we investigated potential genetic

predisposition of these known risk loci in BU that could explain the difference in LTL. There-

fore, we computed a weighted genetic risk score (wGRS) based on the observed number of risk

alleles per case or control and adjusted their effect sizes based on the previous GWAS of BU

Fig 4. Distribution of the relative frequency of the weighted genetic risk score (wGRS) of validated

variants in telomere biology genes (Table 2.) of BU patients (red line) (mean wGRS [range] = 8.598

[3.650–13.34]) and healthy control participants (blue line) (mean wGRS [range] = 8.552[3.740–12.29]).

Difference between BU and healthy control participants was tested via t- test (P = 0.859).

https://doi.org/10.1371/journal.pone.0176175.g004
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[17]. The allele frequencies in cases and controls were very similar to the previous meta-analy-

ses by Codd et al, indicating that the allele distribution reflects larger populations and can be

used for good estimate of the GRS[18] (Table 2). The mean wGRS was highly similar between

BU and controls (mean wGRS[range] = 8.598[3.650–13.34] for BU and 8.552[3.740–12.29]

for controls, t-test: P = 0.859, (Fig 4). Also, the risk alleles did not show consistency in effect

direction of BU patients (in other words, positive and negative odds ratios, Table 2). These

analyses suggest that there is no genetic predisposition for telomere length in BU patients.

Based upon these findings we conclude that the increased LTL can be attributed to disease spe-

cific mechanisms.

Discussion

BU is a severe chronic inflammation of the posterior eye segment that damages ocular tissues

resulting in visual impairment. BU typically affects middle-aged and elderly individuals of

European descent[1]. Hallmark of disease is the appearance of the distinctive ‘birdshot’ pattern

of multiple white spots on the fundus, from which it obtained its name[22].

In the current study we show that leukocytes from BU patients have longer telomere length

than population-based controls. Despite extensive efforts, the mechanism behind this ob-

servation is currently enigmatic. The telomere measurement method we used has been well

described in the literature and is known for its high reproducibility[15]. In contrast to the

common use of reference samples derived from a patient, control, or cell line, we optimized

reproducibility by exploiting synthetic telomere repeats and 36B4 gene copies as standards. A

great advantage of using stable synthetic standards is the possibility for absolute quantification

of telomere lengths[16]. Since cases and control samples have been measured twice in random

order by the same qPCR machine, settings and reagents, we are confident that the difference

in LTL is unrelated to methodology.

Telomere length measurements in several immune cell-subtypes did not reveal overall

changes in telomere length of leukocytes and may be the result of a yet un sampled immune

cell-subset or would need larger sample size to investigate this at the cell subset level[23,24].

BU is a rare disease and biosamples are scarce making it hard to obtain a large patient cohort

[25], thus, we were only able to include a limited number of patients for cell sorting. Recent

studies demonstrated changes telomere length are better monitored in longitudinal studies fol-

lowing participants over a longer time course[26]. Accordingly, telomere length quantification

in following studies overtime might unravel clues on telomere biology of BU patients.

Previous studies have mapped putative loci known to be involved in telomere biology and

demonstrated association of 7 lead variants in 5 telomere regulatory genes (Table 2) with LTL

in age-related diseases[18]. This causal role of genetic predisposition in LTL led us to investi-

gate if the much longer telomeres were caused by genetic predisposition in the BU patients.

When we applied our previously published whole genome data to the trait of having longer

telomeres in the BU population, we did not observe cumulative effect of variants linked to telo-

mere length in these patients. Thus, it is reasonable to assume that there is no genetic predispo-

sition for telomere length in BU patients. Although it is possible that the sample size and

power were too low to detect such an association, the highly similar genetic risk score in cases

and controls and the lack of consistent direction of effect advocate for very low (if any) contri-

bution of genetic variants to the large difference of LTL between BU and healthy controls. This

observation, in addition to the fact that both patients and controls share the same ethnic back-

ground (cases and controls are all Dutch Caucasians from European ancestry) makes the lon-

ger telomeres unlikely the result of population stratification. Based upon these findings we

conclude that the increased LTL can be attributed to BU-specific mechanisms.
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When we analysed our data from a population/demographic perspective, it appears that the

population of BU patients investigated in this study is slightly older compared to the healthy

individuals. However, when we applied age-correction based on the incremental slopes of telo-

mere shortening with age, the changes in LTL remained significant. Since we consider meth-

odological, genetic and demographic factors to be minimally involved, we assume disease

mechanisms are driving the aberrant LTL.

