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Objective: Due to potential disease and drug interactions, the appropriate sertraline

starting dose and titration range may require adjustment in pediatric patients living with

HIV. This is the first report of sertraline pharmacokinetics in HIV-infected youth.

Methods: IMPAACT P1080 was a multicenter pilot study describing psychiatric

medication pharmacokinetics in HIV-infected and uninfected youth. Participants were

stable on sertraline, >6 to <25 years old, and (1) HIV-uninfected (HIV(–)), (2) HIV-

infected taking efavirenz (EFV), or (3) HIV-infected taking boosting ritonavir/protease

inhibitor (PI/r). Sampling occurred at pre-dose, 2, 4, 6, 12, and 24-h post-dose. Analyses

were performed for sertraline and N-desmethylsertraline, and CYP2D6 phenotyping was

completed with dextromethorphan.

Results: Thirty-one participants (16 HIV(-), 12 PI/r, and 3 EFV) had median (range)

weight, age, and dose of 69.5 (31.5–118.2) kg, 21.8 (9.1–24.7) years, and 75.0 (12.5–

150.0) mg once daily. Sertraline exposure was highest for HIV(–) and lowest for EFV

cohorts; median dose-normalized AUC0−24 was 1176 (HIV(–)), 791 (PI/r) and 473 (EFV)

ng∗hr/mL, and C24 was 32.7 (HIV(–)), 20.1 (PI/r), and 12.8 (EFV) ng/mL. The urinary

dextromethorphan/dextrorphan (DXM/DXO) ratio was higher in HIV(–) vs. PI/r cohorts

(p = 0.01). Four HIV(–) participants were CYP2D6 poor metabolizers (ln(DXM/DXO) of

>-0.5).

Conclusions: HIV(–) cohort had the highest sertraline exposure. Sertraline exposure

was ∼40% lower in the PI/r cohort than in HIV(–); the need to alter sertraline dose

ranges for PI/r participants is not clear. The impact of efavirenz on sertraline needs further

investigation due to limited numbers of EFV participants.
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INTRODUCTION

The lifetime prevalence of major depression in patients with
human immunodeficiency virus (HIV) is 22–45% (1), far
exceeding the general population. Youth living with HIV are four
times as likely to be treated with anti-depressant medication than
uninfected youth (2). Two meta-analyses demonstrated a strong
correlation between severity of depression and non-adherence

to antiretroviral therapy (3, 4). Therefore, standard practice
is to treat patients living with HIV and comorbid psychiatric

conditions with psychotropic medications, despite a lack of

adequate evidence regarding the risks. Psychiatric medications
are often titrated to effectiveness. However, the typical starting
dose and titration range may need to be adjusted in special
populations (e.g., HIV and pediatrics) to produce exposures
that have shown efficacy and tolerability in standard patient
populations lacking comorbid conditions and interacting drugs.

Sertraline, a commonly used antidepressant, has an
elimination half-life of about 27 h in adults, children, and
adolescents (5). Sertraline undergoes extensive metabolism

by cytochrome P450 (CYP) enzymes, CYP2B6, CYP2C9,
CYP2C19, CYP2D6, and CYP3A4 (6, 7). N-demethylation
forms N-desmethylsertraline, the major inactive metabolite.
N-desmethylsertraline has an elimination half-life of 62–
104 h (5). Genetic differences in metabolic pathways can
lead to interpatient variability, with higher exposures in poor
metabolizers and lower exposures in extensive metabolizers. A
rough estimate of CYP2D6 intrinsic activity can be determined
by administering a single dose of dextromethorphan and
measuring the extent of metabolite (dextrorphan) formation
compared to parent compound (a CYP2D6 phenotype
assessment). Based on concentration ratio results, patients
can be classified as either extensive or poor metabolizers.
Numerous antiretrovirals are metabolized by and modulators of
many of these same biotransformation pathways.

Ritonavir, a protease inhibitor and pharmacokinetic booster
of other antiretrovirals, inhibits CYP3A4, the efflux transporter
P-glycoprotein, and to a lesser extent, CYP2D6 (8, 9). However,
at typical ritonavir boosting doses (100mg), CYP2D6 inhibition
is not clinically relevant (8). Ritonavir also induces CYP1A2,
2B6, 2C9, and 2C19, and the phase II uridine diphosphate-
glucuronosyltransferase (UGT) enzymes (10–12).

