V = 1659.5 (6) Å³

Mo $K\alpha$ radiation

 $0.43 \times 0.28 \times 0.22 \text{ mm}$

8654 measured reflections

4235 independent reflections

2693 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained

 $\mu = 1.35 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.034$

refinement $\Delta \rho_{\text{max}} = 0.94 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\min} = -1.73 \text{ e} \text{ Å}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[aqua{4-[N'-(2,4-dioxo-3-pentylidene)hydrazino]benzoato}copper(II)]-μ-acetato]

Lujiang Hao,^a* Chunhua Mu^b and Ridong Wang^c

^aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan, 250353, People's Republic of China, ^bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan, 250100, People's Republic of China, and ^cDepartment of Clinical Medicine, Medical School, Shandong University, Jinan, 250012, People's Republic of China

Correspondence e-mail: lujianghao001@yahoo.com.cn

Received 22 April 2008; accepted 28 May 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.065; wR factor = 0.219; data-to-parameter ratio = 18.7.

In the title compound, $[Cu(CH_3CO_2)(C_{12}H_{11}N_2O_4)(H_2O)]_n$, the Cu^{II} cation is tetracoordinated by three carboxylate O atoms from one 4-[N'-(2,4-dioxo-3-pentylidene)hydrazino]-benzoate ligand and two acetate bridges, and by one water molecule. The acetate bridges link adjacent Cu^{II} cations, forming a chain. The crystal structure involves $O-H\cdots O$ hydrogen bonds.

Related literature

For uses of carboxylic acids in materials science, see: Church & Halvorson (1959). For uses in biological systems, see: Chung *et al.* (1971); Okabe & Oya (2000); Serre *et al.* (2005); Pocker & Fong (1980); Scapin *et al.* (1997); Kim *et al.* (2001).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_2H_3O_2)(C_{12}H_{11}N_2O_4)(H_2O) \end{bmatrix}$ $M_r = 387.83$ Monoclinic, $P2_1/c$ a = 8.106 (2) Å b = 23.918 (4) Å c = 8.946 (2) Å $\beta = 106.90$ (3)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.594, T_{\rm max} = 0.755$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	
$wR(F^2) = 0.219$	
S = 1.00	
4235 reflections	
226 parameters	
3 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$N1 - H1 \cdots O2$	0.94(5)	1.90 (5)	2.617 (5)	132 (4)
	$O7 - H7A \cdots O1^{ii}$	0.84(4)	1.91 (4)	2.739 (4)	168 (5)
	$O7 - H7B \cdots O4^{iii}$	0.84(5)	2.00 (3)	2.774 (5)	153 (6)

Symmetry codes: (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work is supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2197).

References

- Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chung, L., Rajan, K. S., Merdinger, E. & Grecz, N. (1971). *Biophys. J.* 11, 469–482.
- Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.
- Kim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684–2690.
- Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.
- Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045-2049.
- Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.
- Serre, C., Marrot, J. & Férey, G. (2005). Inorg. Chem. 44, 654–658.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, m929 [doi:10.1107/S1600536808016073]

catena-Poly[[aqua{4-[N'-(2,4-dioxo-3-pentylidene)hydrazino]benzoato}copper(II)]-µ-acetato]

L. Hao, C. Mu and R. Wang

Comment

In recent years, carboxylates have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung *et al.*, 1971) and in biological systems (Okabe & Oya, 2000; Serre *et al.*, 2005; Pocker & Fong, 1980; Scapin *et al.*, 1997). For example, Kim *et al.* (2001) focused on the syntheses of transition metal complexes containing benzenecarboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using sodium 4-(2-(diacetylmethylene)hydrazino)benzoate as a polydentate ligand. Here we report the synthesis and X-ray crystal structure analysis of the title compound. The asymmetric unit of the title compound is shown in Fig. 1. The copper(II) cation is tetracoordinated by three carboxylate oxygen atoms from one 2,4-dioxo-3-pentylidene)hydrazino]benzoate ligand and two acetate bridges, and by one water molecule. The acetate bridges link adjacent copper(II) cations, forming a chain, shown in Fig. 2. The Cu—O bond distances are in the range 1.970 (4)–2.031 (4) Å. The packing involves O—H···O hydrogen bonds, with O···O in the range 2.744 (5)–3.058 (6) Å, as shown in Fig. 3.

