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Abstract

Virtual reality (VR) has seen increasing application in cognitive psychology in recent years.

There is some debate about the impact of VR on both learning outcomes and on patterns of

information access behaviors. In this study we compare performance on a category learning

task between three groups: one presented with three-dimensional (3D) stimuli while

immersed in the HTC Vive VR system (n = 26), another presented with the same 3D stimuli

while using a flat-screen desktop computer (n = 26), and a third presented with a two-dimen-

sional projection of the stimuli on a desktop computer while their eye movements were

tracked (n = 8). In the VR and 3D conditions, features of the object to be categorized had to

be revealed by rotating the object. In the eye tracking control condition (2D), all object fea-

tures were visible, and participants’ gaze was tracked as they examined each feature. Over

240 trials we measured accuracy, reaction times, attentional optimization, time spent on

feedback, fixation durations, and fixation counts for each participant as they learned to cor-

rectly categorize the stimuli. In the VR condition, participants had increased fixation counts

compared to the 3D and 2D conditions. Reaction times for the 2D condition were signifi-

cantly faster and fixation durations were lower compared to the VR and 3D conditions. We

found no significant differences in learning accuracy between the VR, 3D, and 2D condi-

tions. We discuss implications for both researchers interested in using VR to study cogni-

tion, and VR developers hoping to use non-VR research to guide their designs and

applications.

Introduction

The emergence of accessible, affordable virtual reality (VR) technology in the last decade pro-

vides both an opportunity and an imperative for cognitive scientists who study learning and

attention. The opportunity is methodological, as VR enables the controlled presentation of a
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variety of novel experimental situations that would not normally be possible in a laboratory

environment, while also making it possible to collect multiple varieties of behavioral data.

Immersive virtual reality technologies have already seen significant interest with diverse appli-

cations, including investigations of cognitive phenomena such as the color contrast illusion

[1], episodic memory [2, 3], and selective attention [4]. This technology has also made it possi-

ble to conduct neurological studies while exposing participants to a wider variety of stimuli

than possible with regular flat computer screens used in most brain-imaging experiments [5–

7]. The imperative for researchers manifests from the growing excitement over the use of this

emerging technology. While designers have been eager to implement tasks in VR, our under-

standing of how VR does or does not influence cognitive processing is underdeveloped, and

direct comparisons of findings from existing experimental paradigms are needed to discover

whether findings and theories from extant work apply to the unique affordances of virtual real-

ity experiences. The present work looks specifically at learning and information access, two

cognitive processes that the existing literature, as discussed below, suggests might be impacted

by a VR implementation. We note that there have been a variety of technologies that have

been referred to as “virtual reality” in the scientific literature including CAVE Systems [8–10],

Fish Tank systems [11], and Dextroscopes [12, 13]; in the present discussion of VR, we will be

limiting our discussion to the use of immersive virtual reality devices which use head-mounted

displays and motion-tracked hand controllers to immerse the user into virtual environments,

such as the Oculus Rift, HTC Vive, and Valve Index.

While much of the research already produced using VR has been conducted in relation to

industry and education relevant measures such as learning outcomes [8, 14, 15], very little

attention has been given to the actual cognition that takes place while using these devices.

Regardless, there is much in the literature that provides both direct and indirect evidence of

what we might expect in this medium, and so the next section of this paper approaches the

issue from two main angles. Firstly, we examine the evidence that although the tasks imple-

mented are highly similar to their real-world counterparts the underlying cognitive processes

and subjective experiences are distinct. Next, we point to evidence to the contrary where,

despite being a new experience and interface, the cognitive processes which manage the inter-

action are unchanged. After reviewing the literature related to VR, we turn to the category

learning paradigm specifically, the central focus of the research reported. We briefly introduce

the field, summarizing typical findings in this area, showcasing recent developments using eye

tracking to detect learning-related changes in information access behaviors. Using the litera-

ture of this field, we present a case for what we might expect to see in a VR implementation of

this task. No prior work known to the authors has ever examined category learning in the con-

text of a VR interface. Comparing information access behaviors and learning performance in a

typical category learning experiment to behavior observed in a VR implementation of this type

of experiment is then the focus of the empirical work described in this paper.

Same tasks, different experiences

There is a fundamental distinction in the sensory and perceptual properties of VR environ-

ments and those of other presentation methods. Instead of being "in the distance", objects per-

ceived in virtual environments are physically presented on a screen which sits within just a few

centimeters from the eyes [16]. Subsequently, while accommodation (focal distance within the

eye) and convergence (distance from the eyes at which both eyes are foveated) are coupled and

coincident in the real world, VR displays require that these be decoupled and divergent. Cur-

rent VR headsets also have a restricted field of view, requiring more frequent repositioning of

the head and body to access information, rather than simply being able to make eye
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movements to desired areas of interest. This difference alone in display characteristics requires

that users to spend more time acquiring information required for any particular task as they

must make more physical movements to perceive the same amount of information that would

be available freely to someone working in the real world with no constraints to their field of

view. There is also some lag between the user’s self-motion and the resulting optical transfor-

mation of the display, screen shape and/or display optics that can lead to subtle image distor-

tions; and there may be conflict between virtual visual cues and real-world vestibular cues [16,

17]. All of these differences are inherent to the nature of the medium itself, and therefore, even

if the environments being experienced are identical, the physical qualities of the medium cre-

ate a unique experience for VR users that is distinct from the experience of reality.

VR also differs from usual lab conditions. The physical mode of presentation in VR replaces

the entire visual field and moves to match the head movements of its user with any accompa-

nying audio presented through headphones, blocking out potential distractors from the real-

world space and making for a very different experience than the computer monitor setups typ-

ically used to present stimuli in experiments. More immersive setups have been shown to

result in a greater feeling of presence [18, 19], defined in the literature as a participant’s subjec-

tive sense of “being there” within a simulation [18]. Feeling a higher degree of presence while

immersed in VR has been reported to result in higher feelings of engagement with learning

tasks than traditional media [10, 15, 20–22], but whether or not this will have an impact on

actual measures of interest such as learning outcomes is largely contested [23–26]. Regardless,

it is still worth noting that in the context of academic research, having more engaged partici-

pants in an experiment might perhaps lead to less participant fatigue, providing researchers

with better quality data.

