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Circulating cell-free DNA-based methylation patterns for
breast cancer diagnosis
Xianyu Zhang 1,8, Dezhi Zhao2,8, Yanling Yin 1,8, Ting Yang 2, Zilong You1, Dalin Li1, Yanbo Chen1, Yongdong Jiang1, Shouping Xu1,
Jingshu Geng3, Yashuang Zhao4, Jun Wang2, Hui Li2, Jinsheng Tao2, Shan Lei2, Zeyu Jiang2, Zhiwei Chen2,5, Shihui Yu6,
Jian-Bing Fan 2,7✉ and Da Pang 1✉

Mammography is used to detect breast cancer (BC), but its sensitivity is limited, especially for dense breasts. Circulating cell-free
DNA (cfDNA) methylation tests is expected to compensate for the deficiency of mammography. We derived a specific panel of
markers based on computational analysis of the DNA methylation profiles from The Cancer Genome Atlas (TCGA). Through training
(n= 160) and validation set (n= 69), we developed a diagnostic prediction model with 26 markers, which yielded a sensitivity of
89.37% and a specificity of 100% for differentiating malignant disease from normal lesions [AUROC= 0.9816 (95% CI: 96.09-100%),
and AUPRC= 0.9704 (95% CI: 94.54–99.46%)]. A simplified 4-marker model including cg23035715, cg16304215, cg20072171, and
cg21501525 had a similar diagnostic power [AUROC= 0.9796 (95% CI: 95.56–100%), and AUPRC= 0.9220 (95% CI: 91.02–94.37%)].
We found that a single cfDNA methylation marker, cg23035715, has a high diagnostic power [AUROC= 0.9395 (95% CI:
89.72–99.27%), and AUPRC = 0.9111 (95% CI: 88.45–93.76%)], with a sensitivity of 84.90% and a specificity of 93.88%. In an
independent testing dataset (n= 104), the obtained diagnostic prediction model discriminated BC patients from normal controls
with high accuracy [AUROC= 0.9449 (95% CI: 90.07–98.91%), and AUPRC= 0.8640 (95% CI: 82.82–89.98%)]. We compared the
diagnostic power of cfDNA methylation and mammography. Our model yielded a sensitivity of 94.79% (95% CI: 78.72–97.87%) and
a specificity of 98.70% (95% CI: 86.36–100%) for differentiating malignant disease from normal lesions [AUROC= 0.9815 (95% CI:
96.75–99.55%), and AUPRC= 0.9800 (95% CI: 96.6–99.4%)], with better diagnostic power and had better diagnostic power than that
of using mammography [AUROC= 0.9315 (95% CI: 89.95–96.34%), and AUPRC= 0.9490 (95% CI: 91.7–98.1%)]. In addition,
hypermethylation profiling provided insights into lymph node metastasis stratifications (p < 0.05). In conclusion, we developed and
tested a cfDNA methylation model for BC diagnosis with better performance than mammography.
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INTRODUCTION
Early detection of breast cancer (BC) leads to a better prognosis.
Although mammograms have been used in screening, their
sensitivity varies from approximately 68 to 93%, depending on
practitioner experience, patient age, breast density, and post-
menopausal hormonal therapy, among other factors1,2. Therefore,
there exists a need to develop accurate screening methods for BC.
BC-specific DNA methylation changes occur early during

tumorigenesis3,4. Several studies have investigated the methyla-
tion status, efficacy and validity of using cell-free DNA (cfDNA) for
cancer detection5,6, including the detection of BC7,8. A few clinical
studies have since selected and elucidated candidate markers
based on the beta-value of individual promoter CpG sites for early
stage BCs8–10, but a single differentially methylated CpG island as
a reliable and quantitative measurement of tumour burden in
cfDNA has not been identified11. To enable genome-wide
methylation profiling, we developed a highly sensitive, targeted
DNA methylation sequencing technique for analysing the
methylation status in cfDNA and named it the AnchorIRISTM

assay12.
We first derived a specific panel of markers based on

computational analysis of the DNA methylation profiles from

The Cancer Genome Atlas (TCGA). After experimental evaluation
of the panel markers in matched tumour genomic DNA and
plasma cfDNA, a diagnostic model was developed and further
tested in an independent group. Overall, the analyses showed that
cfDNA methylation profiling may serve as a reliable approach for
BC diagnosis. With only a few markers, the model can be widely
applied to large-scale BC screening at a low cost.