Experimental

A mixture of copper(II) acetate (0.5 mmol), 4-(2-(diacetylmethylene)hydrazino)benzoic acid (0.5 mmol), water (8 ml) and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 413 K for three days. Colorless crystals were obtained after cooling to room temperature with a yield of 27%. Anal. Calc. for $C_{14}H_{15}CuN_2O_7$: C 43.43, H 3.88, N 7.24%; Found: C 43.36, H 3.79, N 7.16%.

Refinement

The H atoms of the water molecule were located in a difference density map and were refined with distance restraints H···H = 1.38 (1) Å, O—H = 0.84 (1) Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$. The N-bound H atom was also located in a map, and was refined with no positional restraints and with $U_{iso}(H) = 1.2U_{eq}(N)$. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

catena-Poly[[aqua{4-[N'-(2,4-dioxo-3- pentylidene)hydrazino]benzoato}copper(II)]-µ-acetato]

Crystal data	
$[Cu(C_2H_3O_2)(C_{12}H_{11}N_2O_4)(H_2O)]$	$F_{000} = 796$
$M_r = 387.83$	$D_{\rm x} = 1.552 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4235 reflections
a = 8.106 (2) Å	$\theta = 1.7 - 28.8^{\circ}$
<i>b</i> = 23.918 (4) Å	$\mu = 1.35 \text{ mm}^{-1}$
c = 8.946 (2) Å	T = 293 (2) K
$\beta = 106.90 \ (3)^{\circ}$	Block, blue
V = 1659.5 (6) Å ³	$0.43 \times 0.28 \times 0.22 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII CCD diffractometer	4235 independent reflections
Radiation source: fine-focus sealed tube	2693 reflections with $I > 2\sigma(I)$

