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Endoplasmic reticulum (ER) stress, which is highly associated with cardiovascular disease, is triggered by a disturbance in ER
function because of protein misfolding or an increase in protein secretion. Prolonged disruption of ER causes ER stress and
activation of the unfolded protein response (UPR) and leads to various diseases. Eukaryotic cells respond to ER stress via threemajor
sensors that are bound to the ER membrane: activating transcription factor 6 (ATF6), inositol-requiring protein 1𝛼 (IRE1𝛼), and
protein kinase RNA-like ER kinase (PERK). Chronic activation of ER stress causes damage in endothelial cells (EC) via apoptosis,
inflammation, and oxidative stress signaling pathways. The alleviation of ER stress has recently been accepted as a potential
therapeutic target to treat cardiovascular diseases such as heart failure, hypertension, and atherosclerosis. Exercise training is an
effective nonpharmacological approach for preventing and alleviating cardiovascular disease. We here review the recent viewing
of ER stress-mediated apoptosis and inflammation signaling pathways in cardiovascular disease and the role of exercise in ER
stress-associated diseases.

1. Introduction

The endoplasmic reticulum (ER) plays an essential role
in controlling various intracellular physiological functions,
including protein translocation, protein folding, calcium
homeostasis, and lipid biosynthesis [1], by stimulating the
signaling networks that control either cell survival or death
when ER transmembrane sensors detect unfolded and mis-
folded proteins. Various pathophysiological conditions dis-
turb ER homeostasis and can lead to the chronic activation
of the unfolded protein response (UPR) in ER lumen,
which causes ER stress. Prolonged ER stress activates three
ER transmembrane sensors and initiates UPR signaling,
which induces oxidative stress, inflammation, and apoptotic
response. It aggravates neurodegenerative disease, cancer,
metabolic disease, and kidney disease [2, 3] and is highly
associatedwith cardiovascular diseases such as cardiac hyper-
trophy, heart failure, atherosclerosis, and ischemic heart
disease [4–7]. In particular, ER stress-induced endothelial cell
(EC) damage and dysfunction exert the negative influences

on cardiovascular diseases through apoptosis and inflamma-
tion [8].

It has been well established that exercise training can
improve EC function and decrease the risk of cardiovascu-
lar diseases by increasing nitric oxide (NO) bioavailability,
diminishing the volume of plaque and vascular viscosity, and
increasing both diastolic coronary perfusion and vascular
reactivity [9, 10]. Numerous studies report that exercise could
effectively improve various ER stress-related pathologies such
as obesity, diabetes, neurodegenerative disease, hypoxia, and
sarcopenia in skeletal muscle, liver, brain, and cardiovascular
systems [11–17]. In this review, we focus on the mechanism
of ER stress-mediated apoptosis and inflammation in car-
diovascular disease, and the effect of exercise on ER stress-
associated diseases.

2. ER Stress and UPR Signaling

The ER is an intracellular organelle covered by an extensive
membrane network and is present in all eukaryotic cells. It
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Figure 1: ER stress-mediated apoptosis and inflammation in cardiovascular disease. When prolonged ER stress occurs, activation of CHOP-
mediated and JNK/p38 MAPK-mediated apoptosis signaling pathways regulate the Bcl-2 family, which controls the balance of pro-
/antiapoptotic signaling, and ER stress-induced apoptosis signaling dampens eNOS expression with the increased oxidative stress. The
IRE1𝛼/TRAF2/ASK1 complex also activates caspase-12 and ultimately induces cell apoptosis. Furthermore, ER stress-mediated NF-𝜅B-IKK
activates NLRP3 inflammasome and mediates eNOS activity. Excessive ER stress and activation of the IRE1𝛼/TRAF2/ASK1 pathway increase
TXNIP activation that subsequently induces NLRP3 inflammasome and reduced eNOS activity. The IRE1𝛼/TRAF2/ASK1 complex also
contributes to the expression of proinflammations that stimulateNLRP3 inflammasome-induced caspase-1 and IL-1𝛽 andUPR-mediated IL-6.
ER stress also activates IL-8, MCP-1, and TNF-𝛼 expression. Ultimately, the accumulation of ER stress-mediated apoptotic and inflammatory
responses decreases the eNOS activity which diminishes NO bioavailability and causes vascular dysfunction.The yellow arrows represent ER
stress-mediated pathway.

