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Approximately 10–15% of worldwide human cancers are attributable to viral infection.

When operating as carcinogenic elements, viruses may act with various mechanisms,

but the most important is represented by viral integration into the host genome, causing

chromosome instability, genomic mutations, and aberrations. In canine species, few

reports have described an association between viral integration and canine cancers,

but more comprehensive studies are needed. The advancement of next-generation

sequencing and the cost reduction have resulted in a progressive increasing of

sequencing data in veterinary oncology offering an opportunity to study virome in canine

cancers. In this study, we have performed viral detection and integration analyses using

VirusFinder2 software tool on available whole-genome and whole-exome sequencing

data of different canine cancers. Several viral sequences were detected in lymphomas,

hemangiosarcomas, melanomas, and osteosarcomas, but no reliable integration sites

were identified. Even if with some limitations such as the depth and type of sequencing, a

restricted number of available nonhuman genomes software, and a limited knowledge on

endogenous retroviruses in the canine genome, results are compelling. However, further

experiments are needed, and similarly to feline species, dedicated analysis tools for the

identification of viral integration sites in canine cancers are required.
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INTRODUCTION

An estimated 10–15% of all human cancers are attributed to viruses, including papillomavirus
(PV), hepatitis B virus (HBV), Epstein–Barr virus (EBV), human T-lymphotropic virus, Kaposi
sarcoma–associated herpesvirus, and Merkel cell polyomavirus (1–6). Although individual tumor
viruses exert their oncogenic effects in different ways, a common feature is represented by the
integration of the viral genome into the host, causing gene mutations, chromosome instability,
and genomic aberrations (7, 8). In canine species, only few reports have pinpointed an association
between viruses and tumors, and canine PV integration was described both in squamous cell
carcinoma and transmissible venereal tumor (9–12). Although the presence alone of viral sequences
in tumor genome is insufficient to prove an oncogenic role, viral integration may represent the
first hallmark of the malignant transformation. Indeed, interplay between viral variants and proto-
oncogenes conferring malignancy needs to be proved. This is the case of gammaretrovirus feline
leukemia virus (FeLV) that is widely recognized to be oncogenic, predisposing cats to lymphoma,
and fibrosarcoma (13). The pathogenicmechanisms of FeLV influencing lymphoma transformation
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were previously identified and include common integration sites
nearby proto-oncogenes, resulting in insertional mutagenesis
(14). Conversely, the association of feline immunodeficiency
virus (FIV) in feline lymphoma was reported as a rare event (15,
16), and the pathogenetic role is scarcely known. Furthermore,
FIV-related malignant transformation seems to imply different
mechanisms from those employed by FeLV, and a causal
association has been described only when provirus integration in
tumor DNA is monoclonal (17).

The advent of next-generation sequencing (NGS) has caused a
tremendous impact both on basic and clinical oncology research.
Next-generation sequencing analysis of tumor genetic changes,
transcriptomes, and epigenomes is driving biomarker discovery
for cancer diagnostic and therapy, but it also opens opportunities
for the identification of new associations between tumors and
viruses (2, 8, 18). Oncoviral profiles are obtained from cancer
genome sequencing data, and several algorithms have been
developed to identify viral integration sites (19–23), but only a
few are available for nonhuman host genomes (19, 24). In any
case, the computational approaches are very similar and based
on the identification of one or more reads containing a portion
of nucleic acid sequences uniquely mapping to a viral genome
integrated within tumoral DNA. As costs become less prohibitive,
and methods simpler, veterinary researchers are choosing NGS
over microarrays to study canine tumors, and the recent studies
published on this topic provide an unprecedented opportunity to
study canine virome.

Considering these premises, our study aims at (i) detecting the
presence of viruses of arbitrary types in NGS data from several
canine tumor histotypes; (ii) identifying virus integration sites
as long as viruses merge into the genome and the sequencing
captures the insertion sites; and (iii) evaluating the potential
pathogenic role of the viral presence/integration.