Efavirenz, a common component of first-line antiretroviral
therapy regimens, is a strong inducer of CYP3A4 and 2B6 (13).
Efavirenz also induces CYP 2C19 in extensive and intermediate
metabolizers, but not in CYP 2C19 poor metabolizers (14).
Efavirenz decreases sertraline exposure (AUC0−24) by ∼40%
in adults. The induction of CYP 3A4 in particular, which has
high concentrations in both hepatic and intestinal tissues, could
contribute to decreased absorption through first-pass loss since
sertraline is administered orally. Despite decreased sertraline
exposure with efavirenz, no adjustment of starting dose is
recommended (13).

In pediatric sertraline pharmacokinetic studies, sertraline
exposure (AUC0−24 and Cmax) was ∼22% lower in children and
adolescents when plasma concentration was adjusted for weight
(5, 9)/; other pharmacokinetic parameters were comparable to

adults (15–19). In adolescents, sertraline kinetics are not linear;
the half-life of sertraline shortens significantly (26.7–15.3 h) from
single dose to steady-state (17). In addition, over a dose range
of 50–200mg, the half-life of sertraline at steady-state increases
from 15.3–27.2 h (15, 17). The non-linearity of sertraline kinetics
becomes increasingly important in youth with complex diseases
and interacting medications. The objective of this study was to
determine sertraline pharmacokinetics in youth without HIV, or
with HIV and taking either an efavirenz-based or a ritonavir-
boosted protease inhibitor-based regimen.

MATERIALS AND METHODS

International Maternal Pediatric Adolescent AIDS Clinical Trials
Network (IMPAACT) P1080 was a multicenter, pilot study of
psychiatric and antiretroviral medication concentrations in HIV-
1-infected and uninfected youth. Target enrollment for the
sertraline study arm was 45 participants >6 to <25 years of age.
45 participants had sufficient power to detect a 50% difference
in apparent oral clearance (CL/F) among HIV-infected and
uninfected cohorts, assuming a coefficient of variation of 30%.
Participants were divided into three cohorts: (1) HIV-uninfected
(HIV(-)), (2) HIV-infected taking concomitant efavirenz (EFV),
and (3) HIV-infected taking boosting ritonavir with a protease
inihibitor (PI/r): protease inhibitors could include atazanavir,
darunavir, fosamprenavir, indinavir, lopinavir, saquinavir or
tipranavir.

All participants gave signed informed consent or assent,
and parents or guardians gave signed informed permission in
accordance with the Declaration of Helsinki and local guidelines.
The protocol was approved by human subjects’ protection
committees or institutional review boards at each participating
site (see Acknowledgments for a listing of participating sites).
Participants took sertraline for clinical care for at least 2 weeks
prior to enrollment. Participants who were pregnant or taking
interacting illicit drugs were excluded.

Study procedures were standardized across multiple study
arms. The single pharmacokinetic visit included a medication
history, adherence survey, and a CYP2D6 phenotype assessment
(the other psychotropic study medications were primarily
metabolized by CYP 2D6). Participants with HIV had to be
taking their antiretroviral medications consistently for at least
4 weeks prior to sampling. The visit was scheduled so that
a witnessed dose of sertraline and antiretroviral medications
occurred on time, according to the participant’s dosing regimen.
Plasma samples were drawn at pre-dose and 2, 4, 6, 12, and 24-h
post-dose.

A liquid chromatography-electrospray ionization-mass
spectrometry method quantitated sertraline and N-
desmethylsertraline. Isotope-labeled sertraline was used as
an internal standard. Analytes and internal standard were
extracted with 600 µL of acetonitrile from 200 µL of plasma,
then eluted from a Gemini C18 column in under 4min using
acetonitrile/water/formic acid (85:15:0.1, v/v/v) as the mobile
phase. Quantitation was performed with selective reaction
monitoring of the transitions of m/z 306.2→ 159.1 for sertraline,
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292.2→ 275 for N-desmethylsertraline, and 309.2→ 159.1 for
internal standard. The method was linear over the concentration
range of 1–320 ng/mL for both parent and metabolite.