is the major site of protein synthesis, protein folding, protein
transport, lipid production, and calcium storage [18]. Multi-
ple biological insults such as calcium and redox imbalance,
viral infection, oxidative stress, and hyperlipidemia lead to
perturbation of ER homeostasis, which consequently initiates
the accumulation of unfolded proteins in the ER lumen that
is called ER stress [19, 20].

The UPR, which is chiefly responsible for determining
cellular death or survival responses in accordance with ER
stress, is designed to restore ER homeostasis by activat-
ing ER-associated protein degradation (ERAD), autophagy,
and cell survival signals [21]. Excessive ER stress, however,
activates UPR and promotes ER stress-associated signaling
cascades that stimulate apoptosis and inflammatory signaling
pathway [22, 23] (Figure 1). The UPR generally senses the
misfolded proteins in the ER and activates each signaling
pathway through three sensors bound to the ER membrane
(Figure 2): PKR-like eukaryotic initiation factor 2𝛼 kinase
(PERK), inositol-requiring protein 1 (IRE1), and activating
transcription factor-6 (ATF6) [24, 25]. In unstressed condi-
tions, the transmembrane proteins bind to glucose-regulated
protein 78 (GRP78 or BiP), a molecular chaperone that
inhibits the activities of these transmembrane proteins [25].
When ER stress occurs, GRP78 dissociates from the three
sensors and initiates the UPR. By the onset of ER stress,

the PERK signaling pathway decreases protein synthesis
by reducing protein load in ER lumen and the activated
PERK phosphorylates eukaryotic initiation factor-𝛼 (elF2𝛼).
Eventually, the process induces cell death via certain gene
families including activating transcription factor-4 (ATF4)
and C/EBP homologous protein (CHOP) [1]. IRE1 promotes
the activation of major inflammatory response factors in
signaling pathways and induces splicing of a transcriptional
regulatory factor in the bZip family, called X-box binding
protein-1 (XBP-1), through its site-specific endoribonuclease
(RNase) function [26]. When ATF6 is released by BiP, it
is translocated and activated after proteolysis in the Golgi
apparatus [27]. In turn, ATF6 activates the synthesis of ER
chaperones and XBP-1. Therefore, the three branches of UPR
signaling (ATF4, XBP-1, and ATF6) are highly activated to
regulate the transcription of ER chaperones in ER stress
that blocks protein synthesis and decreases protein folding
capacity [28, 29].

3. ER Stress-Mediated Apoptosis in
Cardiovascular Disease

ER stress has been highlighted as an important regulator
of cardiovascular diseases [30–32]. The endothelium is the
crucial site to maintain vascular homeostasis and control
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Figure 2: The Chronic effect of exercise on the ER stress-associated apoptosis and inflammation. Regular exercise reduces phosphorylation of
the three ER stress sensors and inhibits or decreases ER stress-associated apoptosis and inflammation signaling pathways. Exercise training
ameliorates ER stress-mediated CHOP signaling, in turn reducing apoptosis. Exercise training also reduces IRE1𝛼-mediated p38MAPK/JNK
and NF-𝜅B-associated inflammasome regulating the expression of caspase-1, IL-1𝛽, IL-6, and MCP-1, mitigates the IRE1𝛼/TRAF2/ASK1
complex that links to caspase-12, and mediates apoptosis in cardiovascular disease. As a result, these signaling pathways systemically mediate
eNOS expression through the decreased apoptosis and inflammation, which increase NO bioavailability and improve endothelial function.
The yellow arrows represent the exercise-induced changes in ER stress-mediated apoptosis and inflammatory pathway.