Makransky and colleagues [19, 27, 28] consistently find that immersive VR groups often

experience a higher cognitive load while performing VR simulation tasks in comparison to

other methods of instruction, likely extending somewhat from the unfamiliarity of the VR

interface, as well as the design of the virtual environment. They find that this increase in cogni-

tive load often leads to a decline in learning outcomes. However, this same research group also

finds that VR-based instruction, when paired with other evidence-based pedagogical tech-

niques such as generative learning [23, 29], enactment [30], or pre-training [27], do much bet-

ter than non-immersive learning groups in terms of declarative and procedural learning

outcomes.

While it is possible to use a VR headset for immersive visual input coupled with standard

interaction methods such as a keyboard and mouse or a standard gamepad, part of the appeal

of VR is surely the use of tracked hand controllers that allow for more natural grasping and

object manipulation that matches the realism of the immersive 3D environment. This interac-

tion method has extra costs in time and motor requirements however, as maneuvering

through a complex 3D environment and moving one’s arms to interact with that environment

is undoubtedly more effortful than navigating and interacting with a desktop computer or

pen-and-paper learning apparatus. There are competing ideas as to how these motor costs

might interact with cognition and learning-related behaviors, however. On the one hand, the

use of VR may constitute a desirable difficulty [31, 32], wherein the added cost required to

access information leads to increased learning outcomes and faster optimization of informa-

tion access behaviors over time. Work exploring information access costs in attention research

discussed in the next section expands this idea further. On the other hand, this motor cost may

also be framed as an increase to cognitive load [33, 34] during a learning task. In Zhao et al.

[35], participants navigated a virtual reality environment in VR while another group per-

formed the same task on a desktop computer. When testing their memory of landmarks

encountered within the virtual environment, their results found no advantage of VR over the
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desktop-based simulation. Instead, when asked to correctly remember the direction of differ-

ent landmarks, some advantages were found favoring the desktop condition. While this study

was not framed by its authors as a difference in information access costs, the fact remains that

the motor costs inherent to VR-based navigation may have increased cognitive load in partici-

pants, potentially contributing to the findings observed.

Overall, researchers have provided good reasons to anticipate that results of studies utilizing

VR-based materials might produce different results than would be typical in more traditional

mediums of research, and conversely, that findings and patterns of behavior from traditional

lab research of human cognition may not yield accurate templates for behavior of VR users.

New interface, same cognitive processes

Although the previous section suggests that the differences in implementation, both in terms

of immersion and information access cost, might impact learning outcomes and information

access behaviors, evidence can also be mustered to support the opposing view. A review of VR

studies in education by Hamilton et al. [36] examined quantitative measures of learning out-

comes, including test scores, completion times, and retention measures. Out of the twenty-

nine studies reviewed, ten showed no differences in learning outcomes between VR-based

learning and other Desktop-based learning programs, while two showed worse learning out-

comes for the VR conditions in at least some comparisons. The authors concluded that while

in many cases there were measurable improvements in learning outcomes when using VR-

based learning programs, this improvement was not guaranteed. Similarly, a recent meta-anal-

ysis by Angel-Urdinola et al. [14] reported an overall positive effect of VR on learning out-

comes compared to desktop-based learning and pen-and-paper instruction, but also report

that more than half of the studies cited were neutral-positive; VR had no impact on learning

beyond what was possible with traditional learning methods. In one case, Parong & Mayer

[21] found that 2D presentation slide-based learning initially outperformed a 12-minute VR

experience for learning biology concepts. In a follow-up experiment, students were given the

chance to reflect at regular intervals throughout the VR experience to better make up for the

fact that participants in the slide-based condition were able to stop and pause whenever they

needed. Scores in the VR condition improved, eventually to be at an equal level to the partici-

pants who learned from paper slides [21]. While none of these studies address underlying cog-

nitive processes involved in learning, they do suggest that the quality of one’s learning is not

tied only to the modality it is learned in, with the result that test scores are not likely to dramat-

ically go up or down just because content is delivered in VR instead of through a textbook or

desktop computer.

VR-based assessments of cognitive performance have been found to have convergent and

discriminant validity with real-world versions of the same tasks, including the Stroop task

[37], the Posner task [4, 38], the Humphrey Perimeter Examination [39], and various tests of

learning and memory [40]. In Pugnetti et al. [41], a VR-based test of memory was compared to

pen-and-paper analogues, and it was found that for the VR group, the likelihood of recall was

greater for episodic items (such as a pedestrian involved in a near-miss) than operational,

which were in turn more likely to be remembered than task-irrelevant items. The researchers

speculated that VR scenarios, by emulating scenarios that better resemble the real world, could

provide more nuanced data about real world memory performance than traditional pen-and-

paper tests. They reason that VR systems could engage both episodic and semantic memory

systems, enhancing recall of certain items. Likewise, VR exposure therapy for acrophobia has

been shown to produce clinically relevant improvements on measures of anxiety and avoid-

ance [42], showcasing that the experiences had in VR are similar enough for anxiety to be
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reduced in the real world for people who first receive exposure to the object of their phobia in

VR. Taken together, these findings reinforce the imperative for researchers to employ VR in a

wider variety of research areas to see where this technology can continue to bring increased

validity to lab-based experiments.