RESULTS
Methylation panel development in BC
Figure 1a, b and Table 1 show the study design, flowchart of the
enrolled participants and the qualified plasma used for construct-
ing diagnostic model, respectively. We hypothesised that CpG
markers with a maximal difference in methylation between
tumour and normal tissues would be most likely to differentiate
BC patients from normal controls in terms of cfDNA methylation
profiles. The “Wilcoxon rank-sum test” was applied to discover
differentially methylated loci. We set the false discovery rate (FDR)
significance level at 0.05 and the least difference of mean beta
value between tumour and normal tissues at 0.2 and developed a
specific methylation panel targeting approximately 3288 CpG sites
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by analysing 40 paired BC tumour and normal samples from TCGA
(Fig. 1a). Unsupervised hierarchical clustering of these markers
could differentiate between tumour and normal samples (Supple-
mentary Fig. 1a). Analysis of the genomic distribution showed that
50.43% of the markers were located in CpG islands in proximal

promoters (within 1500 bp upstream of the transcription start sites
and in 5′UTRs), 1.67% were located in 3′UTRs, 29.65% were located
in gene bodies, and 29.68% were in intergenic regions (Supple-
mentary Fig. 1b).
With the ultrasensitive AnchorIRISTM assay, we can measure the

methylation status of lower-input cfDNA while maintaining sufficient
diversity and sensitivity12. The 3288 markers were tested in 40 pairs
of BC tissue DNA and matched plasma cfDNA. A total of 1996 co-
methylated region markers with dynamic methylation ranges were
selected using the ‘moderated t-statistics’ method with empirical
Bayes to shrink the variance and the Benjamini–Hochberg
procedure to control the FDR between the tissue and plasma
samples (FDR < 0.05). The methylation profiles in BC tumour DNA
and matched plasma cfDNA were consistent (Fig. 1a and
Supplementary Fig. 2). Through filtering the noise methylation
patterns between the matched tissues and plasma, 1996 markers
were selected for further analysis (Supplementary Fig. 3).

Train and validation of the methylation panel in BC diagnosis
To select markers and construct a diagnostic model from the
cfDNA samples, we modelled the 1996 markers in the training
cohort (108 BC and 52 normal cfDNA samples) by random forest
and LASSO methods. We obtained 50 markers and 43 markers by
random forest and LASSO analyses, respectively, in which 26
markers were overlapped (Fig. 1a and Supplementary Table 1).
These 26 markers were applied to construct a diagnostic
prediction model for BC with a sensitivity of 87.96% (95% CI:
82.57–94.5%) and specificity of 98.07% (95% CI: 94.12–100%) in
the training cohort (Supplementary Fig. 4a). In the validation
cohort, which was composed of 47 BC and 22 normal cfDNA
samples, the sensitivity was 89.37% (95% CI: 78.72–97.87%), and
the specificity was 100% (95% CI: 86.36–100%) (Fig. 2). For stages
0–III the model yielded a sensitivity of 60.00% (3/5), 80.00% (32/
40), 95.45% (42/44), and 94.74% (18/19), respectively, and a
specificity of 98.07% (51/52) in the training dataset (Supplemen-
tary Fig. 4a). In the validation dataset, this model yielded a