vascular reactivity via endothelium-derived relaxing factors
(EDRFs) [33]. Endothelial dysfunction is the initial response
in many cardiovascular and metabolic diseases. CHOP, the
most widely investigated biomarker involved in ER stress-
associated apoptotic signaling in cardiovascular disease, is
regulated by anti- and proapoptotic protein of Bcl-2 family
[32]. In atherosclerosis, the UPR fails to control misfolded
proteins in the ER and increases the expression of CHOP
with a progression of atherosclerosis in the aorta. Eventually,
it activates CHOP-induced apoptosis signaling and further
responses [6, 30–32, 34]. PERK/ATF4 and ATF6-dependent
pathways regulate the CHOP-mediated proapoptotic bZIP
transcriptional factor and IRE1-dependent apoptotic signal-
ing is activated through various processes [34, 35]. IRE1
interacts with the TNF receptor-associated factor (TRAF) 2;
in turn, the complex of IRE1 and TRAF2 are associated with
apoptosis signal-regulating kinase 1 (ASK1), which activates
both the c-Jun N-terminal kinase (JNK) and p38 mitogen-
activated protein kinases (MAPK) [35, 36].

The Bcl-2 family of genes is an important apoptotic factor
for controlling the balance of proapoptotic and antiapop-
totic signals when both CHOP and IRE1 are activated [37]
(Figure 2). The Bcl-2 family includes both antiapoptotic and
proapoptoticmembers thatmediate the crosstalk between the
ER and mitochondria. Bax and Bak are the most well-known
proapoptotic members and Bcl-2 and Bcl-x are the most
widely known antiapoptotic members of the Bcl-2 family.
Activating the proapoptotic proteins on the mitochondrial

membrane releases cytochrome-c and causes subsequent
apoptosis induction [38]. Because of the decline ofmitochon-
drial function in ECs via the CHOP-mediated proapoptotic
proteins [39] and the interrupted calcium homeostasis [40],
the levels of reactive oxygen species (ROS) and nicotinamide
adenine dinucleotide phosphate (NADPH) are increased in
ECs in atherosclerosis [41, 42]. It is unclear whether NADPH
oxidases act as upstream or downstream of ER stress-induced
cardiovascular dysfunction. Recent studies report that ER
stress-associated oxidative stress and inflammation suppress
the production of NO and endothelial nitric oxide synthase
(eNOS) activity, both of which protect ECs [8, 30, 43–45].The
ER stress-induced activation of JNK causes oxidative stress
and vascular endothelial dysfunction through repression of
eNOS activity [46, 47].

The caspase-12 protein regulates ER stress-induced apop-
tosis signaling [31, 48] (Figure 2). Two pathways activate
procaspase-12. First, the elevated Ca2+ level in the cytoplasm
activates procaspase-12 in the ERmembrane to form caspase-
12; the process requires calpain that induces activation
of caspase-9 and finally activates caspase-3 and apoptosis
[49]. Second, during ER stress, TRAF2 dissociates from
the complex of TRAF2/procaspase-12 located in the ER
membrane; the process activates caspase-12 and recruits
the IRE1/JNK/TRAF2 complex that modulates ASK1 that in
turn phosphorylates JNK and induces cell apoptosis [50].
Ischemia/reperfusion (I/R) showed the elevated level of
caspase-12 and ER stress markers in myocardium [46, 51–53],
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and the expression of caspase-12 and cleaved caspase-3 were
abnormally altered in the pathological cardiac hypertrophy in
rodent model [54, 55].