Despite the physical differences in user interfaces between VR and other computer methods

frequently used during learning, users might still follow the same patterns of information

access behaviors across instantiations. Comparing data from e-sports replay files to data col-

lected from prior eye tracking experiments, McColeman et al. [43] showed that expertise-

related changes in patterns of information access behaviors were similar, regardless of whether

information access was mediated by eye-movements on a static screen or by hand movements

on a mouse and keyboard. Furthermore, patterns of information access behaviors were found

to be similar between entirely different tasks: a simple category learning experiment structure

and the video game StarCraft 2 [44]. Working from a more neurological perspective, Reggente

et al. [45] reviewed research combining fMRI with immersive head mounted VR displays, and

reported that areas of the brain traditionally associated with spatial navigation in the real

world were also active during VR-based tasks in many of the studies reviewed. These findings

suggest that information access and learning interact in predictable ways regardless of changes

in the physical task interface. Eichert et al. [46] considered whether language-driven anticipa-

tory movements recorded in regular eye tracking research could be seen in the behavior of par-

ticipants using VR, and again found that findings from previous research replicated well in the

VR environment. Overall, these findings have prompted a great deal of optimism that models

of cognition formed in laboratory settings will increase in ecological validity as improvements

in VR allow for the presentation of increasingly realistic scenarios within the controlled space

of a lab, without fundamentally altering the nature of the cognitive processes involved due to

the use of immersive VR.

Category learning

The category learning paradigm has experimental antecedents predating the cognitive sciences

as a whole [47, 48]. Having been an active area of research for over a century, category learning

provides a set of well documented methodological implementations and stable findings [43,

49, 50]. It asks participants to classify visual stimuli presented one at a time into one of several

categories [51, 52]. Corrective feedback is typically given after each category response, helping

the participants learn to associate each stimulus with their respective categories. Some category

learning studies investigate how participants alter their information access behaviors over time

as they learn to be more efficient at the task. To do this, researchers sometimes use eye tracking

as a tool to record overt attention, allowing researchers to identify what a participant is looking

at over the course of the experiment (e.g., Blair et al. [53], Kruschke et al. [54], Rehder and

Hoffman [55]). Overall, the category learning task is a sweep through the cognitive system,

tapping into information access, attention, rule-use, decision-making, learning, and memory;

it is thus an excellent paradigm for comparing cognitive processes across different mediums.

Category learning tasks tend to provide reliable patterns of results. Typically, most partici-

pants learn the stimulus-category relationships within 30–60 minutes (a couple hundred tri-

als), improving their reaction times and accuracy, and taking less time during the feedback

stage to review their answer before moving on to the next trial [56]. There are common infor-

mation access patterns: participants make fewer and shorter fixations to stimulus features as

learning progresses [43, 55] and ignore features not relevant for classification. These strategies

lead to a more optimized allocation of attention [53]. The speed and magnitude of these

changes depend on the difficulty of the task: more complex categories are learned more slowly,
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and more complex patterns of feature reliability, such as increasing the number of irrelevant

features, leads to less optimized information access behavioral patterns [43, 53].

Lab studies of category learning have shown that increasing the cost of accessing informa-

tion can contribute not only to improved category learning, but also to more optimal alloca-

tion of attention [57]. Meier and Blair [58] manipulated information access cost in a category

learning task. In the high access cost condition, participants had to wait 3 seconds for the stim-

ulus features they selected to be revealed, while those in the low-cost condition had no delay to

reveal features. They found that participants in the high access cost condition more quickly

favored efficient information access strategies more than those in the low-cost condition. Like-

wise, over a series of 4 experiments, Rajsic et al. [59] demonstrated that increasing information

access costs resulted in participants learning to make more optimal decisions when choosing

which features to look at. Specifically, in experiment 3, they added additional motor-costs to

each fixation by requiring mouse movements to the stimulus feature to uncover the informa-

tion at that location, while the no-cost group could simply look around the screen without

needing to use the mouse to uncover stimulus features. They found that even this small

increase in motor cost was enough to exaggerate the rate at which optimal information access

patterns were adopted by participants. Besides encouraging a more memory-based strategy,

access costs also affect how people plan when problem solving [60–62]. Morgan et al. [61]

demonstrated that increasing information access costs made learners more resilient to inter-

ruptions during a learning task, with the highest delay involving both a mouse movement as

well as a delay. While these studies tout the positive impact of information access costs, some

studies outside of category learning have shown that memory-based strategies encouraged by

higher access costs can result in more recall errors compared to when information is more eas-

ily accessible [63, 64]. As such, it seems that care must be taken to ensure that delays in access

to task-relevant information are constructed in such a way so as to maximize performance,

while not being so interruptive as to negatively impact learning outcomes.

Turning back to the current work, despite growing enthusiasm regarding the use of VR in a

wide variety of industry and academic applications, much is still unknown about the degree to

which prior models of cognition will apply within immersive VR environments, and when/

how the use of VR will actually impact learning behaviors and information access patterns.

The current research project seeks to establish whether the predictions of previous researchers

have any traction in the context of a category learning experimental paradigm. If findings

from previous studies do not replicate in a VR version of this experimental task, then models

of attention and learning acquisition may have to be revised or appended to account for how

the difference in medium impacts learning. Alternatively, if the findings of previous research

do replicate well in an analogous virtual reality task, then pre-existing models of information

access behaviors and learning outcomes within the category learning domain should still

remain predictive of participant performance within VR based research, and can still be relied

on.

Working within the framework of the category learning paradigm, the present study com-

pared a 2D eye tracking experiment to analogous 3D desktop-based and immersive VR imple-

mentations of a category learning task. We used a relatively straightforward category structure

with two relevant and one irrelevant visual feature which is displayed in Fig 1. The two relevant

features together predict which category the stimulus belongs to, while the third, irrelevant fea-

ture does not give the participant any useful information about which category this particular

stimulus belongs to. This category structure is sufficiently simple enough to allow participants

to master it within the experiment run-time, and the irrelevant information present in each

stimulus gives participants a reason to optimize their information access behaviors to only

consider information that actually helps with task performance [43, 58]. The category structure
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is mapped onto 3 versions of a category learning task, each differing only by modality of pre-

sentation. A 2D version of the task largely emulates the procedures of typical category learning

research done previously, while a 3D version of the stimulus is presented on either a desktop

computer screen, or in an immersive VR headset. Data on learning outcomes and information

access behavior typically used in category learning research are then collected within each of

these 3 versions of the task and are used to compare whether or not performance and informa-

tion access behaviors adopted in VR during learning follow the same kinds of trends typically

observed in prior category learning research.