METHODS

First, we have performed a systematic review to retrieve the
current literature where NGS technology was applied to canine
tumors, and if publicly available, we downloaded FASTQ files
of paired-end whole-exome sequencing (WES) and whole-
genome sequencing (WGS) using the SRA toolkit (https://www.
ncbi.nlm.nih.gov/sra/docs/toolkitsoft/). The dataset included 107
lymphomas (25), three transitional cell carcinomas (TCCs) of
the urinary bladder (26), 20 splenic hemangiosarcomas (27), 11
malignant melanomas (28), 18 acanthomatous ameloblastomas
(29), 46 osteosarcomas (30), 22 gliomas (31), 20 mammary
tumors (32), and 28 mast cell tumors (33) (Table S1). The mean
sequencing coverage of each dataset is reported in Table S2.
The viral detection, integration, and mutation identification
were performed using VirusFinder2 software tool implemented
by virus integration site detection through reference sequence
customization (VERSE) (19, 24). Briefly, VirusFinder2 integrates
a mixed strategy of NGS reads alignment. First, raw reads are
aligned to the host reference genome, and then the unmapped
are aligned to a hybrid reference genome for virus detection and
integration (34). In this study, all the sequences were aligned to

the dog genome (CanFam3.1, Sept. 2011, Ensembl release 96).
The virus genomes were obtained from RINS package (35) and
National Center for Biotechnology Information (NCBI) virus
database (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/). In
details, RINS package includes 32,102 viral genomes derived from
all the classes in GenBank (36) and International Committee on
Taxonomy of Viruses retrieved through the NCBI. We included
all partial and complete sequences (n = 16,394) of known
viruses having Canis lupus familiaris as a putative host from the
NCBI virus database. The configuration file was set with default
parameters, except for “sensitivity_level = 2” and “min_contig
length = 200,” which were modified to reach a higher sensitivity
during virus detection. The detailed list of third-party tools
used by VirusFinder2 and an example of configuration file are
provided in Supplementary Methods.

RESULTS

After the preprocessing step, the pipeline of VirusFinder2
follows a two-step procedure: (1) virus detection and (2) virus
integration site detection. The virus detection did not retrieve
viral sequences in TCCs and ameloblastomas. Conversely, several
putative viral sequences were aligned against host unmapped
sequences with high identity (>85%) in mammary tumors
(n = 4), gliomas (n = 1), mast cell tumors (n = 7),
lymphomas (n = 8), hemangiosarcomas (n = 6), melanomas
(n = 11), and osteosarcomas (n = 27). By definition, the
identity indicates similarity between host unmapped and
viral sequences. Further, the data were manually checked
for common bacteria and bacteriophage sequences and when
identified were excluded as result of inaccurate annotation
(37). Also, NGS computational artifacts and common viral
contaminants including Choristoneura occidentalis granulovirus
and Paramecium bulsaria chlorella virus were discarded (38, 39).
The host genome unmapped reads fallen on contigs lower than
1,000 were excluded.

After this filtering process, all the candidate viruses in
gliomas, hemangiosarcomas, and mammary tumors resulted
false positives. Instead, 1 lymphoma, 7 mast cell tumors, and
12 osteosarcomas retained several candidate viruses. The top-
ranking virus candidate was investigated for each tumor based
on percentage of identity, length of the contigs, and number of
reads fallen on contigs (Table S3). Then, the viral integration was
tested, but only three osteosarcomas showed a positive result.
Viruses identified were Meleagrid herpesvirus (HV) 1, Gallid HV
3, and HumanHV 7 (Table 1), but a low confidence was assessed.

Because several herpesviruses were retrieved among the top-
ranking viruses, we manually checked the correspondences.
All the sequences aligned to unspecific homopolymer-rich
sequences, confirming previously published data reporting that
herpesviruses harbor telomeric repeats almost identical to
mammalian telomeres (40–42). Also, a retrovirus was included
in the list, but the sequence resulted in an long terminal repeat
(LTR)-rich sequence, likely corresponding to proviral DNA or
endogenous retroviruses (ERVs).
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TABLE 1 | List of virus integration sites in all the cancer samples.

Sample (1) Chr (1) Position (1) Virus (2) Chr (2) Position (2) No. support reads Confidence

(pair + softclip)

SRR8691727 chr12 72,497,897 AF282130.1__Meleagrid_herpesvirus_1 Viral genome 117,487–117,676 31 + 9 Low

SRR8691785 chr12 72,497,897 NC_002577.1__Gallid_herpesvirus_3 Viral genome 133,794–134,005 73 + 18 Low

SRR8691786 chr12 72,497,897 NC_001716.2__Human_herpesvirus_7 Viral genome 143,544–143,960 27 + 11 Low

Chr, chromosome; 1, attributes related to the cancer sample; 2, attributes related to the virus; pair + softclip, the word pair means the number of paired-end reads whose one end

mapped to the host genome and another aligned to the integrated virus sequence. The word softclip means the number of reads that actually harbor the integration breakpoint within

themselves. Softclip is the total soft-clipped reads that map to the host reference genome plus the total soft-clipped reads that aligned to the virus sequence; confidence: if the number

of soft-clipped reads is sufficient to support an accurate characterization of the locus.