The ratio of dextromethorphan (DXM)/dextrorphan
(DXO) in urine was measured using a validated LC-MS/MS
method following a single oral dose of dextromethorphan
cough syrup (15mg for participants ≥6 to < 12 years
old; 30mg for participants ≥12 to < 25 years old). Poor
metabolizer phenotype was defined as urinary DXM/DXOmolar
ratios > 0.3 or log ratios > −0.5, while extensive metabolizer
phenotype was defined as molar ratios ≤ 0.3 or log ratios
≤−0.5.

Plasma concentrations of primary protease inhibitors,
ritonavir and efavirenz were measured at the University of
California San Diego Pediatric Pharmacology Laboratory by
validated reverse phase high performance liquid chromatography
or mass spectrometry methods. The interassay coefficients of
variation were all <18%, and the mean recovery from the
plasma ranged from 98 to 117%. The lower limits of quantitation
were: 0.047µg/mL for atazanvir, 0.090µg/mL for darunavir,
0.091µg/mL for lopinavir, 0.094µg/mL for ritonavir, and
0.039µg/mL for efavirenz.

Plasma concentration at pre-dose (C0), the maximum
concentration (Cmax), the corresponding time (tmax), and
the concentration at 24 h post-dose (C24) were identified
by direct inspection of concentration-time curves. The area
under the concentration vs. time curve from time 0–24 h post
dose (AUC0−24) was estimated using the trapezoidal rule.
Apparent oral clearance (CL/F), where F is bioavailability, was
calculated as dose divided by AUC0−24. The apparent volume
of distribution (V/F) was determined as CL/F divided by k,
where k is the terminal slope of the log plasma concentration-
time curve. The half-life (t1/2) was calculated as 0.693/k.
All concentration data were normalized to dose (100mg)
and to weight (70 kg). Non-compartmental parameters
were estimated with Phoenix R© WinNonlin R© (Certara L.P.
(Pharsight), St. Louis, MO). Pharmacokinetic parameters
were compared between HIV(–) and PI/r cohorts with
Wilcoxon rank-sum tests, two-sided with significance set
to 0.05. Statistical comparisons were not made with the
EFV group due to the low enrollment/accrual in this cohort
(n= 3).

Sertraline population pharmacokinetics were evaluated using
non-linear mixed-effects modeling (NONMEM, version 7.4).
A one-compartment model at steady-state with first-order
absorption and elimination best described the data (ADVAN2
TRANS2, FOCE with interaction). A combined (additive and
proportional) residual error model was used. Covariates were
screened individually on each pharmacokinetic parameter (CL/F,
V/F, and ka). For all models, goodness of fit were assessed
with diagnostic plots. All covariates that improved model fit
at p < 0.05 were included in the multivariate screen. The
multivariate screen removed one covariate at a time, until
every combination of covariates that were significant in the
univariate screen were tested; covariates were retained if, when
removed from the model, the model significantly worsened at
p < 0.01.

RESULTS

Thirty-one participants completed pharmacokinetic visits
(n= 16HIV(–); n= 3 EFV; n= 12 PI/r: 5 on atazanavir/ritonavir,
5 on darunavir/ritonavir, and 2 on lopinavir/ritonavir). The
median weight and height of participants on the day of sampling
were 69.5 kg and 167.2 cm, respectively (Table 1). The median
age was 21.8 years (range 9–24.7). Participants’ daily sertraline
doses ranged from 12.5 to 150mg. Median weight-normalized
dose in HIV(–) (1.3 mg/kg) was higher than in both the PI/r
and EFV groups (0.9 and 0.7 mg/kg; Table 1). A total of 181
plasma concentrations were measured. Two participants did
not return for their 24-h time points, while three participants
took their next dose of sertraline prior to the 24-h blood draw.
Pharmacokinetics were estimated based on the pre-dose through
12 h post-dose concentrations for these participants.