Methods

Participants

The participants were 179 undergraduates who were recruited from Simon Fraser University

in Canada. They received course credit for their participation. All participants had normal or

corrected to normal vision. This study was approved by the Simon Fraser University Office of

Research Ethics and was deemed to be minimal risk (Study Number: 2018-s0444). All partici-

pants provided written informed consent and those in the VR condition were told about the

possibility of motion sickness. Each participant was given instruction on how to withdraw

from the experiment if they experienced any discomfort.

Conditions and outcome variables

Participants were randomly assigned to one of three conditions: a 3D condition where stimuli

were viewed on a standard Windows 10 desktop system with a 22 inch color monitor and a

standard gamepad controller was used to manipulate the stimuli to reveal features and select

Fig 1. Example stimulus features and category structure. Each of the four categories can be uniquely determined

from the value of features 1 and 2, while feature 3 has no bearing on the category. Optimal information sampling is

thus viewing features 1 and 2, and ignoring feature 3.

https://doi.org/10.1371/journal.pone.0275119.g001
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categories (n = 56), a VR condition where participants viewed stimuli using an HTC Vive

headset and used HTC Vive hand controllers to manipulate the stimuli to reveal features and

select categories (n = 58), and an eye tracking condition (2D) where stimuli were presented on

a standard Windows 10 desktop with a 22 inch screen using a Tobii X120 eye tracker to iden-

tify which features were being viewed, and a standard gamepad controller to select categories

(n = 65). In accordance with the prediction that higher information access costs would impact

learning-related information access behaviors, the conditions could also be described as high

(VR), medium (3D), and low (2D) cost conditions.

To measure the degree to which learning outcomes and information access behaviors are

impacted by modality, a number of variables which co-align with measures typically gathered

during category learning experiments [43, 49, 55] were used. To capture each modality’s

impact on learning outcomes in a category learning experiment, we examine both accuracy

and response times to assess both proficiency and efficiency in task performance. Patterns of

information access behaviors were also of interest, and so we also examine time spent on each

stimulus feature, the number of times individual features are examined, as well as the degree to

which these fixations are optimized to prioritize relevant information over irrelevant informa-

tion. Lastly, we also record the amount of time spent examining trial feedback to partially cap-

ture the degree to which participants make use of feedback when learning to categorize

stimuli.

Stimuli

In each condition, participants learned to categorize stimuli with three binary-valued features

into four categories (see Fig 1). Two of these features were useful to determine the category of

the stimulus, while the third was irrelevant to categorization. In all conditions, stimuli were

simple geometric figures of different colors. Location and relevance of each symbol remained

constant across the experiment for each participant but were counterbalanced across partici-

pants to reduce any potential bias by location or color. Cube configurations were matched

across conditions so that each of the VR, 3D, and 2D conditions contained approximately the

same location and relevance combinations.

As can be seen in Fig 2, stimuli for the 3D condition and the VR condition resembled cubes

with indentations in the sides which contain the features from Fig 1. Because of the indenta-

tions, participants could only see one symbol at a time, no matter how they rotated the cube.

To maintain the same three symbol category structure, symbols were mapped to axes of the

cube rather than sides. In other words, the same symbol was visible on the two opposing sides

Fig 2. A graphical representation of a stimulus cube. The stimulus cube initially spawns in a position where none of the three features can be seen. By

rotating the cube each of the three features can be seen in turn. The wells prevent more than one feature from being visible at a time. Note that opposing sides

of the cube display the same feature.

https://doi.org/10.1371/journal.pone.0275119.g002
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for each axis. The cube was locked into a static position and could only be rotated—it could

not be picked up or otherwise manipulated. In the VR condition, the cube was rotated with

physical movement of the HTC Vive hand controllers, while in the 3D condition, the direction

buttons on a standard gamepad controller rotated the cube. In the 2D condition, a flat 2D tri-

angular object was used, with each stimulus feature being positioned at one of the three points

of the triangle.

Procedures

In the 3D and 2D conditions, participants were seated at a computer in an enclosed testing

booth. Both conditions used handheld gamepad controllers (Logitech F310) with layouts

roughly similar to the standard PlayStation DualShock controller series. Left and right shoul-

der buttons plus the triggers on the controller were used to select responses during each trial,

and in the 3D conditions, the directional pad was used to rotate the stimulus cube. The VR

condition of the experiment used an HTC Vive headset and HTC Vive hand controllers. These

hand controllers were used to interact with the digital environment. In this condition partici-

pants were seated in an open testing area and were not required to move, aside from rotating

the stimulus cube by colliding their hand with the stimulus cube to push it in the desired direc-

tion, and selected responses by reaching out to the desired choice-button and pulling the trig-

ger on the controller used to touch the choice-button. Images of the controllers used in each

condition can be seen in Fig 3 (adapted from [65, 66]).

After signing an informed consent form, the start of the experiment featured a tutorial

which presented each participant with a short series of practice trials and a chance to ask the

experimenter for guidance if a participant had trouble understanding the controls as described

in the previous paragraph.

Each trial began when the participant pressed the “next trial” button which was always pres-

ent on screen, either by pressing the appropriate gamepad button (for both the 3D and 2D

conditions), or by positioning one of the HTC Vive hand controllers and clicking the trigger

button in the VR condition. When this button was pressed, the stimulus appeared, and partici-

pants were allowed unlimited time to examine the stimulus. In the VR and 3D conditions, the

stimulus features were revealed by rotating the cube to desired side, while in the 2D condition,

Fig 3. The controllers used to make responses in each condition. (A) Image of the Logitech F310 controller used in

the 2D and 3D conditions (B) Image of the HTC Vive hand controllers used in the VR condition.

https://doi.org/10.1371/journal.pone.0275119.g003
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all features could be viewed by looking at the stimulus as it appeared in front of them (see Fig

4). When participants decided which category the stimulus belonged to, they reported their

guess either by using the bumpers and triggers on the gamepad (2D and 3D conditions), or by

reaching out to the appropriate button in VR and pressing the trigger on the Vive hand con-

troller. After responding, they received feedback on their choice. If they chose the correct cate-

gory, the correct category label for the chosen category (A, B, C, or D) turned green. If their

answer was incorrect, the category label that they selected turned red (Shown in Fig 4 for the

VR condition), in addition to the correct category label turning green. No time limits were

used during the feedback phase, and participants could continue examining the stimulus as

desired until they were ready to continue to the next trial. Once they were ready, they pressed

the next trial button and were immediately sent to the next trial. The experiment ended upon

completion of 240 trials or after 30 minutes, whichever came first.