4. ER Stress-Mediated Inflammation in
Cardiovascular Diseases

Inflammation is an immunological response to infection or
tissue damage and protects the body from such injuries.
Chronic inflammation aggravates tissue damage, and it can
influence the development of cardiac hypertrophy, heart
failure, coronary artery diseases, and atherosclerosis [56, 57].
ER stress and inflammation signaling pathways are connected
through various mechanisms that can induce cardiovascular
disease (Figure 2). In atherosclerosis, increased PERK and
IRE1/TRAF2 and accumulated ROS activate and augment
inflammatory response [58]. PERK and IRE1/TRAF2 com-
plex can recruit I𝜅B kinase (IKK), which phosphorylates
I𝜅B, resulting in the degradation of I𝜅B and the nuclear
translocation of NF-𝜅B [59]. The NF-𝜅B-IKK pathway is a
key regulator in the induction of inflammatorymediators [59,
60]. Recent studies report that ATF6 also interacts with NF-
𝜅B-IKK, indicating that all three sensors of ER stress (PERK,
IRE1, and ATF6) can induce specific inflammatory responses
through the UPR [61]. Induction of the UPR at the cellular
level increases the expression of inflammatory molecules,
including IL-8, IL-6, MCP-1, and TNF-𝛼, thereby inducing
atherosclerosis [62].Other studies report that TNF-𝛼 andNF-
𝜅B signaling through the IKK pathway can provoke coronary
arteriolar dysfunction [63]. TNF-𝛼 reduces the bioavailability
of NO by increasing the activity of NADPH and downregu-
lating eNOS [63–66]. IL-1𝛽 and TNF-𝛼 are associated with
the increased expression of vascular cell adhesion molecule 1
(VCAM-1) and intercellular cell adhesionmolecule 1 (ICAM-
1) [67]. IL-1𝛽 and TNF-𝛼 also stimulate apoptosis through
promoting the expression of caspase family and inducible
NOS (iNOS) in ECs [68–70].

Other recent studies report that NF-𝜅B, an immuno-
logical mediator, plays a vital role in controlling the NOD-
like receptor family, pyrin domain containing 3 (NLRP3)
inflammasome [71–73]. Notably, IRE1 induces an elevation
of thioredoxin-interacting protein (TXNIP); the elevated
TXNIP promotes inflammation and cell apoptosis by acti-
vating NLRP3 inflammasome that in turn activates caspase-1
to induce the secretion of IL-1𝛽 [73–75] (Figure 2). Activated
caspase-1 is usually observed in ruptured plaques; the survival
rate of patients who have high plasma levels of caspase-1
is much lower than the individuals with a normal level of
plasma caspase-1 [76]. In addition, NLRP3 inflammasome-
induced increases in IL-1𝛽 are known to upregulate proin-
flammatory and proapoptotic genes in ECs [77]. ER stress-
associated TXNIP/NLRP3 signaling is activated in a high
concentration of palmitate-treated endothelial cells and in
the high fat diet-fed mice aorta. It induces the endothelial
dysfunction through enhanced oxidative stress and reduced
eNOS expression [78]. Pharmacological treatment using
AMP-activated protein kinase (AMPK) can improve the
endothelial dysfunction caused by the activation of ER stress-
associated TXNIP/NLRP3; AMPK improves mitochondrial

morphology and endothelial dysfunction by repressingmito-
chondrial ROS-associated ER stress-dependent activation of
the TXNIP/NLRP3 inflammasome [79].

Perturbation of ER stress and UPR leads to a toxic
intracellular accumulation of ROS, a possible cause of ER
stress-associated inflammation [1, 80]. Alteration of PERK
and ATF4 signaling is responsible for ER stress-associated
redox imbalance and affects the disulfide bond formation
(ERO1, endoplasmic reticulum oxidoreductin; PDI, protein
disulfide isomerase) that influences antioxidant activation
in ER [2]. A PERK-mediated Nrf2 cascade impairs the
antioxidant process that stimulates I𝜅B/NF-𝜅B signaling,
resulting in increased inflammatory response of IL-6 and
TNF-𝛼 expression during ER stress [1, 60, 81].

5. ER Stress and Exercise

Regular exercise is considered an effective tool to prevent and
reduce the risk of cardiovascular disease [33]. Endothelial
dysfunction with the reduction of NO bioavailability is a
common symptom of hypertension, obesity, heart failure,
and atherosclerosis [64, 82–84]. Exercise training provides
the numerous positive effects on endothelial dysfunction
and helps maintain cardiovascular homeostasis through
an increase in antioxidative response and a reduction of
inflammatory cytokines expression [10, 56, 82, 85, 86]. The
beneficial effect of exercise on ER stress, however, will depend
on themodality and duration of exercise.There is still insuffi-
cient data to establish the definitive effects of exercise training
on ER stress-associated cardiovascular disease. Therefore,
this section discusses the overall exercise effects on ER stress-
associated diseases.