Fig. 1 Workflow of the study design and Consort diagram. a The breast cancer (BC) methylation panel targets were specifically selected as
those areas with differences in methylation between tumour and normal tissue based on The Cancer Genome Atlas (TCGA) data. Forty paired
tissue and plasma samples were used to identify a total of 1996 methylation pattern markers. Targeted methylation profiling for cancer/normal
classification was performed as follows: LASSO and random forest analyses were applied to a training cohort of 52 normal controls and 108
breast cancer patients to identify a final selection of 26 markers. These 26 markers were applied to a validation cohort of 22 normal controls and
47 breast cancer patients. The final performance of our models was tested in an independent test cohort of 55 normal controls and 49 breast
cancer patients. b Participants screened and enrolled. QC quality criteria. Samples in tissue and plasma underwent targeted capture-probe
sequencing via high-throughput sequencing with the ultrasensitive AnchorIRISTM assay. Our goal was to select enough controls and malignant
plasma, but due to the available clinical information of samples and exclusion criteria, we were not able to identify all assessed samples that
entered the analysis. Finally, 40 pairs of breast cancer tissue DNA and matched plasma cfDNA were used for filtering, and 336 plasma cfDNA were
randomly assigned to a training group (n= 160), validation group (n= 69) and independent testing group (n= 104).

Table 1. Characteristics of healthy volunteers and patients with breast
cancer.

Characteristics Subgroup Whole set
(n= 333)

Training
set
(n= 160)

Validation
set (n= 69)

Testing
set
(n= 104)

Number of
samples

Healthy
control

129 52 22 55

Patients
with BC

204 108 47 49

Age (patients/
healthy)

<40 3/6 2/0 1/0 0/6

40–49 88/59 51/30 22/11 15/18

50–59 85/50 47/21 19/8 19/21

≥60 28/14 8/1 5/3 15/10

Mean 51.88/
49.4

50.4/49.2 51.4/49.7 55.6/49.3

Subtype Luminal A 53 30 12 11

Luminal B
(HER2+)

31 12 7 12

Luminal B
(HER2−)

58 32 16 10

HER2 15 8 4 3

TNBC 23 13 4 6

NA (DCIS) 24 13 4 7

Stage 0 11 5 3 3

I 68 40 12 16

II 91 44 22 25

III 32 19 8 5

NA not assessed, DCIS ductal carcinoma in situ, BC breast cancer.
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sensitivity of 66.67% (2/3), 75.00% (9/12), 95.00% (21/22), 100% (8/
8), and 100% (2/2) for stages 0–IV, respectively, and a specificity of
100% (22/22) (Fig. 2a). We demonstrated that this model could
differentiate BCs from normal controls in both the training dataset
with AUROC= 0.9839 (95% CI: 97–99.78%), AUPRC= 0.956 (95%
CI: 94.21–97%) (Supplementary Fig. 4a, b) and the validation
dataset with AUROC= 0.9816 (95% CI: 96.09–100%) (Fig. 2a).
Unsupervised hierarchical clustering of these 26 markers could
distinguish BCs from normal controls with high specificity and
sensitivity (Fig. 2b and Supplementary Fig. 4c).
To confirm the contributions of each individual marker in the

diagnostic model, we analysed 26 markers with single-factor
logistic regression (Supplementary Table 1). Thus, we further
adjusted the model to have as few markers as possible while
maintaining similar diagnostic power with a simplified model
using the top 4 markers (each marker has an AUROC above 0.75,
resulting in an overall AUROC = 0.9796 (95% CI: 95.56–100%),
AUPRC= 0.9220 (95% CI: 91.02–94.37%). Remarkably, cg23035715
had the best diagnostic power, with an AUROC of 0.9395 (95% CI:
89.72–99.27%) and AUPRC of 0.9111 (95% CI: 88.45–93.76%) (Fig.
3a, b). This targeted region is hypomethylated in BC patients,
while the other three sites are hypermethylated (Fig. 3c and
Supplementary Table 1).

Test of candidate DNA methylation markers with an
independent cohort
To evaluate the universality of candidate markers, we analysed the
methylation data of an independent test cohort, including 49
malignant and 55 normal donor plasma samples.
Then, we showed the diagnostic performance of 1, 4, and 26