Calculation of dependent measures

Learning outcomes. Firstly, to capture learning outcomes, Accuracy and Response Time

were used. Accuracy is defined as the proportion of correct responses made during each trial

block. As in prior research, participants must reach a criterion peak performance of 24 correct

trials in a row to be included in the analysis. By limiting the analysis to these participants, this

accuracy measure provides information on the swiftness with which any particular group

reaches that peak, as well as any baseline improvements offered by any given modality from

the beginning of the experiment.

Response Time refers to the average time taken to make a categorization response after the

stimulus has appeared.

Information access behaviors. Information access behaviors are abundant in any learn-

ing task. Of interest, we examine attentional optimization, time spent on feedback, and the

average number and duration of individual fixations made prior to each category choice.

Attentional Optimization reflects the degree to which a participant emphasizes sampling

task-relevant information during each trial. The measure is the difference in average time

spent fixating relevant and irrelevant features over the total time spent fixating stimulus fea-

tures. The measure ranges from -1 to 1. A participant spending all their time on irrelevant fea-

tures would have an Optimization of -1, and all their time on relevant features would have an

Optimization score of 1. If the participants spend equal time on all features, fixating the two

relevant features for 1 second, and the irrelevant feature also for 1 second, they will have an

Optimization score of 0, as the mean time spent per relevant feature and irrelevant feature was

equivalent. As with accuracy, the trial-by-trial score was then averaged across trial blocks.

Fig 4. The participants’ view in the VR, 3D, and 2D conditions. (A) An example screenshot of the view for

participants in the VR condition. Specifically, this showcases the participant’s view at the beginning of each trial. No

stimulus features are visible. (B) An example screenshot from the 3D condition showing the participant’s point of view

during the feedback phase. Participant’s choice shown in red, correct answer shown in green. Participant’s choice

lights up in green if they answered correctly. (C) The 2D stimulus as presented to the 2D group. Symbols and category

structure are the same across all three conditions.

https://doi.org/10.1371/journal.pone.0275119.g004
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Following the category choice, Feedback Duration is captured to examine how long partici-

pants in each condition spend examining the feedback received after each trial before choosing

to move on to the next trial.

To more closely examine how attention-related information access behaviors change over

time, fixation durations and fixation counts were captured in all conditions to measure how

long and how often individual stimulus features were fixated on during each trial block. For

the 2D condition, these fixations were recorded by our eye trackers, and in the 3D and VR

conditions, these were recorded using the formulas described in the preceding section.

Detecting fixations. The symbols used in the 2D condition were identical to the VR and

3D conditions except that all symbols were visible to the participant at once. Fixations in the

2D condition were detected by analyzing gaze data recorded by a Tobii X120 eye tracker

placed below the computer screen with a sampling rate of 60Hz, and a spatial resolution of

0.5˚. Participants were positioned 60cm away from the device. Fixations were extracted by

mapping gaze to the known location of the symbols using the method described by Salvucci

and Goldberg [67] with a temporal threshold of 75ms, and a spatial threshold of 1.9˚. The eye

tracker was calibrated for each participant.

As a parallel to eye fixations used in standard eye tracking category learning research, we

defined fixations in the 3D and VR conditions based on which stimulus feature was visible to

the participant at any one time. Following previous work from our lab [44], we focus on infor-

mation access behaviors rather than pure attentional allocation. Bringing a symbol into view

by manipulating the cube has the same high-level function of making it available to process as

making an eye movement or shifting one’s viewscreen across the map in a game of StarCraft.

Properties of the Unity environment used to program the experimental interface gave us

enough information to detect whether a feature was visible at any given time. When symbols

came in and out of view, we logged which symbol was visible and for how long. It was not pos-

sible for participants to view more than one symbol at a time. To detect when symbols were in

view we used the angle of the cube faces, as shown in Fig 5. In the Unity engine, the main cam-

era represents the view of the player, and each face of a cube is identified by an axis number.

The angle of each axis to the viewing plane of the main camera can be calculated using the fol-

lowing C# code:

angle = (int) Math.Abs(Math.Round(Vector3.Angle (player.transform.forward, transform.

right)) - 90.0)

Where player.transform.forward represents the plane of the main camera and transform.

right represents one of the axes of the cube (the other axes are transform.forward and trans-
form.up).

The raw angle measurement provided by Unity ranges from 0 to 180 degrees. To account

for instances where the far side of the cube, which had the same symbol, was visible to the par-

ticipant, the calculated angle was normalized to range from 0 to 90 degrees. At 0 degrees the

symbol is completely invisible to the participant and at 90 degrees the symbol is directly in

view. Testing showed that the minimum viewing angle for a symbol to be visible was 56

degrees. The calculated angles for each axis were compared to identify the axis with the greatest

angle relative to the camera (i.e., the calculated angle closest to 90 degrees). If that axis was

above the minimum threshold of visibility the participant was deemed to be viewing the corre-

sponding symbol. Only one axis, and therefore, only one symbol could be viewed at any given

time. The 3D condition used the same angle calculation as the VR condition, but with the

computer screen representing the main camera plane instead. By calculating the viewing angle

relative to the position of the camera view, only instances where the player camera is actually

facing and mainly centered on a particular stimulus feature are captured, and so this approach
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also detects when participants are looking away at the response buttons or other irrelevant

objects in the environment.