Median normalized AUC0−24 values were 1176, 791, and 473
ng·h/mL for HIV(–), PI/r and EFV cohorts, respectively (Table 2
and Figure 1). Non-compartmental oral CL/F were not different
in the HIV(–) and PI/r groups (1.4 vs. 1.6 L/h/kg, p = 0.59).
However, CL/F was markedly higher in the EFV group (4.5
L/h/kg). Of C0, Cmax, and C24, only C0 was significantly higher
in the HIV(–) compared to the PI/r cohorts (unadjusted and
dose-normalized, p= 0.03).

Sertraline typical population pharmacokinetic values for CL/F,
V/F, and ka were estimated for the structural base model at 4.77
L/hr/kg0.75, 53.8 L/kg, and 0.45 hr−1 respectively (Table 3). The
final population model (objective function decreased by 8.053
compared to the base model), which included the effect of age on
clearance, resulted in estimated population values for CL/F, V/F,
and ka of 4.35 L/hr/kg

0.75, 44.6 L/kg, and 0.42 hr−1.
Median normalized N-desmethylsertraline AUC0−24 in the

PI/r group was significantly lower than in the HIV(-)
group (899 vs. 1,533 ng·h/mL, p = 0.01; Table 2 and
Figure 1). Following normalization, median Cmax in HIV(–) was

TABLE 1 | Participant demographics, Median (Interquartile Range)a.

HIV(-) PI/r EFV

(n = 16) (n = 12) (n = 3)

Weight (kg) 65 (58, 77) 73 (69, 77) 58 (45, 82)

Height (cm) 166 (163, 172) 169 (165, 175) 152 (145, 165)

Weight Normalized

Daily Dose (mg/kg)

1.3 (0.9, 1.5) 0.9 (0.6, 1.4) 0.7 (0.6, 1.1)

Age (years) 22.8 (18.2, 23.3) 21.8 (20.9, 22.7) 19.3 (14.2, 19.5)

SEX (%)

Female 10 (62.5) 8 (66.7) 2 (66.7)

Male 6 (37.5) 4 (33.3) 1 (33.3)

RACE (%)

American Indian 1 (6.2) 0 (0.0) 0 (0.0)

Asian 1 (6.2) 0 (0.0) 0 (0.0)

Black 2 (12.5) 11 (91.7) 2 (66.7)

Unknown 0 (0.0) 1 (8.3) 0 (0.0)

White 12 (75.0) 0 (0.0) 1 (33.3)

aFor the EFV cohort, median (minimum, maximum) are reported.
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TABLE 2 | Sertraline and N-desmethylsertraline pharmacokinetic parameters, median (Interquartile Range)a.

Parameter HIV(-) n = 16 PI/r n = 12 p-valueb EFV n = 3

SERTRALINE

AUC0−24(ng*hr/mL) 652 (506, 1407) 486 (415, 670) 0.08 145 (138, 286)

Norm-AUC0−24(ng*hr/mL)c 1176 (713, 1890) 791 (546, 961) 0.12 473 (374, 614)

C0 (ng/mL) 20.1 (12.6, 39.7) 10.0 (7.5, 15.9) 0.03 6.0 (3.0, 7.0)

Norm-C0(ng/mL)c 33.3 (17.6, 57.3) 17.8 (9.9, 23.0) 0.03 13.1 (9.2, 19.6)

Cmax (ng/mL) 46.7 (36.5, 90.1) 34.3 (23.6, 41.7) 0.09 13.2 (8.8, 22.1)

Norm-Cmax (ng/mL)c 78.3 (50.9, 110.7) 46.9 (42.2, 68.7) 0.06 28.8 (28.4, 58.7)

Tmax (hr) 4 (4, 6) 4 (4, 6) 1.00 6 (4, 6)

C24 (ng/mL) 17.5 (14.3, 40.1) 12.6 (8.6, 18.9) 0.07 4.2 (2.9, 5.9)

Norm-C24 (ng/mL)c 32.7 (17.6, 51.9) 20.1 (11.8, 29.2) 0.17 12.8 (7.6, 13.8)

CL/F (L/hr/kg) 1.4 (0.8, 2.3) 1.6 (1.2, 2.3) 0.59 4.5 (1.6, 11.5)

T1/2 (hr) 26.4 (14.1, 35.3) 18.1 (12.5, 23.1) 0.28 11.1 (10.2, 20.7)