markers with receiver operating characteristic (ROC) curves and
precision–recall curve (PRC), and the associated areas under the
curve (AUCs) of 0.9048 (95% CI: 84.79–96.92%) vs. 0.8243 (95% CI:
80.07–84.80%), 0.9249 (95% CI: 89.16–98.09%) vs. 0.8813 (95% CI:
84.55–91.72%) and 0.9449 (95% CI: 90.07–98.91%) vs. 0.8640 (95%
CI: 82.82–89.98%), respectively (Fig. 4a, b). The obtained diagnostic
prediction model demonstrated a sensitivity of 87.76% (95% CI:
77.55–95.92%) and a specificity of 92.73% (95% CI: 84.91–98.11%)
for discrimination of BR patients from normal controls in an
independent testing dataset (n= 104) (Fig. 4c). These results
demonstrated that cfDNA methylation analysis may contribute to
BC diagnosis. However, this application needs further large-scale

methylation-based prospective investigation in a BC population
with longer clinical follow-up.

Diagnostic power comparison of methylation markers and
mammography
We compared the diagnostic power of our 26 methylation markers
panel with mammography in all participants (n= 333). The
methylation panel has better diagnostic power [AUROC= 0.9815
(95% CI: 96.75–99.55%), and AUPRC= 0.9800 (95% CI: 96.6–99.4%)]
than that of mammography [AUROC= 0.9315 (95% CI:
89.95–96.34%), and AUPRC= 0.9490 (95% CI: 91.7–98.1%)] for BC
diagnosis in our cohort (P= 0.00513, Cohen’s d= 2.8127, Fig. 5a, b).
These 26 markers and mammography were applied to construct

a combined diagnostic prediction model for BC. In the validation
and the independent test cohort, which was composed of 96 BC
and 77 normal cfDNA samples, the sensitivity was 94.79% (95% CI:
78.72–97.87%), and the specificity was 98.70% (95% CI:
86.36–100%) (Fig. 5c). For stages 0–IV the model yielded a
sensitivity of 100% (6/6), 89.29% (25/28), 97.87% (46/47), 92.31%
(12/13) and 100% (2/2), respectively (Fig. 5c). We demonstrated
that this combined model could differentiate BCs from normal
controls with an outstanding performance [AUROC= 0.9951 (95%
CI: 98.99–100%) and AUPRC= 0.9550 (95% CI: 95.0–96.0%)] (Fig.
5c, d). The sensitivity relatively increased by 6.25% for the
combined model (94.79%) compared with the methylation model
(88.54%). The specificity increased by 3.89% for the combined
model (98.70%) compared with the methylation model (94.81%).

Correlation between clinicopathologic features and
methylation levels
We investigated the association between clinicopathological features
and methylation levels in 204 plasma samples of BC, including the
training dataset, validation dataset and independent testing dataset
(Supplementary Tables 2 and 3). Methylation levels were calculated
in each individual in all subgroups (Supplementary Table 4). We
performed ANOVA and Bonferroni correction to compare the
means between clinicopathologic features and found that DNA
hypermethylation was significantly associated with tumour size
(P= 5.9E−08, Padjusts= 1.12E−06), the number of metastatic lymph
nodes (P= 1.2E−05, Padjusts= 2.3E−04), stage (P= 7.3E−05,
Padjusts= 1.39E−03) and BC subtype (P= 0.029, Padjusts= 0.55).
Furthermore, no statistically significant associations were found for

Fig. 2 Performance of the diagnostic model in a validation plasma cohort. a The validation group was composed of 47 breast cancer and
22 normal plasma samples. ROC curve for breast cancer detection using the final model with 26 markers. This model achieved the best
diagnostic power with an AUROC of 0.9816 (95% CI: 96.09–100%) in the validation dataset. b Heatmap for cfDNA methylation levels of the
validation group. Cancer or normal samples could be distinguished through methylation patterns in the validation dataset.
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cfDNA hypermethylation with other parameters, including patient
age (P= 0.18), grade (P= 0.91), ER status (P= 0.12), PR (P= 0.16) and
HER2 status (P= 0.61). There were no significant associations for DNA
hypomethylation with any clinicopathological parameter (Supple-
mentary Table 2). In addition, according to the validation dataset and
independent testing dataset, a box plot comparing the clinicopatho-
logical parameters according to hypermethylation levels (Supple-
mentary Fig. 5a–f) and hypomethylation levels (Supplementary Fig.
6a–f) is illustrated. There were no significant associations between
mean methylation levels in different clinicopathological features
except the number of metastatic lymph nodes with mean
hypermethylation level (Supplementary Fig. 5d).