2693 reflection
$R_{\rm int} = 0.034$
$\theta_{max} = 28.8^{\circ}$

φ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -10 \rightarrow 9$
$T_{\min} = 0.594, \ T_{\max} = 0.755$	$k = -31 \rightarrow 29$
8654 measured reflections	$l = -8 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.219$	$w = 1/[\sigma^2(F_o^2) + (0.167P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{max} < 0.001$
4235 reflections	$\Delta \rho_{max} = 0.94 \text{ e} \text{ Å}^{-3}$
226 parameters	$\Delta \rho_{min} = -1.73 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
-0.04150 (6)	0.25987 (2)	0.28607 (6)	0.0311 (2)
-0.2534 (6)	0.28239 (16)	-0.0029 (5)	0.0339 (8)
-0.4039 (6)	0.2997 (2)	-0.1400 (5)	0.0490 (11)
-0.3776	0.2918	-0.2358	0.073*
-0.4245	0.3390	-0.1337	0.073*
-0.5049	0.2793	-0.1375	0.073*
0.1783 (5)	0.33727 (16)	0.4174 (5)	0.0340 (8)
0.3381 (5)	0.37225 (15)	0.4810 (4)	0.0290 (8)
0.4965 (5)	0.36320 (16)	0.4439 (5)	0.0326 (8)
0.5036	0.3340	0.3773	0.039*
0.6407 (5)	0.39724 (16)	0.5056 (5)	0.0331 (8)
	x -0.04150 (6) -0.2534 (6) -0.4039 (6) -0.3776 -0.4245 -0.5049 0.1783 (5) 0.3381 (5) 0.4965 (5) 0.5036 0.6407 (5)	x y -0.04150 (6) 0.25987 (2) -0.2534 (6) 0.28239 (16) -0.4039 (6) 0.2997 (2) -0.3776 0.2918 -0.4245 0.3390 -0.5049 0.2793 0.1783 (5) 0.33727 (16) 0.3381 (5) 0.36320 (16) 0.5036 0.3340 0.6407 (5) 0.39724 (16)	x y z $-0.04150(6)$ $0.25987(2)$ $0.28607(6)$ $-0.2534(6)$ $0.28239(16)$ $-0.0029(5)$ $-0.4039(6)$ $0.2997(2)$ $-0.1400(5)$ -0.3776 0.2918 -0.2358 -0.4245 0.3390 -0.1337 -0.5049 0.2793 -0.1375 $0.1783(5)$ $0.33727(16)$ $0.4174(5)$ $0.3381(5)$ $0.37225(15)$ $0.4810(4)$ $0.4965(5)$ $0.36320(16)$ $0.4439(5)$ 0.5036 $0.33724(16)$ $0.5056(5)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H6A	0.7423	0.3912	0.4796	0.040*
C7	0.6292 (5)	0.43991 (15)	0.6058 (4)	0.0299 (8)
C8	0.4760 (5)	0.44926 (16)	0.6466 (5)	0.0333 (8)
H8A	0.4712	0.4778	0.7158	0.040*
C9	0.3298 (5)	0.41525 (16)	0.5824 (5)	0.0332 (8)
H9A	0.2283	0.4217	0.6082	0.040*
C10	0.9194 (5)	0.54195 (16)	0.8363 (4)	0.0281 (7)
C11	1.0841 (5)	0.53851 (17)	0.7897 (5)	0.0346 (8)
C12	0.8959 (5)	0.58020 (16)	0.9595 (5)	0.0339 (8)
C13	0.7155 (6)	0.5879 (3)	0.9759 (7)	0.0562 (14)
H13A	0.7201	0.6133	1.0600	0.084*
H13B	0.6720	0.5524	0.9978	0.084*
H13C	0.6409	0.6027	0.8804	0.084*
C14	1.2423 (6)	0.5712 (2)	0.8705 (6)	0.0480 (11)
H14A	1.3319	0.5631	0.8233	0.072*
H14B	1.2801	0.5610	0.9790	0.072*
H14C	1.2164	0.6104	0.8612	0.072*
N1	0.7769 (4)	0.47437 (13)	0.6639 (4)	0.0306 (7)
H1	0.872 (6)	0.471 (2)	0.625 (5)	0.037*
N2	0.7779 (4)	0.51093 (13)	0.7725 (4)	0.0307 (7)
01	1.0199 (4)	0.60409 (14)	1.0486 (4)	0.0493 (8)
O2	1.0905 (4)	0.50681 (17)	0.6823 (5)	0.0599 (11)
O3	0.1881 (4)	0.29684 (14)	0.3292 (4)	0.0511 (8)
O4	0.0403 (4)	0.34837 (14)	0.4497 (4)	0.0456 (8)
O5	-0.2621 (4)	0.28883 (13)	0.1365 (3)	0.0411 (7)
O6	-0.1154 (5)	0.26235 (12)	-0.0240 (4)	0.0424 (8)
07	0.0168 (6)	0.18300 (14)	0.2414 (4)	0.0566 (10)
H7A	0.019 (8)	0.1569 (15)	0.305 (5)	0.068*
H7B	0.056 (7)	0.172 (2)	0.169 (4)	0.068*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0339 (4)	0.0265 (3)	0.0328 (4)	-0.00674 (17)	0.0093 (2)	-0.00117 (17)
C1	0.046 (2)	0.0210 (17)	0.033 (2)	0.0006 (15)	0.0104 (18)	-0.0006 (15)
C2	0.051 (3)	0.052 (3)	0.038 (2)	0.014 (2)	0.005 (2)	0.001 (2)
C3	0.040 (2)	0.0279 (19)	0.031 (2)	-0.0096 (15)	0.0056 (17)	0.0025 (15)
C4	0.0317 (18)	0.0214 (16)	0.0314 (19)	-0.0037 (13)	0.0054 (15)	0.0024 (14)
C5	0.038 (2)	0.0241 (17)	0.034 (2)	-0.0007 (15)	0.0091 (16)	-0.0046 (15)
C6	0.034 (2)	0.0295 (19)	0.037 (2)	0.0014 (15)	0.0118 (17)	-0.0041 (16)
C7	0.034 (2)	0.0225 (17)	0.031 (2)	-0.0020 (14)	0.0057 (16)	0.0002 (14)
C8	0.034 (2)	0.0267 (18)	0.038 (2)	-0.0027 (14)	0.0083 (17)	-0.0081 (15)
C9	0.033 (2)	0.0284 (19)	0.040 (2)	-0.0043 (15)	0.0126 (17)	-0.0059 (16)
C10	0.0255 (17)	0.0255 (17)	0.0309 (19)	-0.0021 (13)	0.0044 (15)	-0.0037 (14)
C11	0.0299 (19)	0.0279 (18)	0.044 (2)	0.0012 (15)	0.0082 (17)	-0.0040 (17)
C12	0.034 (2)	0.0268 (18)	0.040 (2)	0.0015 (15)	0.0088 (17)	-0.0029 (16)
C13	0.040 (3)	0.073 (4)	0.057 (3)	-0.001 (2)	0.016 (2)	-0.027 (3)
C14	0.037 (2)	0.046 (3)	0.062 (3)	-0.0148 (19)	0.017 (2)	-0.017 (2)