A JavaScript Object Notation (JSON) encoded data file, shared by all experimental condi-

tions, was used to map symbols to axes. This data file contained an exhaustive enumeration of

every cube/category mapping repeated for each possible cube orientation. Within each condi-

tion, individual participants viewed cubes with unique orientations and category mappings

which were randomly selected from the data file.

Exclusions

Participants who failed to meet the required learning criteria of 24 correct responses in a row

were excluded from the final analysis. Among the VR group, 32 non-learners were excluded.

Of these 32 non-learners, 6 dropped out after reporting physical discomfort using the VR sys-

tem. There were 30 non-learners excluded from the 3D group. In our 2D sample one partici-

pant dropped out after reporting dizziness, and an equipment failure resulted in only 8

participants having complete data sets which also met the criterion point. Despite the missing

data, close inspection of the data in comparison to another category learning experiment using

the same structure [56] yielded no evidence that these data came from a different population

distribution for any of the variables of interest. Because of the similarities between our eye

tracking sample and other category learning experiments, data excluded due to equipment fail-

ure was deemed missing at random, ruling out this exclusion as a source of bias in the models.

Results

We compared our three conditions on measures of learning outcomes and information access

behaviors. We used R [68] with the lme4 package by Bates, Maechler and Bolker [69] to

Fig 5. The axis angle is calculated to reveal which feature is in view. The participant rotates the cube about a central

point. As the cube is rotated relative to the position of the participant view, features are exposed inside the wells. As the

cube is rotated, the axis angle changes. This can be used to determine when a feature is visible to the viewer. At 56

degrees of rotation, the feature begins to be viewable to the participant.

https://doi.org/10.1371/journal.pone.0275119.g005
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perform linear mixed effects analyses of the relationship between the condition and each of the

measures used. The fixed effects used in each model were the trial bin (bins 1–10) and the con-

dition (2D, 3D, and VR). Interaction effects between bin and condition were also considered

in each model. Subject ID was used as a random intercept. The largest model for each depen-

dent variable followed the formula: DV ~ Bin + Bin2 + Condition + Bin:Condition + Bin2:Con-

dition. All significance tests were done by performing a likelihood ratio test comparing models

where the factor is present to ones where the factor is absent. Using this approach, we are able

to compare both the overall differences between groups through main effects, as well as differ-

ences in the rates of change across experiment bins via the interaction effect in each model.

All variables of interest were found to have significant changes over the course of the exper-

iment, indicating an effect of practice for all three groups. Bin squared (a quadratic effect) was

added to each model to better describe the curvilinear nature of each group’s learning curve.

As expected, a significant quadratic effect on bin was found for all variables of interest: accu-

racy (χ2 = 218.21, p<0.001), optimization (χ2 = 84.65, p<0.001), response time (χ2 = 130.32,

p<0.001), feedback duration (χ2 = 131.48, p<0.001), fixation duration (χ2 = 49.01, p<0.001),

and fixation count (χ2 = 77.32, p<0.001). This indicates that all groups improved with practice,

while the following analyses focus on the individual impact of each condition in addition to

practice effects for each variable of interest.

Learning outcomes

As can be seen in Fig 6A, no differences were found between the conditions in terms of base-

line improvements to accuracy (χ2 = 4.043, p = 0.133). There were also no differences found in

the interaction effect (χ2 = 9.012, p = 0.173). Everyone who reached the criterion point gener-

ally learned the category structure in roughly the same amount of time and improved at

approximately the same rate.

Response time data for all conditions are shown in Fig 6A, and clear differences can be seen

in the different conditions. The VR group and the 3D group were similar to one another; the

Fig 6. Accuracy and response time results. (A) Accuracy as a proportion and (B) response times across the 10 bins, measured in milliseconds, by condition.

https://doi.org/10.1371/journal.pone.0275119.g006
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participants in the 2D group generally spent much less time on each trial before making a

choice (Fig 6A). Our analysis confirms these differences: we found a significant effect of the

condition (χ2 = 12.339, p = 0.002) with a significant interaction as well (χ2 = 40.32, p<0.001),

but only the 2D condition stood out as different—faster, and with a lower peak. Between the

VR and 3D groups, no difference was found in terms of response time.

Information access behaviors

As for information sampling and the Optimization measure, while we found no main effect of

condition (χ2 = 0.734, p = 0.693), there was a significant interaction between bin and condition

(χ2 = 33.489, p<0.001). As seen in Fig 7A, the participants in the VR and 3D appear to opti-

mize their information sampling faster than their 2D counterparts, though the 2D condition

achieves greater Optimization by the end of the experiment.

When receiving feedback on their choice, there were no differences in how long each of the

groups spent considering feedback on their choices (see Fig 7B). Statistically, there was no

effect detected based on condition (χ2 = 3.818, p = 0.148), nor was there a significant effect for

the interaction (χ2 = 5.048, p = 0.282). Despite the different motor requirements for each con-

dition, there were no discernable differences in the amount of time any group spent to review

the correct categorization for each trial.

Response times conflate the number and duration of fixations–as well as any time spent not

fixating features–so we plot fixation count and fixation duration separately to get an idea of

how feature viewing might be different across conditions (see Fig 8A and 8B). The effect of

condition on the number of fixations per trial was significant (χ2 = 13.938, p<0.001), with a

significant interaction as well (χ2 = 15.954, p = 0.003). As can be seen in Fig 8A, Participants in

the 2D condition started with fewer fixations on average and maintained a flatter curve. People

in the 3D condition started with more fixations than the eye tracker participants, but eventu-

ally reached the same lower asymptote as the 2D group. Lastly, the VR group started with the

most fixations and did not reach the lower fixation counts of the other two groups.