DISCUSSION
Mammography-based screening has contributed to a 28–45%
reduction in BC mortality13,14, showing 70% sensitivity and 92%
specificity for BC detection15. However, mammography is less
sensitive in young women, especially in Asian women, who usually

have dense breast tissue. We need novel and accurate detection
methods to complement the deficiencies of mammography in
early BC detection.
Many studies have demonstrated the utility of cfDNA-based

methylation biomarkers for the molecular characterisation of
cancer and potential applications in diagnosis and prognosis11,16.
The majority of cfDNA is debris from blood cells. Generally,
3–10 ng cfDNA can be extracted per millilitre of plasma (3–6mL
plasma out of every 10mL blood) in healthy individuals17. In
cancer patients, tumour-related cfDNA comprises 0.01–50% of
plasma cfDNA18, which means that high-efficiency library con-
struction and sensitive detection of cfDNA are necessary and
challenging for early cancer diagnosis. The AnchorIRISTM assay
demonstrated a very low limit of detection and limited amounts of
input cfDNA (ranging from 1 to 10 ng)12, facilitating the use of
cfDNA as a diagnostic biomarker from a typical 10mL blood draw.
Our results demonstrated that the methylation patterns in

plasma cfDNA samples can accurately predict the presence of BC.
The sensitivity of detection in patients with stage 0–IV BCs were

Fig. 3 ROC and PRC curves using different models and methylation levels of four markers between malignant and normal plasma
samples. a, b In the validation group, three different models were used for cancer detection. The first model included 26 markers
(Supplementary Table 1) and achieved the best diagnostic power, with AUROC of 0.9816 (95% CI: 96.09–100%), and AUPRC of 0.9704 (95% CI:
94.54–99.46%). The second model included 4 markers (Supplementary Table 1) and achieved similar diagnostic power, with AUROC of 0.9796
(95% CI: 95.56–100%), and AUPRC of 0.9220 (95% CI: 91.02–94.37%). This model is suitable for PCR-based methods in future cancer screens.
The last model included 1 marker, cg23035715, which achieved the best diagnostic power based on a single marker, with AUROC of 0.9395
(95% CI: 89.72–99.27%), and AUPRC of 0.9111 (95% CI: 88.45–93.76%). c Box plot showing the top four markers of increased and decreased
methylation levels in malignant (n= 155) vs. normal (n= 74) plasma samples. The methylation level of cg23035715 in normal plasma is higher
than that in breast cancer plasma. It is different from other markers. P values were calculated using analysis of variance. For each box plot, the
centre line, the boundaries of the box, the ends of the whiskers and points beyond the whiskers represent the median value, the interquartile
range, the minimum and maximum values, and the outliers, respectively.
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66.67% (2/3), 75.00% (9/12), 95.00% (21/22), 100% (8/8) and 100%
(2/2) respectively, in the validation set, with an AUROC of 0.9816
(95% CI: 96.09–100%). Previous studies conducted in the USA,
Europe and Asia indicated that the overall sensitivity of
mammography ranges from 74.6 to 92.5% and that the specificity
ranges from 83.1 to 99.5%2,19. Specifically, the peak age for BC
patients is between 40 and 60 years in Asian countries.
Furthermore, approximately 49.2% of Asian women were cate-
gorised as having dense breasts (BI-RADS density 3 or 4), and
50.8% were fatty breasts (BI-RADS density 1 or 2)1. In Asian
women, the sensitivity and specificity of BC screening using
mammography are compromised. Considering that the major
patients enrolled in our study were 40–60 years old, the detection
model was more efficient and convenient than mammography.
However, we also demonstrated that the methylation and
mammography combined model could differentiate BCs from
normal controls with an outstanding performance AUROC=
0.9951 (95% CI: 98.99–100%) and AUPRC= 0.955 (95% CI:
95.0–96.0%) (Fig. 5c, d). These results suggest that liquid biopsy
is a promising non-invasive method for early cancer detection.
Our study also attests to the feasibility of ctDNA methylation