AUC Ratio (DSRT/SRT) 1.4 (1.2, 1.7) 1.3 (0.7, 1.6) 0.13 2.2 (2.1, 2.6)

Ln(DXM/DXO)d −2.3 (−3.0, −0.6) −4.3 (−4.8, −3.8) 0.01 −2.35

N-DESMETHYLSERTRALINE

AUC0−24(ng*hr/mL) 1063 (848, 1721) 670 (230, 1244) 0.09 376 (293, 624)

Norm-AUC0−24(ng*hr/mL)c 1533 (1053, 2133) 899 (646, 1186) 0.01 1223 (814, 1301)

C0 (ng/mL) 41.7 (29.2, 65.8) 17.8 (4.8, 43.1) 0.05 15.5 (7.6, 25.5)

Norm-C0 (ng/mL)c 50.6 (33.5, 100.9) 23.8 (11.7, 45.0) 0.01 33.7 (33.2, 50.3)

Cmax (ng/mL) 56.3 (45.6, 92.0) 34.4 (12.5, 57.6) 0.07 17.5(16.8, 34.1)

Norm-Cmax (ng/mL)c 76.6 (54.1, 138.7) 44.6 (33.1, 58.8) 0.01 56.8 (44.5, 74.7)

C24 (ng/mL) 40.8 (30.4, 68.3) 20.5 (10.3, 45.1) 0.07 15.2(8.7, 20.8)

Norm-C24 (ng/mL)c 59.4 (36.6, 82.0) 33.6 (17.8, 56.4) 0.03 38.7 (27.1, 49.3)

aFor the EFV cohort, median (minimum, maximum) are reported.
bp-values calculated using the Wilcoxon rank-sum test for HIV(–) and PI/r comparisons.
cNormalized to a 100mg once daily dose and a weight of 70 kg.
dUrine DXM/DXO ratio was measured in 12 HIV(–), 6 PI/r, & 1 EFV.

statistically higher than PI/r (76.6 vs. 44.6 ng/mL, p = 0.01).
Following normalization, C0 and C24 in HIV(–) were statistically
greater than PI/r (50.6 vs. 23.8 ng/mL, p = 0.01; 59.4 vs.
33.6 ng/mL, p= 0.03).

Median (interquartile range) ritonavir AUC0−12 and Cmax for
PI/r participants were 4.9 (3.0, 9.4) µg·h/mL and 0.6 (0.4, 1.6)
µg/mL (Table 4). Median (range) efavirenz AUC0−24 and Cmax

for the three EFV participants were 24.5 (24.4, 68.2) µg·h/mL
and 1.3 (1.3, 3.4) µg/mL. No relationship was observed between
ritonavir AUC0−12 and dose normalized sertraline AUC0−24

(r2 = 0.005) or ritonavir AUC0−12 and the AUC0−24 ratio
of N-desmethylsertraline/sertraline (r2 = 0.09). No correlation
was present between efavirenz AUC0−24 and dose-normalized
sertraline AUC0−24 (r2 = 0.01). A correlation was present
between efavirenz AUC0−24 and the AUC0−24 ratio of N-
desmethylsertraline/sertraline (r2 = 0.97). However, with a small
sample size (n = 3), these results should be interpreted with
caution.

Metabolic phenotyping was performed in 19 of 31 participants
(12 HIV(–), 6 PI/r, and 1 EFV). The log ratio of DXM to DXO
in the HIV(–) group was significantly higher than the PI/r group
(−2.3 vs.−4.3, p=0.01). Four of twelve participants in the HIV(–
) group were CYP2D6 poor metabolizers, compared to zero of six
PI/r participants. CYP2D6 phenotype was tested as a covariate

on the sertraline population pharmacokinetic model, but did not
significantly affect CL/F or V/F.