N1	0.0272 (15)	0.0255 (15)	0.0365 (18)	-0.0016 (12)	0.0054 (14)	-0.0046 (13)
N2	0.0315 (16)	0.0253 (15)	0.0326 (17)	-0.0011 (12)	0.0052 (14)	-0.0024 (13)
01	0.0426 (17)	0.0464 (18)	0.057 (2)	-0.0065 (14)	0.0121 (15)	-0.0261 (16)
02	0.0423 (18)	0.064 (2)	0.079 (3)	-0.0128 (17)	0.0269 (19)	-0.042 (2)
O3	0.0478 (19)	0.0438 (18)	0.061 (2)	-0.0139 (15)	0.0139 (16)	-0.0174 (16)
O4	0.0409 (18)	0.0461 (17)	0.0514 (19)	-0.0123 (13)	0.0162 (15)	-0.0021 (15)
O5	0.0487 (18)	0.0426 (17)	0.0334 (16)	0.0028 (14)	0.0141 (14)	-0.0007 (13)
O6	0.0505 (19)	0.0400 (17)	0.0382 (18)	0.0109 (13)	0.0152 (15)	0.0012 (13)
07	0.105 (3)	0.0278 (17)	0.047 (2)	0.0048 (17)	0.037 (2)	0.0062 (14)
Geometric paran	neters (Å, °)					
Cu107		1 968 (4)	C8-	0	1.41	5 (5)
Cu1 = 07		1.908 (4)	C8-	-C9 110 A	1.41	3(3)
Cu1_05		1.994(3)	C9	-118A H0A	0.93	00
		2.020 (3)	C)–	-119A	0.95	6 (5)
Cul—O6 ¹		2.030 (3)	C10-	—N2	1.34	6 (5)
C1—06		1.281 (5)	C10-	C12	1.48	36 (5)
C1—O5		1.278 (5)	C10-	C11	1.51	3 (5)
C1—C2		1.515 (6)	C11-	02	1.23	6 (5)
C2—H2A		0.9600	C11-	C14	1.49	96 (6)
C2—H2B		0.9600	C12-	01	1.22	28 (5)
C2—H2C		0.9600	C12-	C13	1.52	2 (6)
C3—O4		1.262 (5)	C13-	-H13A	0.96	600
C3—O3		1.265 (5)	C13-	-H13B	0.96	600
C3—C4		1.508 (5)	C13-	—Н13С	0.96	600
C4—C9		1.386 (5)	C14-	H14A	0.96	600
C4—C5		1.433 (5)	C14-	—H14B	0.96	00
C5—C6		1.400 (5)	C14-	H14C	0.96	600
C5—H5A		0.9300	N1-	-N2	1.30	5 (4)
C6—C7		1.379 (5)	N1-	-H1	0.94	(5)
С6—Н6А		0.9300	O6—	-Cu1 ⁱⁱ	2.03	0 (3)
С7—С8		1.410 (5)	07–	-H7A	0.84	(4)
C7—N1		1.422 (5)	O7—	-H7B	0.84	(5)
O7—Cu1—O3		100.84 (16)	C4—	-С9—Н9А	120	.1
O7—Cu1—O5		113.86 (16)	C8—	-С9—Н9А	120	.1
O3—Cu1—O5		124.96 (15)	N2—	-C10-C12	112.	1 (3)
07—Cu1—O6 ⁱ		94.12 (13)	N2—	-C10C11	124	4 (3)
O3—Cu1—O6 ⁱ		116.10 (15)	C12-		123	.5 (3)
05—Cu1—O6 ⁱ		102.99 (13)	02–	-C11C14	118.	2 (4)
O6-C1-O5		119.2 (4)	02–	-C11C10	119.	1 (4)
O6—C1—C2		121.0 (4)	C14-		122	.7 (4)
O5—C1—C2		119.8 (4)	01–	-C12C10	120	.7 (4)
C1—C2—H2A		109.5	01–	-C12C13	120	.6 (4)
C1—C2—H2B		109.5	C10-		118.	7 (4)
H2A—C2—H2B		109.5	C12-	—С13—Н13А	109	.4
C1—C2—H2C		109.5	C12-	—С13—Н13В	109	.5
H2A—C2—H2C		109.5	H13.	А—С13—Н13В	109	.5
H2B—C2—H2C		109.5	C12-	—С13—Н13С	109	.5