analysis for patients with early stage BC. The classifier achieved
consistently high and consistent sensitivity between cross-
validation training and validation set [60.00% (3/5) vs. 66.67%
(2/3)] in stage 0, [80.00% (32/40) vs. 75.00% (9/12)] in stage I,
respectively. In the independent test set, sensitivity was 66.67% (2/
3) in stage 0 and 87.5% (14/16) in stage I. Stage zero (stage 0) BC is

also known as carcinoma in situ. According to the American
Cancer Society, people with a type of BC that has not spread
beyond the breast tissue have a 5-year survival rate of 99%. In
addition, in stage I, the tumours are small and have spread very
little, if at all. Our results show good performance in the diagnosis
of carcinoma in situ and was better than the performance in stage
I–II from Grail’s study20. Sensitivity increased with increasing stage
of disease with our results, showing aberrant methylation
occurring in developmental stages.
Using targeted bisulfite sequencing of cfDNA, we identified

dozens of CpG markers with highly differential methylation
patterns between BC and normal plasma samples. Cg23035715
(TLR5) has the best diagnostic power and is the main contributor
to the 26-marker and 4-marker models. Its methylation level is
lower in BC (hypomethylation), while most of the other markers
are hypermethylated. Zhang et al. previously reported that TLR5
is highly expressed in BC and that the TLR5 signalling pathway is
overly responsive in BC cells21. Our results indicate that TLR5 gene
expression in BC may be due to intron hypomethylation, although
further studies are needed to confirm this relationship. Other
markers, such as OTP, FEZF2 and TSHZ3, are involved in the
tumorigenesis of BC and nasopharyngeal carcinoma22–24. The high
cost is a major obstacle to implementing NGS in cancer screening.
Therefore, we attempted to reduce our marker number in the
model with the hope of converting it into PCR-based tests. We
chose the top 4 of our 26 markers (each had an AUROC above
0.75) to construct the new model. The resulting model had similar
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Fig. 4 cfDNA methylation analysis for BC diagnosis in an independent testing cohort. a, b Receiver operating characteristic (ROC) curves
and the precision–recall curve (PRC) with associated areas under the curves (AUCs) of the diagnostic prediction model using methylation
analysis of different combined markers (top 1, 4, and 26 markers) in the independent testing cohorts. c For different stages, the top 1, 4, and
26 markers model yielded relatively consistent sensitivity.
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diagnostic power to the 26-marker model (Fig. 3). We will test and
validate this model in a large prospective cohort, with the aim of
developing a cost-effective and user-friendly test for BC screening.
In addition, the diagnostic performance of plasma methylation

analysis, which effectively distinguished BC patients with sig-
nificantly different stages, was validated in an independent test
cohort, including 49 malignant and 55 healthy controls. We
showed that 26 marker tests identified 43 of 49 participants with
BC, with a sensitivity of 87.76% (95% CI: 77.55–95.92%), and a
specificity of 92.73% (95% CI: 84.91–98.11%). The sensitivity of
detection in patients with stage 0–III BC were 66.67% (2/3), 87.50%
(14/16), 88% (22/25) and 100% (5/5), respectively, with an AUROC
of 0.9449 (95% CI: 90.07–98.91%) and AUPRC of 0.8640 (95% CI:
82.82–89.98%). Our results indicated that methylation analysis was
superior to other currently reported cfDNA methylation markers
for BC diagnosis and classical mammography tests. The diagnostic
model described here provides a non-invasive, effective screening
tool with likely good compliance for the early detection of BC.
Although several studies have elucidated the molecular