Chronic aerobic exercise training shows the diverse pat-
terns in the expression of ER stressmarkers (Figure 3). Tread-
mill exercise can improve cardiac function and reduce cardiac
infarction by attenuating the expression of GRP78, DERLIN-
1, p-PERK, p-eIF2𝛼, ATF4/6, XBP1, CHOP, and cleaved
caspase-3 [11, 87]. Treadmill exercise has been shown to ame-
liorate ER stress (p-eIF2𝛼, ATF3, and ATF4) and endothelial
dysfunction (conduit and resistance vessels) in diabetic mice
through a PPAR𝛾-dependent mechanism with an increase in
NO bioavailability [88].The expressions of ER stress markers
(GRP78, p-PERK, p-elF2𝛼, p-IRE1𝛼, p-ATF6𝛼, p-sXBP1, and
p-CHOP), ER stress-induced apoptotic proteins (procaspase-
3, 12, p-JNK, Bax, and Bcl-2), and ER stress-induced
inflammatory cytokines (NLRP3/IL-1𝛽 and proinflammatory
cytokines) were decreased after treadmill exercise in an obese
rodent [12, 13, 15]. Swimming exercise reduced p-PERK, p-
eIF2𝛼, JNK, IkB𝛼, and NF-𝜅B in an obese mice model [13,
15, 89]. However, one study has reported that treadmill exer-
cise training elevated UPR response (PERK, IRE1𝛼) with a
reduction of inflammation (IL-6 andMCP-1) in high fat diet-
induced mice model [90]. After 3 months of combination of
aerobic and resistance exercises training, mRNA and protein
levels ofGRP78, p-IRE1𝛼, and p-eIF2𝛼were decreased in sub-
cutaneous adipose tissue and peripheral blood mononuclear
cells (PBMCs) in obese adult subjects [16].

After mice completed 8 weeks of uphill and down-
hill running, downhill running increased the BiP, ATF6,
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Figure 3: Schematic diagram of the chronic effect of exercise on ER stress and endothelial function. ER stress-mediated apoptosis and inflam-
matory responses are altered by exercise training; (1) CHOP-mediated, (2) IRE1𝛼/NF-𝜅B complex-associated, and (3) IRE1𝛼/TRAF2/ASK1-
associated gene/protein expression of apoptosis and inflammation are downregulated and eventually increase endothelial function by the
elevated NO bioavailability.

p-IRE1-𝛼, and p-PERK expression in the extensor digitorum
longus (EDL) muscle compared with uphill running. The
finding suggests that eccentric contraction-induced muscle
injuries stimulated the ER stress [91]. Furthermore, GRP78
was significantly elevated in both low and high intensity
acute aerobic exercise training in rat model and adolescents
with type 2 diabetic patients [92, 93]. ER stress-related
gene and protein expression (p-PERK, XBP-1s, p-eIF-2𝛼),
respectively, increased but no changes of apoptosis signaling
were found in high fat diet-induced obese and muscular dys-
trophy mice models after 3 or 7 weeks of voluntary exercise
[14, 94]

Short-term aerobic exercise is not sufficient to induce
ER stress adaptation in animal models. GRP78, CHOP,
cleaved/procaspase-12, and ATF3 were not altered after 5

days of aerobic training in rat model, and ER stress-related
protein expression was not affected by one-day swimming
exercise in TLR4-deficient mice [95, 96]. Acute exercise
changes the expression of UPR/ER stress signaling. CHOP-
mediated apoptosis signaling (Bax, Bcl-2, and caspase-3, 12)
was activated with the elevated intracellular Ca2+ after rats
completed one bout of swimming exercise [96]. In contrast,
acute resistance exercise by untrained men elevated UPR
signaling but did not change CHOP expression [97].