DISCUSSION

This is the first report of sertraline pharmacokinetics among
youth living with HIV. Sertraline and N-desmethylsertraline
exposure parameters trended lower or were significantly lower
in the PI/r compared to the HIV(–) groups. Sertraline exposure,
corrected for weight and dose, was much lower in EFV
participants, but the sample size was very small. Few patients
with psychiatric conditions were taking efavirenz, likely due
to clinician concerns about central nervous system side effects
associated with efavirenz use in patients with psychiatric
disorders. The normalized sertraline AUC0−24 in the HIV(–)
group (1,176 ng·hr/mL) was similar to that seen after multiple
dosing in prior adult studies, normalized to a 100mg dose
(1038–1532 ng·hr/mL) (20). The normalized sertraline trough
concentrations, C0 and C24, in the HIV(-) and PI/r groups
of approximately 18–33 ng/mL were also similar to those in a
therapeutic drug monitoring program, that reported a median
and IQR sertraline trough with 100mg daily doses of 20 ng/mL
and 12–30 ng/mL (21). The observed troughs in the EFV group
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FIGURE 1 | (A) Median sertraline profiles by cohort. Sertraline concentrations

were normalized to a dose of 100mg and a patient weight of 70 kg. (B)

Median N-desmethylsertraline profiles by cohort. Concentrations were

normalized to a sertraline dose of 100mg and a patient weight of 70 kg.

of 4.2 and 6 ng/mL were well below these typical trough values.
The median weight-adjusted daily dose (mg/kg) in the HIV(–)
group, while not statistically different, was higher than both
groups of participants living with HIV. This suggests that
clinicians are dosing sertraline more conservatively, possibly due
to concerns about interacting antiretrovirals, in youth living with
HIV. However, weight- and dose-normalized sertraline AUC0−24

suggests that youth taking common PI/r should be receiving
equivalent, or potentially higher, weight-adjusted doses as their
HIV-uninfected peers.

While we expected normalized sertraline exposures to be
greater in HIV(–) vs. EFV participants, due to strong cytochrome
P450 induction, we did not expect to also observe lower
sertraline in PI/r participants. Sertraline is eliminated by multiple
pathways including CYP2B6, CYP2D6, CYP2C9, CYP2C19,
and CYP3A4. Ritonavir is a strong inhibitor of CYP2D6
and CYP3A4, but is also a strong inducer of CYP2C19
and UGT, a phase II metabolic pathway of sertraline (7).
Involvement of numerous enzymes in sertraline metabolism
make it unlikely for one agent to cause a clinically significant
drug interaction (7, 20). Antiretroviral exposures in this study
were similar to expected values, suggesting that participants

were adherent to antiretrovirals. Our results, lower normalized
(weight/dose) sertraline and N-desmethylsertraline AUC0−24

and the AUC ratio (N-desmethylsertraline/sertraline) in PI/r
vs. HIV(–) participants, suggest that inhibition of various CYP
enzymes by ritonavir does not increase sertraline exposure.
Furthermore, decreased sertraline exposures in PI/r relative to
HIV(–) were not a consequence of induction of enzymatic
pathways, since ritonavir AUC0−24 did not correlate with
the N-desmethylsertraline/sertraline AUC ratio. If induction
was present, the AUC ratio would increase with increasing
ritonavir. The most likely explanations for reduced sertraline
exposures in the PI/r cohort are (1) decreased drug absorption
in participants living with HIV and (2) lower sertraline
doses prescribed (which can cause changes in sertraline
pharmacokinetics that are not proportional to the difference in
dose amount).

Another potential contributing factor to sertraline exposure
differences could be underlying genetic polymorphisms in
CYP enzymes. The Clinical Pharmacogenetics Implementation
Consortium recommends a 50% decrease in sertraline dose
in CYP 2C19 poor metabolizers due to increased adverse
effects, but no change in dose for ultrarapid metabolizers. This
recommendation is optional due to limited available evidence
(22). CYP 2C19 genotypes of study participants were not
determined.

A population pharmacokinetic study of geriatric patients
(median age = 76 years) with Alzheimer’s Disease also
determined a 1-compartment model with first-order absorption
and elimination best described sertraline, and estimated a
clearance of 83.1 L/h (23). Our study estimated clearance at
115 L/h (for a typical 70 kg patient); 38% higher. In our
model, of the covariates tested on CL/F and V/F (age, gender,
race, cohort, CYP2D6 phenotype, aspartate aminotransferase,
alanine aminotransferase, serum creatinine, and AUC ratio
(N-desmethylsertraline/sertraline)), only age (independent of
size) significantly affected clearance. This finding contrasts with
previous pediatric studies and the aforementioned geriatric
study, which found no associations between age and sertraline
pharmacokinetics. Our finding should be interpreted with
caution due to the limited range of ages in this study, 14–23 years.
Gender did not affect sertraline pharmacokinetics in our study,
similar to prior pediatric trials, but different from adults where
men had an elimination half-life approximately 1.5 times greater
than women (19).