O4—C3—O3	121.6 (4)	H13A—C13—H13C	109.5
O4—C3—C4	121.2 (4)	H13B—C13—H13C	109.5
O3—C3—C4	117.2 (4)	C11—C14—H14A	109.4
C9—C4—C5	118.7 (3)	C11—C14—H14B	109.5
C9—C4—C3	117.3 (3)	H14A—C14—H14B	109.5
C5—C4—C3	123.9 (3)	C11—C14—H14C	109.5
C6—C5—C4	121.5 (3)	H14A—C14—H14C	109.5
С6—С5—Н5А	119.2	H14B—C14—H14C	109.5
С4—С5—Н5А	119.2	N2—N1—C7	118.9 (3)
C7—C6—C5	118.7 (3)	N2—N1—H1	120 (3)
С7—С6—Н6А	120.7	C7—N1—H1	121 (3)
С5—С6—Н6А	120.6	N1—N2—C10	120.3 (3)
C6—C7—C8	121.1 (4)	C3—O3—Cu1	103.6 (3)
C6—C7—N1	117.2 (3)	C1—O5—Cu1	108.4 (3)
C8—C7—N1	121.6 (3)	C1—O6—Cu1 ⁱⁱ	134.8 (3)
С7—С8—С9	120.0 (4)	Cu1—O7—H7A	121 (3)
С7—С8—Н8А	120.0	Cu1—O7—H7B	127 (3)
С9—С8—Н8А	120.0	H7A—O7—H7B	110.9 (18)
C4—C9—C8	119.9 (3)		
O4—C3—C4—C9	3.1 (6)	N2-C10-C12-C13	-11.4 (6)
O3—C3—C4—C9	-177.6 (4)	C11-C10-C12-C13	168.9 (4)
O4—C3—C4—C5	-177.5 (4)	C6—C7—N1—N2	-172.2 (4)
O3—C3—C4—C5	1.8 (6)	C8—C7—N1—N2	8.7 (5)
C9—C4—C5—C6	-1.1 (6)	C7—N1—N2—C10	176.2 (3)
C3—C4—C5—C6	179.6 (4)	C12-C10-N2-N1	-178.9 (3)
C4—C5—C6—C7	0.8 (6)	C11—C10—N2—N1	0.8 (6)
C5—C6—C7—C8	0.3 (6)	O4—C3—O3—Cu1	-4.6 (5)
C5—C6—C7—N1	-178.8 (4)	C4—C3—O3—Cu1	176.2 (3)
C6—C7—C8—C9	-1.2 (6)	O7—Cu1—O3—C3	-154.1 (3)
N1—C7—C8—C9	177.9 (4)	O5—Cu1—O3—C3	76.3 (3)
C5—C4—C9—C8	0.2 (6)	O6 ⁱ —Cu1—O3—C3	-54.0 (3)
C3—C4—C9—C8	179.6 (4)	O6—C1—O5—Cu1	-2.5 (4)
C7—C8—C9—C4	0.9 (6)	C2-C1-O5-Cu1	178.9 (3)
N2-C10-C11-O2	2.7 (6)	O7—Cu1—O5—C1	-53.0 (3)
C12—C10—C11—O2	-177.6 (4)	O3—Cu1—O5—C1	71.1 (3)
N2-C10-C11-C14	-176.0 (4)	O6 ⁱ —Cu1—O5—C1	-153.5 (3)
C12-C10-C11-C14	3.7 (6)	O5—C1—O6—Cu1 ⁱⁱ	175.8 (3)
N2-C10-C12-O1	166.9 (4)	C2—C1—O6—Cu1 ⁱⁱ	-5.7 (6)
C11—C10—C12—O1	-12.8 (6)		
Symmetry codes: (i) x , $-y+1/2$, $z+1/2$; ((ii) $x, -y+1/2, z-1/2$.		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…O2	0.94 (5)	1.90 (5)	2.617 (5)	132 (4)
O7—H7A…O1 ⁱⁱⁱ	0.84 (4)	1.91 (4)	2.739 (4)	168 (5)
O7—H7B···O4 ⁱⁱ	0.84 (5)	2.00 (3)	2.774 (5)	153 (6)

Symmetry codes: (iii) -x+1, y-1/2, -z+3/2; (ii) x, -y+1/2, z-1/2.

Fig. 3