Whether the longer LTL is a consequence of BU or contributes to disease onset remains to

be elucidated. The present study was cross-sectional and involved measurement of telomere

length at only one time point, and no data on telomere erosion rates are available. Further-

more, telomere length can be affected by various metabolic and biological factors [27]. The

general view of chronic inflammation is that it is accompanied by shortening of leukocyte telo-

mere length due to replicative stress[28,29]. Yet, increased LTL has been reported in several

chronic inflammatory diseases[30] such as rheumatoid arthritis (RA) and ankylosing spondyli-

tis. Curiously, like BU, the latter also strongly linked to HLA class I (HLA-B27)[31,32]. In fact,

comparable studies in systemic lupus erythmatodes and RA demonstrated that longer telomere

length was particularly observed in older patients–similar to the representative age of onset in

BU[33,34].

In addition to its clinically well-described manifestations, BU is renowned outside the field

of ophthalmology for its unusually strong link with the HLA-A29. Essentially all patients are

HLA-A29 positive, which represents the strongest associations between an HLA class I allele

and human disease[35,36]. Nevertheless, the role of HLA-A29 has not yet been elucidated and

consequently the pathophysiology of BU is not well understood[1]. However, in recent years

an emerging line of evidence is beginning to yield clues on the disease biology of BU. The

recent genome-wide analysis of BU confirmed the extreme association with HLA-A29:02 and

revealed a strong link with the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene, indicat-

ing that peptide processing in the endoplasmic reticulum and presentation to T cells are the

key mechanism of the disease[3]. Indeed, T cells are the dominant infiltrating cells found in

the eyes of patients[2]. The ocular microenvironment and blood of patients display elevated

levels of IL-17-related cytokines and an increased frequency of circulating T helper 17 and T

cytotoxic 17 cells. These T cell subsets are considered as important pathogenic drivers of vari-

ous chronic inflammatory disorders[5,37–39].

Another explanation might be that activated naïve T cells are able to up-regulate telomerase

expression, although this ability remains controversial[26,40–42]. In highly proliferative cells

such as stem cells, germ cells and many neoplastic cells, telomerase is decisive for telomere

maintenance. In T cells, despite being normal somatic cells, telomerase expression during pro-

liferation and an elevated telomerase activity was demonstrated in immature naïve cells as

compared to mature thymocytes, and was almost undetectable in mature resting naïve T cells

[43,44]. Although we did not observe increased telomerase expression in T cells in BU, we did

not make any distinction between the naïve and the memory T cell compartment within the

examined immune-cell panel. Interestingly, CD8+ antigen-specific T cells display more robust

inflammatory responses in individuals with longer telomere length[45] and CD4+ antigen-

specific T cells have relatively longer telomere length compared to naïve cells[46]. Since BU

patients show retinal autoimmunity, reflected by enhanced T cell proliferation towards retinal

antigens[36,47,48], the increased LTL could reflect enrichment for ocular-specific T cells that

drive chronic inflammation in BU. If longer telomere length in T cells confers risk in

HLA-A29 positive individuals for developing BU, further investigation is needed that includes

HLA-A29 positive controls. Alternatively, LTL may also be the result of other immune cell

subsets. Interestingly, plasma cell differentiation from B cells–the antibody-producing and T

cell-activating B cell population–was reported to be accompanied by a significant elongation
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of telomeres of these cells[49]. Inline with this, our results indicate longer telomeres in B cells

of BU patients (S2 Table), despite the limited sample size and consequential lack of power, this

is an important observation since anti-retinal antibodies are emerging as important contribu-

tors in the pathophysiology of uveitis.