Altogether, exercise training has been shown to mitigate
all three ER stressmarkers, ER stress-mediated inflammation,
and apoptosis in metabolic and chronic disease model.
However, published ER stress-associated studies on skeletal
muscle showed that ER stress markers such as GRP78, p-
PERK, p-IRE1, and CHOP were activated and elevated after
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different types of aerobic and resistance training [91, 97–
99]. Interestingly, additional studies reported that the mice
group which had previous training showed the decreased
activation of UPR and CHOP genes compared to untrained
mice after equal amount of treadmill exercise [98]. Also,
the elevated mRNA levels of UPR genes (Bip, ATF4, and
XBP1s) and CHOP, as well as CHOP protein expression after
initial response to chronic contractile activity (CCA), were
attenuated with repeated bouts of CCA in rats [100].

Therefore, these study results suggested that initial
response to exercise training induces ER stress and activate
UPR signaling. However, after prolonged exercise training,
these increased markers are alleviated, which suggested that
the activated UPR signaling is induced to acclimate to
exercise training for cell survival and adaptation.

6. Conclusion

ER, an essential organelle for cell homeostasis, plays a
central role in cell death and survival signaling. While
myriad studies have demonstrated that chronic ER stress
is one of the major contributors to cardiovascular disease,
it is not precisely understood how ER stress modulates
endothelium-dependent vascular function, especially NO
signaling pathway. Exercise training elicits a beneficial effect
on the endothelial function by increasing the antioxida-
tive/inflammatory response in cardiovascular system. Addi-
tional well-designed, controlled studies of the exercise effect
on ER stress-mediated cardiovascular disease and the mech-
anisms that trigger ER stress-associated cardiovascular dys-
function will close the existing knowledge gap and lead to the
development of new therapeutic targets.
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[24] M. Schröder and R. J. Kaufman, “The mammalian unfolded
protein response,” Annual Review of Biochemistry, vol. 74, pp.
739–789, 2005.

[25] A. Bertolotti, Y. Zhang, L.M.Hendershot, H. P. Harding, andD.
Ron, “Dynamic interaction of BiP and ER stress transducers in
the unfolded-protein response,” Nature Cell Biology, vol. 2, pp.
326–332, 2000.

[26] J. Hassler, S. S. Cao, and R. J. Kaufman, “IRE1, a double-edged
sword in pre-miRNA slicing and cell death,”Developmental Cell,
vol. 23, no. 5, pp. 921–923, 2012.

[27] X. Chen, J. Shen, and R. Prywes, “The luminal domain of
ATF6 senses endoplasmic reticulum (ER) stress and causes
translocation of ATF6 from the er to the Golgi,” Journal of
Biological Chemistry, vol. 277, no. 15, pp. 13045–13052, 2002.

[28] J. Wu, D. T. Rutkowski, and M. Dubois, “ATF6alpha optimizes
long-term endoplasmic reticulum function to protect cells from
chronic stress,” Dev Cell, vol. 13, no. 3, pp. 351–364, 2007.

[29] K. Yamamoto, T. Sato, T. Matsui et al., “Transcriptional induc-
tion of mammalian ER quality control proteins is mediated by
single or combined action of ATF6𝛼 and XBP1,” Developmental
Cell, vol. 13, no. 3, pp. 365–376, 2007.

[30] T. Minamino, I. Komuro, andM. Kitakaze, “Endoplasmic retic-
ulum stress as a therapeutic target in cardiovascular disease,”
Circulation Research, vol. 107, no. 9, pp. 1071–1082, 2010.

[31] M.-Q. Liu, Z. Chen, and L.-X. Chen, “Endoplasmic reticulum
stress: a novel mechanism and therapeutic target for cardiovas-
cular diseases,” Acta Pharmacologica Sinica, vol. 37, no. 4, pp.
425–443, 2016.

[32] T. Minamino and M. Kitakaze, “ER stress in cardiovascular
disease,” Journal of Molecular and Cellular Cardiology, vol. 48,
no. 6, pp. 1105–1110, 2010.

[33] S. Di Francescomarino, A. Sciartilli, V. Di Valerio, A. Di
Baldassarre, and S. Gallina, “The effect of physical exercise on
endothelial function,” Sports Medicine, vol. 39, no. 10, pp. 797–
812, 2009.
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