Fig 7. Attentional optimization and feedback duration by condition. (A) Information access optimization ranging from -1 to 1 (see text for calculation) and

(B) time spent looking at feedback in between trials across 10 bins, measured in milliseconds, by condition.

https://doi.org/10.1371/journal.pone.0275119.g007
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The fixation durations were shorter for participants in the 2D condition than for partici-

pants in the 3D and VR conditions, which were similar to one another (see Fig 8B). Our mod-

els showed that the effect of condition on fixation durations was significant (χ2 = 39.148,

p<0.001), as well as the interaction effect (χ2 = 33.827, p<0.001). The 3D and VR conditions

were relatively close in terms of time spent on each side of the stimulus cube, yet participants

in the 2D condition were far quicker than the other two, with an approximately flat line across

the ten bins indicating that these people generally spent the same amount of time on each fea-

ture across the duration of the experiment.

Discussion

Virtual Reality offers unique opportunities and challenges to both researchers of cognition,

and designers of VR tools and environments. The unique immersion and interaction methods

characteristic of VR have potential to impact both learning outcomes and information access

behaviors by increasing immersion and through the costs, in time and energy, of accessing

information. The present study compared learning outcomes and information access behav-

iors on a category learning task between three groups: one presented with 3D stimuli while

immersed in the HTC Vive VR system, another presented with the same 3D stimuli while

using a flat-screen desktop computer, and third presented with a 2D projection of the stimuli

on a desktop computer while their eye movements were tracked. Our aim was to assess the

impact of immersion and access costs on learning outcomes and information access behaviors,

to better understand the impact of VR on cognition.

We found clear evidence of strong similarities across all three task implementations. First,

all the expected qualitative trends for both learning outcomes and information access behav-

iors were obtained in all conditions. Over the course of the experiment, accuracy and optimal

sampling of feature information both increased in all conditions. The number of fixations per

trial, the duration of those fixations, and the overall response times for both the response and

Fig 8. Fixation counts and average fixation durations. (A) Number of fixations per trial averaged for each bin, by condition. (B) Average fixation length in

milliseconds for each bin, by condition.

https://doi.org/10.1371/journal.pone.0275119.g008
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feedback phases of each trial decreased in all conditions. This finding is in line with the

medium-agnostic nature of information sampling observed in McColeman et al. [44] and sug-

gests that findings and insights from McColeman et al. [43] on learning outcomes and infor-

mation access behaviors in category learning should map cleanly onto VR and 3D

implementations of these cognitive tasks. Overall, then, the general patterns in learning out-

comes and information access behaviors found in extant category learning research replicate

well in both 3D and VR implementations.

With respect to learning outcomes, we found no evidence that participants experienced dif-

ferent learning curves in terms of accuracy across the three versions or the task. This stands in

contrast to previous reported findings both in terms of the alleged learning benefits of VR, and

in terms of performance gains facilitated by increased information access costs [57]. This find-

ing is in line with the numerous neutral-positive findings reported in Angel-Urdinola [14] and

offers further evidence that switching mediums is not sufficient to improve learning outcomes.

However, individual differences have also been found to have impacts on the degree to which

VR is capable of having a positive impact on learning outcomes [70–72]. In studies which cap-

tured more information about the individual differences between participants, the positive

impacts of VR were only able to outpace the learning outcomes of other instantiations when

mediating differences between participants were taken into account. For instance, Sun, Wu,

and Cai [72] found that learners with low spatial ability benefited the most from VR-based

learning, while students with high spatial ability did no better in VR than with paper-based

learning. It is possible, then, that there are subtler mediating variables influencing learning,

but our findings stand with those reviewed in the introduction as evidence against the idea

that VR grants a broadly applicable learning advantage.

While there were strong similarities across implementations of the task in terms of learning

outcomes and patterns information access behaviors, there were also differences large and

small. By far the most salient is that overall, the 3D and VR versions of the task yielded much

slower response times. One might be tempted to explain difference in learning outcomes

because accessing the information by rotating the cube (in 3D and VR) is a slower process, but

participants also had longer Fixation Durations in these conditions, indicating that they spent

longer periods of time examining each feature, and so examining this variable as a learning

outcome without also considering information access behaviors cannot fully explain our

results. Information access behaviors also differed in other ways. Another difference between

conditions was that the VR condition had a higher number of fixations than the other two con-

ditions. This may be due to the novelty of VR [73]. Anecdotally, many participants reported

never having tried VR before participating in our study. The novelty of moving one’s arm in

the real world and having that translate to a virtual experience is quite appealing. Because

rotating the cube was the only interactive experience within the experiment, this may have

encouraged an increase in fixations as the generally pleasing nature of interactions with the

cube in VR may have led participants to enjoy the experiment enough to not wish to rush

through the trials. Indeed, Jensen and Konradsen [15] and Farra, Smith, & Ulrich [22] contend

that the enthusiasm of participants in VR-based learning tasks may be partly driven by the

duration of the tasks involved, as most studies only analyzed learning outcomes after a single

learning session. It is possible that, with more exposure to the interface, the novelty effect

would wear off and participants’ engagement and any benefits that come with it, might

decrease to more "normal” levels.

Optimization of information access behaviors was not equivalent across conditions, and

the VR and 3D conditions, while exhibiting no overall differences, had a different learning tra-

jectory from the 2D group, which showed less optimization of information access behaviors

initially but greater Optimization for the 2D group by the end. This is partly consistent with
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our prediction that higher access costs should lead to more optimal information sampling ini-

tially but warrants some caution. First, there is no real advantage for VR over the lesser cost of

the 3D condition, which goes against the prediction that higher information access costs, mov-

ing an entire arm vs. pressing buttons with a thumb, would lead to higher optimization. Sec-

ondly, the 2D condition has higher levels of Optimization by the end, which was not

predicted, as this group, being the lowest cost condition, was predicted to have the worst Opti-

mization. These differences are difficult to explain as the possibility that in VR looking around

is more fun–which is consistent with our findings of higher fixation counts in VR–leading to

lower overall optimization seems at odds with the 3D condition results of a smaller increase in

fixation counts that fades by the end. It is unclear what elicits these differences, and more

research is needed, at the very least to replicate this result.

Overall, the change in access cost did not seem to have a strong, orderly effect in our data.