subtypes of BC associated with gene expression patterns and

specific methylation profiles25,26, our results did not find a direct
correlation between methylation patterns and subtypes or
histological grades. We found that tumour size, lymph node
status, stage and subtype were associated with cfDNA hyper-
methylation (Supplementary Table 2). Tumour size and lymph
node status are the main components of the TNM stage and are
associated with methylation profiles27. Therefore, it is not
surprising that methylation levels increase with stage progression.
These results suggest that cfDNA methylation levels are a good
indicator of tumour burden, which provides an excellent venue to
non-invasively monitor tumour size, lymph node status and stage
and a dynamic, series measurement to assess the overall
prognosis. In BC, there is an epigenome-wide hypomethylation
level of blood DNA28, and our results showed that the
hypomethylation of cg23035715 and cg15321298 was significantly
associated with PR status (P= 0.026, supplementary Table 2).
Although the mechanism by which cg23035715 and cg15321298
hypomethylation affects PR status remains unclear, we suggest
that hypomethylation might represent the effect of endocrine
therapy as a surrogate marker.
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Our study has several limitations. The study included possible
bias due to the limited number of patients enrolled, which might
hamper the statistical power. In addition, our training and
validation cohorts included heterogeneous populations, including
a limited age range of 40–60 years, various histology types and
stages from 0 to III. Although we constructed a 4-marker model
with similar diagnostic power, compared to the 26-marker model,
which is a powerful model for BC screening, we need another
screening cohort with a large sample size to determine the clinical
utility of early detection in BC.
In summary, we developed a diagnostic model based on cfDNA

methylation patterns, which serves as a reliable approach for the
early diagnosis of BC. The simplified four-marker model holds
great clinical potential for early BC diagnosis and screening.

METHODS
Patients and sample collection
Participants included 204 female patients 37–76 years old, with an average
age of 51 years and with histologically confirmed BC. Among these
patients, 108 were in the training group, 47 were in the validation group,
and 49 were in an independent testing dataset. A total of 129 healthy adult
volunteers without BC participated in the study. Among these volunteers,
52 were in the training group, 22 were in the validation group, and 55 were
in the independent testing group. The age distribution of these healthy
donors was 40–60 years, with an average age of 49 years. Ten millilitres of
blood was drawn 1–3 days prior to surgery and stored in Cell-Free DNA
BCT® blood collection tubes (Streck BCTs, Streck, Omaha NE. Cat# 218962)
at room temperature. When the samples arrived at the laboratory, we
centrifuged the tubes at 1,600×g for 10min, removed the upper plasma
layer and transferred it to a new conical tube, and then centrifuged the
plasma at 16,000×g for 10 min. Plasma samples were collected and stored
at −80 °C. Enrolled samples included 40 paired tissue-plasma samples that
were used to evaluate the methylation concordance between tissue and
plasma within the same individual.
All plasma and tissue samples were obtained from the Department of

Breast Surgery, Harbin Medical University Cancer Hospital.

Data pre-processing and marker selection
CpG sites with differential methylation levels between tumour and normal
tissues in TCGA data were specifically selected as BC panel targets. A total
of 3288 CpG sites were selected. Probe sequences for targeted CpG sites
were selected from the Infinium HM450 array (Illumina, San Diego, CA).
Enrichment probes were designed based on the Infinium Human
Methylation 450 Bead Chip as 60 mer liquid hybridisation probes that
could capture both the methylated and unmethylated forms of bisulfite-
converted DNA after amplification. Probes were individually synthesised
and 5′-biotinylated at TWIST BIOSCIENCE.

DNA extraction of tissue and plasma
Tissue genomic DNA (gDNA) was isolated from fresh frozen tissue samples
using a Qiagen QIAamp DNA Tissue Kit (Qiagen, Cat# 56404) according to
the manufacturer’s protocol and was quantified using the NanoDrop™ and
Qubit™ systems. gDNA was fragmented to 200 bp using an M220 Focused-
ultrasonicator™ (Covaris, Inc.) The size was assessed by agarose gel
electrophoresis. Fifty nanograms of fragmented DNA was used for library
construction. Blood was collected in Streck BCT and transported within
4 days at room temperature. Repeated freezing and thawing of plasma
were avoided to prevent cfDNA degradation and gDNA contamination
from white blood cells (WBCs). cfDNA was isolated using a MagMAX™ Cell-
Free DNA Isolation Kit (Thermo Fisher, Cat# A29319) according to the
manufacturer’s protocol. The concentration of cfDNA was measured using
a Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific, Cat# Q32854), and
quality was examined using an Agilent High Sensitivity DNA Kit (Cat# 5067-
4626). cfDNA with a yield greater than 3 ng without excessive genomic
DNA contamination was subjected to library construction.