Last, to get insight into the putative viral sequences of
lymphoma, mast cell tumor, and osteosarcoma samples, the
GenBank nonredundant database (ftp://ftp.ncbi.nlm.nih.
gov/blast/db/FASTA/) was interrogated. Correspondences
were obtained only in osteosarcoma, mainly matching with
Macrostomum lignano and Branchiostoma floridae, although
identity was overall low (<55%).

DISCUSSION

In recent years, a significant amount of NGS data has been
produced in dogs, but no studies were conducted to investigate
virome in cancers. Also, several algorithms have been developed
for NGS investigation of virus–host interactions in human
species. In this study, we selected VirusFinder2, which resulted
the most performant software by far. This was similarly
demonstrated in a previous study comparing methods for the
identification of viral integrations in genomes (34). Indeed,
VirusFinder2 was tested on several human cancer genomes
(19, 24) and showed the highest sensitivity and precision in
high-coverage datasets (>60×) compared to other software
able to handle multiple-virus integration. In our dataset, the
tumors were sequenced with a mean coverage higher than 60×,
with the exception of the TCC and melanoma WGS samples
(Table S2). Further, VirusFinder2 integrates nonhuman genomes
representing a significant advantage in veterinary medicine.

Given these premises, in our study, we tested a large WGS
and WES canine tumors dataset, but none of the detected
virus sequences and viral integration sites were reliable, and
this is determined by the low confidence of the integration
results. Indeed, all the detected viruses do not infect the canine
species, and the candidate sequences were mostly unspecific
homopolymer-rich sequences of herpesviruses or LTR-rich
sequences of retroviruses. Few sequences also aligned with
genomes of marine organisms, suggesting a contamination of the
tumor samples.

Interestingly, several sequences were suspected to correspond
to ERVs. Endogenous retroviruses show a ubiquitous
presence in vertebrate genomes comprising up to 5–8% of
the human genome. While the functional effects of ERVs
are well-established, and the vast majority of ERV insertions
are fixed across individuals, the potential contribution to
phenotypic variation is still unknown in dog. Also, degeneration
due to the accumulation of mutations can occur during life

(43, 44). In cats infected by FeLV, a recombination between
endogenous and exogenous viruses can generate strains with
specific pathogenic capabilities (45). The canine genome displays
only a low percentage (∼0.15%) of ERVs compared to other
mammals (46, 47), and this is mainly related to a low number of
repetitive elements in the genome (48). Despite hematological
malignancies are frequent in dogs, and retroviral particles have
been reported both in lymphomas and cell lines (49, 50), no
exogenous retroviruses have been identified in dogs or any other
canid so far. The lack of exogenous retroviruses and the low
number of ERVs are quite surprising mainly because canine
cells are known to enable the replication of noncanid exogenous
retroviruses, and the canine genome lacks the functional
retroviral restriction factor TRIM5α (51). Recent studies have
proposed that the expansion of an endogenous gammaretroviral
lineage might originate from an infection in canid ancestors,
thereby supporting the potential existence of canine exogenous
retroviruses (46, 52). Further studies are needed to confirm
these findings.

A partial explanation for the negative results obtained here
may be the selected dataset that comprised mainly WES data,
implying that sequencing targets covered only exonic regions.
Although retroviruses can integrate randomly or in transcription
units, introns and exons of active genes (5), the majority
of retroviruses, PVs, HBV, and EBV, favor integration into
promoters and transcription start sites of active genes (53–55)
that are rarely sequenced inWES. Here, the integration sites were
retrieved only in WGS samples.

Finally, although this is not the case, the presence alone of
viral sequences in tumor genome is insufficient to prove an
oncogenic role. In humans, several viruses are widely distributed
in the population such as EBV and human HV 6, but not
causing malignancies. A more complicated aspect to solve is the
discrimination of the time point at which viral infections may
have arisen: if infections occur after tumor growth, then they have
no contribution to tumorigenesis. Unfortunately, we could not
expand this aspect considering the negative results.

In conclusion, we have analyzed WES and WGS data derived
from different canine tumor histotypes to detect potential
viral integration sites. Even if previous lines of evidence have
hypothesized a role of viruses in canine lymphoma (56), we
could not confirm this hypothesis. However, similarly to feline
species (57), studies dedicated to identify viral integration sites
in canine cancers are needed, and transmissible venereal tumor
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and squamous carcinoma represent excellent models to further
test VirusFinder2.
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