EFV participants had sertraline exposures ∼50% lower than
HIV(–) and PI/r groups. In previous pediatric studies (15, 17),
AUC0−24 (normalized to 100mg dose and 70 kg weight) ranged
from 883 to 2,535 ng·h/mL, much higher than 473 ng·h/mL
in the EFV group. The metabolite-to-parent AUC ratio was
approximately 50% higher in EFV than other cohorts, and
efavirenz AUC was correlated with metabolite-to-parent AUC
ratio (r2 = 0.97). These findings suggest that participants taking
efavirenz have a much higher oral intrinsic clearance, possibly
through induction of multiple CYP enyzmes that contribute to
sertraline metabolism, including 2B6, 2C19, and 3A4. For 3A4
in particular, the reduction in EFV exposure could be due to
induction at the intestinal level along with hepatic induction,

Frontiers in Pediatrics | www.frontiersin.org 5 February 2019 | Volume 7 | Article 16

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Hanan et al. Sertraline PK in Youth

TABLE 3 | Base & final population pharmacokinetic parametersa.

Parameters Base model Estimate (% SE) Final model Estimate (% SE)

CL/F (L/hr/kg0.75) θ1*ALWT0.75exp(η1) 4.77 (12) θ1*ALWT0.75exp(η1)

*((Age/21.8)exp(θ4))

4.35 (10.6)

V/F (L/kg) θ2*WT 53.8 (20.1) θ2*WT 44.6 (10.3)

ka (1/h) θ3 0.45 (16.2) k + θ3 0.42 (14.7)

aALWT, allometric weight; WT, weight; η1, inter-individual variability on clearance; θ1, typical population estimate for CL/F; θ2, typical population estimate for V/F, θ3, typical population

estimate for ka. K, elimination rate constant.

TABLE 4 | Antiretroviral exposures, median (Interquartile range)a.

n AUC0−tau (µg*hr/mL) Cmax (µg/mL) Clast (µg/mL)

ANALYTE

Atazanavir 5 27.2 (21.8, 38.7) 3.8 (3.1, 5.2) 1.2 (0.9, 2.6)

Darunavir 5 60.1 (50.2, 66.5) 6.8 (6.2, 7.1) 3.5 (3.2, 3.9)

Lopinavir 2 41.6, 62.0 11.9, 4.9 2.4, 3.5

Ritonavir 12 4.9 (3.0, 9.4) 0.6 (0.4, 1.6) 0.2 (0.1, 0.4)

Efavirenz 3 24.5 (24.4, 68.2) 1.3 (1.1, 3.4) 1.3 (1.3, 3.4)

aThe range is reported for lopinavir and the median (range) is reported for efavirenz.

resulting in both increased systemic clearance and decreased
absorption due to first-pass loss upon oral administration. A
larger sample size is needed to confirm this observation.

Participants in the HIV(–) group had sertraline weight-
adjusted pharmacokinetic characteristics similar to adults.
Ensuring dose modifications according to weight are therefore
necessary for youth without HIV to achieve similar therapeutic
exposures. Sertraline exposure in the PI/r cohort was ∼30–40%
lower compared to HIV(–). Concomitant ritonavir did not
increase sertraline exposure as it does with many other
medications, and youth taking a ritonavir-boosted protease
inhibitor should be receiving at least the same sertraline dose
(mg/kg), or potentially even modestly higher doses, as uninfected
youth and adults. Participants taking efavirenz had much lower
sertraline exposures than the two other cohorts and adults. Even
though psychiatric medications are often titrated to effect, these
participants did not receive higher absolute or weight-adjusted
doses than the other groups, and likely had sub-therapeutic
exposures. Caution should be exercised when interpreting
findings from the EFV cohort due to the small sample size
(n = 3), but higher doses or therapeutic drug monitoring of
sertraline in this population may be warranted.
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