AnchorIRIS™ assay library preparation and sequencing
Extracted cfDNA was bisulfite-treated and purified using an EZ DNA
Methylation-Lightning Kit (Cat# D5031, Zymo Research) according to the
manufacturer’s protocol. Whole-genome or cfDNA amplification of

bisulfite-converted DNA was performed using an AnchorDx EpiVisioTM

Methylation Library Prep Kit (AnchorDx, Cat# A0UX00019) and an
AnchorDx EpiVisioTM Indexing PCR Kit (AnchorDx, Cat# A2DX00025)
following recommended conditions. Target enrichment was performed
using an AnchorDx EpiVisioTM Target Enrichment Kit (AnchorDx, Cat#
A0UX00031) to specifically pull-down DNA fragments that contained target
CpG sites using 5′-biotinylated capture probes. A total of 1000 ng DNA
containing up to four pre-libraries was pooled for target enrichment using
an AnchorDx PanMet V2-Pan-cancer methylation panel (AnchorDx, Cat#
A0UX00023). Target capture libraries were sequenced on an Illumina
NovaSeq 6000 Sequencer using 300 cycle runs. A 25% PhiX solution was
spiked into the bisulfite sequencing libraries to increase base diversity for
better sequencing quality.
We performed deep sequencing of the targeted bisulfite libraries to

achieve 2000× mean target coverage (approximately 600 mean deduped
coverage). FASTQ files were generated using Trim Galore version 0.4.1
(https://github.com/FelixKrueger/TrimGalore) and mapped to the bisulfite-
converted hg19 reference genome using Bismark version 0.15.0 (Bowtie2 is
the default aligner behind Bismark). Reads containing more than one
alignment location, and PCR duplicates flagged by Picard (v1.129) were
removed from further downstream analyses. On average, 85% of reads
were properly aligned, and 65% were on-target. The assay showed a high
uniformity of 97% (defined as the percentage of sites covered at a 0.2
mean depth), with only 0.06% of target sites having zero coverage.

Predictive modelling of a malignant or normal state
We designed probes corresponding to the 3288 markers and tested them
in 40 pairs of BC tissue DNA and matched plasma cfDNA from the same
patient. Differentially methylated CpGs were identified by comparing BC to
normal samples (FDR < 0.05, delta > 0.5) and further assembled into
differentially methylated regions. Reads having at least 3 methylated
CpGs within a sliding window of 3–5 CpGs were designated as co-
methylated reads and used for subsequent analysis of methylation level
(the percentage of co-methylated reads: co-methylated reads/all mapped
reads with at least 3 CpGs) and predictive modelling of the malignant/
normal states of patient samples. The methylation profiles in BC tumour
DNA and matched plasma cfDNA were consistent (Supplementary Fig. 2). A
total of 1996 markers with a good experimental amplification profile and
dynamic methylation range were selected for further analysis.
To validate the collective prediction power of candidate markers, we

used random forest and least absolute shrinkage and selection operator
(LASSO) models in the training cohort of BC patients. We repeated 2-fold
cross-validation 20 times and selected the top 50 markers by their
importance scores in the random forest model. We also obtained 43
markers using a LASSO analysis in which we required selected markers to
appear over 300 times out of a total of 500 repetitions. There were twenty-
six overlapping markers between these 2 methods (Fig. 1). Using the
random forest method, we constructed a diagnostic prediction model with
these 26 markers that preferentially discriminated malignant samples from
normal samples in the independent validation dataset.

Statistical analyses
All analyses were performed in R software unless otherwise specified. The
Wilcoxon rank-sum test and ANOVA were used for methylation level
comparisons between two or more groups. Single-factor logistic regression
was used to analyse the diagnostic power of each marker.

Study approval
The collection of all samples was approved by ethics committees at Harbin
Medical University Cancer Hospital, and all participants provided written
informed consent prior to inclusion in the study.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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