The complex dynamics of telomere biology in chronic inflammatory and autoimmune dis-

eases advocates for detailed dissection of multiple epigenetic mechanisms in distinct cell subsets.

In conclusion, BU patients show longer telomeres compared to healthy controls which

implies sophisticated telomere biology in chronic inflammation that warrants further research

into the leukocyte populations involved in BU.

Supporting information

S1 Fig. The hTERT gene expression levels in cell subsets from (corrected to the house-keep-

ing genes–see methods) BU patients (diamonds) and Dutch controls (HC, empty circles).

(TIFF)

S1 Table. The leukocyte telomere length (bp) measured by qPCR (see methods) for each

Birdshot Uveitis patients and unaffected Dutch control.

(DOCX)

S2 Table. Telomere length in immune cell subsets of BU and controls. Telomere length

(base pairs) and age (years) are represented in Median (Standard deviation).

(DOCX)

Acknowledgments

J.C.B. is supported by of a VENI Award from the Netherlands Organization for Scientific

Research (N.W.O. project number 91614041). We would like to acknowledge Kamil G. Laban

and Sanne Hiddingh for technical assistance.

Author Contributions

Conceptualization: JJK JCAB TRDJR.

Data curation: NV JCAB FHV MV TOARM AR AIH CBH.

Formal analysis: NV JCAB JJK TRDJR.

Funding acquisition: JCAB.

Investigation: NV FHV JCAB JJK TRDJR.

Methodology: NV FHV.

Supervision: JJK JCAB TRDJR.

Visualization: NV JJK.

Writing – original draft: NV JCAB JJK.

Writing – review & editing: NV FHV AR TOARM MV CBH AIH TRDJR JCAB JJK.

References
1. Kuiper J, Rothova A, de Boer J, Radstake T. The immunopathogenesis of birdshot chorioretinopathy; a

bird of many feathers. Prog Retin Eye Res. Elsevier Ltd; 2015; 44: 99–110. https://doi.org/10.1016/j.

preteyeres.2014.11.003 PMID: 25434765

Immune-senescence in Birdshot Uveitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0176175 May 1, 2017 9 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176175.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176175.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176175.s003
https://doi.org/10.1016/j.preteyeres.2014.11.003
https://doi.org/10.1016/j.preteyeres.2014.11.003
http://www.ncbi.nlm.nih.gov/pubmed/25434765
https://doi.org/10.1371/journal.pone.0176175


2. Pulido JS, Canal I, Salomão D, Kravitz D, Bradley E, Vile R. Histological findings of birdshot chorioreti-

nopathy in an eye with ciliochoroidal melanoma. Eye (Lond). 2012; 26: 862–5.

3. Kuiper JJW, Rothova A, Schellekens P a W, Ossewaarde-van Norel A, Bloem AC, Mutis T. Detection of

choroid- and retina-antigen reactive CD8+ and CD4+ T lymphocytes in the vitreous fluid of patients with

birdshot chorioretinopathy. Hum Immunol. American Society for Histocompatibility and Immunogenet-

ics; 2014; 75: 570–577. https://doi.org/10.1016/j.humimm.2014.02.012 PMID: 24530754

4. Kuiper JJW, Emmelot ME, Rothova A, Mutis T. Interleukin-17 production and T helper 17 cells in periph-

eral blood mononuclear cells in response to ocular lysate in patients with birdshot chorioretinopathy.

Mol Vis. 2013; 19: 2606–14. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3874049&tool=pmcentrez&rendertype=abstract PMID: 24379648

5. Dagur PK, Biancotto A, Stansky E, Sen HN, Nussenblatt RB, McCoy JP. Secretion of interleukin-17 by

CD8+ T cells expressing CD146 (MCAM). Clin Immunol. Elsevier B.V.; 2014; 152: 36–47. https://doi.

org/10.1016/j.clim.2014.01.009 PMID: 24681356

6. Menezo V, Taylor SR. Birdshot uveitis: current and emerging treatment options. Clin Ophthalmol. 2014;

8: 73–81. https://doi.org/10.2147/OPTH.S54832 PMID: 24379650

7. Kuiper JJW, Mutis T, De Jager W, De Groot-Mijnes JDF, Rothova A. Intraocular interleukin-17 and

proinflammatory cytokines in HLA-A-29-associated birdshot chorioretinopathy. Am J Ophthalmol. Else-

vier Inc.; 2011; 152: 177–182.e1. https://doi.org/10.1016/j.ajo.2011.01.031 PMID: 21570674

8. Shah KH, Levinson RD, Yu F, Goldhardt R, Gordon LK, Gonzales CR, et al. Birdshot chorioretinopathy.

Surv Ophthalmol. 2005; 50: 519–541. https://doi.org/10.1016/j.survophthal.2005.08.004 PMID:

16263368

9. Gupta R, Murray PI. Chronic non-infectious uveitis in the elderly: Epidemiology, pathophysiology and

management. Drugs and Aging. 2006; 23: 535–558. PMID: 16930083

10. Hohensinner PJ, Goronzy JJ, Weyand CM. Telomere Dysfunction, Autoimmunity and Aging. 2011; 2:

524–537. PMID: 22396899

11. Xu H, Chen M, Forrester J V. Para-inflammation in the aging retina. Prog Retin Eye Res. Elsevier Ltd;

2009; 28: 348–368. https://doi.org/10.1016/j.preteyeres.2009.06.001 PMID: 19560552

12. Zhang C, Doherty J a., Burgess S, Hung RJ, Lindström S, Kraft P, et al. Genetic determinants of telo-

mere length and risk of common cancers: A Mendelian randomization study. Hum Mol Genet. 2015; 24:

5356–5366. https://doi.org/10.1093/hmg/ddv252 PMID: 26138067

13. Boks MP, Mierlo HC Van, Rutten BPF, Radstake TRDJ, De Witte L, Geuze E, et al. Longitudinal

changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress dis-

order. Psychoneuroendocrinology. Elsevier Ltd; 2015; 51: 506–512. https://doi.org/10.1016/j.

psyneuen.2014.07.011 PMID: 25129579

14. Levinson W, Laupacis A. A call for fairness in formulary decisions. Arch Intern Med. 2006; 166: 16–8.

https://doi.org/10.1001/archinte.166.1.16 PMID: 16401806

15. Cawthon RM, Weiss R, Xu G, Viskochil D, Culver M, Stevens J, et al. A major segment of the neurofi-

bromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell. 1990; 62: 609.

Available: http://www.ncbi.nlm.nih.gov/pubmed/2116238

16. O’Callaghan N, Dhillon V, Thomas P, Fenech M. A quantitative real-time PCR method for absolute telo-

mere length. Biotechniques. 2008; 44: 807–9. https://doi.org/10.2144/000112761 PMID: 18476834

17. Kuiper JJW, Van Setten J, Ripke S, Van ‘T Slot R, Mulder F, Missotten T, et al. A genome-wide associa-

tion study identifies a functional ERAP2 haplotype associated with birdshot chorioretinopathy. Hum Mol

Genet. 2014; 23: 6081–6087. https://doi.org/10.1093/hmg/ddu307 PMID: 24957906

18. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci

affecting mean telomere length and their association with disease. Nat Genet. 2013; 45: 422–7, 427–2.

https://doi.org/10.1038/ng.2528 PMID: 23535734

19. Sharma R, Gupta A, Thungapathra M, Bansal R. Telomere mean length in patients with diabetic reti-

nopathy. Sci Rep. Nature Publishing Group; 2015; 5: 18368. https://doi.org/10.1038/srep18368 PMID:

26670612

20. Raschenberger J, Kollerits B, Ritchie J, Lane B, Kalra P a, Ritz E, et al. Association of relative telomere

length with progression of chronic kidney disease in two cohorts: effect modification by smoking and dia-

betes. Sci Rep. Nature Publishing Group; 2015; 5: 11887. https://doi.org/10.1038/srep11887 PMID:

26149682

21. Li Z, Tang J, Li H, Chen S, He Y, Liao Y, et al. Shorter telomere length in peripheral blood leukocytes is

associated with childhood autism. Sci Rep. 2014; 4: 7073. https://doi.org/10.1038/srep07073 PMID:

25399515

22. Ryan SJ, Maumenee AE. Birdshot retinochoroidopathy. Am J Ophthalmol. 1980; 89: 31–45. Available:

http://www.ncbi.nlm.nih.gov/pubmed/7356785 PMID: 7356785

Immune-senescence in Birdshot Uveitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0176175 May 1, 2017 10 / 12

https://doi.org/10.1016/j.humimm.2014.02.012
http://www.ncbi.nlm.nih.gov/pubmed/24530754
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3874049&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3874049&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/24379648
https://doi.org/10.1016/j.clim.2014.01.009
https://doi.org/10.1016/j.clim.2014.01.009
http://www.ncbi.nlm.nih.gov/pubmed/24681356
https://doi.org/10.2147/OPTH.S54832
http://www.ncbi.nlm.nih.gov/pubmed/24379650
https://doi.org/10.1016/j.ajo.2011.01.031
http://www.ncbi.nlm.nih.gov/pubmed/21570674
https://doi.org/10.1016/j.survophthal.2005.08.004
http://www.ncbi.nlm.nih.gov/pubmed/16263368
http://www.ncbi.nlm.nih.gov/pubmed/16930083
http://www.ncbi.nlm.nih.gov/pubmed/22396899
https://doi.org/10.1016/j.preteyeres.2009.06.001
http://www.ncbi.nlm.nih.gov/pubmed/19560552
https://doi.org/10.1093/hmg/ddv252
http://www.ncbi.nlm.nih.gov/pubmed/26138067
https://doi.org/10.1016/j.psyneuen.2014.07.011
https://doi.org/10.1016/j.psyneuen.2014.07.011
http://www.ncbi.nlm.nih.gov/pubmed/25129579
https://doi.org/10.1001/archinte.166.1.16
http://www.ncbi.nlm.nih.gov/pubmed/16401806
http://www.ncbi.nlm.nih.gov/pubmed/2116238
https://doi.org/10.2144/000112761
http://www.ncbi.nlm.nih.gov/pubmed/18476834
https://doi.org/10.1093/hmg/ddu307
http://www.ncbi.nlm.nih.gov/pubmed/24957906
https://doi.org/10.1038/ng.2528
http://www.ncbi.nlm.nih.gov/pubmed/23535734
https://doi.org/10.1038/srep18368
http://www.ncbi.nlm.nih.gov/pubmed/26670612
https://doi.org/10.1038/srep11887
http://www.ncbi.nlm.nih.gov/pubmed/26149682
https://doi.org/10.1038/srep07073
http://www.ncbi.nlm.nih.gov/pubmed/25399515
http://www.ncbi.nlm.nih.gov/pubmed/7356785
http://www.ncbi.nlm.nih.gov/pubmed/7356785
https://doi.org/10.1371/journal.pone.0176175


23. Damjanovic AK, Yang Y, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B, et al. Accelerated Telo-

mere Erosion Is Associated with a Declining Immune Function of Caregivers of Alzheimer’s Disease

Patients. J Immunol. 2007; 179: 4249–4254. PMID: 17785865

24. Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, et al. Analyses and comparisons of telomerase

activity and telomere length in human T and B cells: Insights for epidemiology of telomere maintenance.

J Immunol Methods. Elsevier B.V.; 2010; 352: 71–80. https://doi.org/10.1016/j.jim.2009.09.012 PMID:

19837074

25. Karabatsiakis A, Kolassa I-TT, Kolassa S, Rudolph KL, Dietrich DE. Telomere shortening in leukocyte

subpopulations in depression. BMCPsychiatry. 2014; 14: 192.

26. Lin J, Cheon J, Brown R, Coccia M, Puterman E, Aschbacher K, et al. Systematic and Cell Type-Spe-

cific Telomere Length Changes in Subsets of Lymphocytes. J Immunol Res. 2015; 2016: 9.

27. Kaplan RC, Fitzpatrick AL, Pollak MN, Gardner JP, Jenny NS, McGinn AP, et al. Insulin-Like Growth

Factors and Leukocyte Telomere Length: The Cardiovascular Health Study. J Gerontol A Biol Sci Med

Sci. 2009; 64: glp036.

28. Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, et al. Ageing and the telomere connec-

tion: An intimate relationship with inflammation. Ageing Res Rev. Elsevier B.V.; 2016; 25: 55–69.

https://doi.org/10.1016/j.arr.2015.11.006 PMID: 26616852

29. Rizvi S, Raza ST, Mahdi F. Telomere length variations in aging and age-related diseases. Curr Aging

Sci. 2014; 7: 161–7. PMID: 25612739

30. Dehbi AZ a Radstake TRDJ, Broen JC a. Accelerated telomere shortening in rheumatic diseases:

cause or consequence? Expert Rev Clin Immunol. 2013; 9: 1193–204. https://doi.org/10.1586/

1744666X.2013.850031 PMID: 24215409

31. Tamayo M, Mosquera A, Rego JI, Fern??ndez-Sueiro JL, Blanco FJ, Fern??ndez JL. Differing patterns

of peripheral blood leukocyte telomere length in rheumatologic diseases. Mutat Res—Fundam Mol

Mech Mutagen. 2010; 683: 68–73.

32. Tamayo M, P??rtega S, Mosquera A, Rodr??guez M, Blanco FJ, Fern??ndez-Sueiro JL, et al. Individ-

ual telomere length decay in patients with spondyloarthritis. Mutat Res—Fundam Mol Mech Mutagen.

Elsevier B.V.; 2014; 765: 1–5.

33. Koetz K, Bryl E, Spickschen K, O’Fallon WM, Goronzy JJ, Weyand CM. T cell homeostasis in patients

with rheumatoid arthritis. Proc Natl Acad Sci U S A. 2000; 97: 9203–9208. PMID: 10922071

34. Honda M, Mengesha E, Albano S, Nichols WS, Wallace DJ, Metzger a, et al. Telomere shortening and

decreased replicative potential, contrasted by continued proliferation of telomerase-positive CD8

+CD28(lo) T cells in patients with systemic lupus erythematosus. Clin Immunol. 2001; 99: 211–221.

https://doi.org/10.1006/clim.2001.5023 PMID: 11318593

35. De Smet MD, Chan CC. Regulation of ocular inflammation—What experimental and human studies

have taught us. Prog Retin Eye Res. 2001; 20: 761–797. PMID: 11587917

36. Nussenblatt RB, Mittal KK, Ryan S, Green WR, Maumenee AE. Birdshot retinochoroidopathy associ-

ated with HLA-A29 antigen and immune responsiveness to retinal S-antigen. Am J Ophthalmol. 1982;

94: 147–58. 1982 Aug;94(2):147–58. PMID: 6956239

37. Yang L, Wu L, Wang D, Li Y, Dou H, Tso MOM. Role of endoplasmic reticulum stress in the loss of reti-

nal ganglion cells in diabetic retinopathy ** �. Neural Regen resarch. 2013; 8: 3148–3158.

38. Alvarez-Navarro C, Martı́n-Esteban A, Barnea E, Admon A, López de Castro JA. Endoplasmic Reticu-
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