Only once did the conditions differentiate themselves in order of access costs 2D < 3D< VR

and that was for fixation count, and in the opposite of the predicted direction. Why was our

access cost manipulation ineffective, in contrast to prior research? One possibility was that it

was simply not strong enough. Another possible explanation might be that Wood et al. [57]

used delays that were obvious to the participant and fixed in time; no matter how quickly the

participant moved the mouse, they would still need to wait before the feature was revealed. In

contrast, our VR condition did not actively impede participants’ progress; delays happened

simply because it takes longer to move an arm than it does to move an eye. In the 3D condi-

tion, rotation was slow by comparison, but still continuously controlled by the participant’s

use of the standard gamepad controller. It is possible that the perception of an access cost was

not present in these cases due to the autonomy granted to the participants who could shorten

delays by being more efficient with their respective user interfaces. The literature on access

cost is diverse both in the conceptualization of access cost and in the cognitive processes that

are engaged to study its effects. Access cost has no agreed-upon definition or operationaliza-

tion; potential costs exist wherever time or effort may be expended. Temporal costs are quite

variable; they can be the natural consequence of another access cost such as the need to move

to some location or perform some task to access information [60, 61, 63, 64], or they can occur

in isolation from other costs, such as timed masking of task-relevant information [57, 60, 61].

Effort costs can come from requirements to move somewhere in physical space [63, 64], or

from an action that must be performed within a computer interface [57, 60, 61]. VR interfaces

come with their own unique and varied costs, such as unfamiliar button layouts on controllers

[74], novel VR versions of tasks from familiar experimental paradigms [37, 41], increased com-

plexity/ecological validity of VR-based tasks [41], and increased cognitive load that can be

induced by the physical differences between real vision and VR displays [16]. Our findings

show that not all costs have impacts on learning outcomes and information access behaviors,

but more work is needed to predict when and in what way, access costs will affect

performance.

It is worth noting that some participants in the VR condition were excluded not simply

because they were non-learners, but because they withdrew from the study citing fatigue, mild

headaches or dizziness. This experiment lasted less than one hour, and so the increased rate of

attrition in this group, whether it be cybersickness or other fatigue related conditions, poses a

cost that must be set against other potential benefits of using these systems.

Conclusion

The findings of the present work have implications for both researchers and designers building

VR environments. For the researcher, because VR headsets are fixed to the user, they allow for
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very precise control of stimulus presentation. For example, as the screen is kept in a fixed posi-

tion at a constant distance from the eyes, researchers may ensure that a stimulus subtends an

exact number of degrees of visual angle, regardless of participants’ head movements. As the

general patterns of learning outcomes and information access behaviors were found, in the

current work, to largely predict performance and behavioral patterns in VR (and 3D),

researchers seeking to take advantage of the affordances of this medium in their experimental

design should feel comfortable doing so. Likewise, designers of VR experiences should be able

to leverage research that has come before to inform their expectations of user behaviors, even

if that research was not conducted directly in their target platform. Our work suggests that the

base of knowledge and design principles which researchers and designers have built for 3D

desktop environments should be applicable if they transition to virtual reality, and the con-

verse applies. Design principles and useful practices that are backed by research will likely

carry between domains; this reduces the need to run repeated studies and allows designers to

rely on existing systems. More research is clearly needed to understand how access costs influ-

ence information access behaviors. Alongside studies like Soret et al. [38], Li et al. [4], and

Eichert et al. [46], our research, being the first to combine the methods of the category learning

paradigm with immersive VR technology, provides a foundation for future studies aiming to

use VR in the study of cognitive phenomena.
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3. Lecavalier NC, Ouellet É, Boller B, Belleville S. Use of immersive virtual reality to assess episodic mem-

ory: A validation study in older adults. Neuropsychol Rehabil. 2018; 30: 462–480. https://doi.org/10.

1080/09602011.2018.1477684 PMID: 29807474

4. Li G, Anguera JA, Javed SV, Khan MA, Wang G, Gazzaley A. Enhanced Attention Using Head-

mounted Virtual Reality. J Cogn Neurosci. 2020; 32: 1438–1454. https://doi.org/10.1162/jocn_a_01560

PMID: 32286132

5. Kourtesis P, Korre D, Collina S, Doumas LAA, MacPherson SE. Guidelines for the Development of

Immersive Virtual Reality Software for Cognitive Neuroscience and Neuropsychology: The Develop-

ment of Virtual Reality Everyday Assessment Lab (VR-EAL), a Neuropsychological Test Battery in

Immersive Virtual Reality. Front Comput Sci. 2020; 1. https://doi.org/10.3389/fcomp.2019.00012

6. Parsons TD. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical,

Affective and Social Neurosciences. Front Hum Neurosci. 2015; 9. https://doi.org/10.3389/fnhum.2015.

00660 PMID: 26696869

7. Bohil CJ, Alicea B, Biocca FA. Virtual reality in neuroscience research and therapy. Nat Rev Neurosci.

2011; 12: 752–762. https://doi.org/10.1038/nrn3122 PMID: 22048061

8. Cipresso P, Giglioli IAC, Raya MA, Riva G. The Past, Present, and Future of Virtual and Augmented

Reality Research: A Network and Cluster Analysis of the Literature. Front Psychol. 2018; 9. https://doi.

org/10.3389/fpsyg.2018.02086 PMID: 30459681

9. Slater M, Sanchez-Vives MV. Enhancing Our Lives with Immersive Virtual Reality. Front Robot AI.

2016; 3. https://doi.org/10.3389/frobt.2016.00074

10. Hanson J, Andersen P, Dunn PK. Effectiveness of three-dimensional visualisation on undergraduate

nursing and midwifery students’ knowledge and achievement in pharmacology: A mixed methods

study. Nurse Educ Today. 2019; 81: 19–25. https://doi.org/10.1016/j.nedt.2019.06.008 PMID:

31306850

11. Kongsilp S, Dailey MN. Motion parallax from head movement enhances stereoscopic displays by

improving presence and decreasing visual fatigue. Displays. 2017; 49: 72–79. https://doi.org/10.1016/j.

displa.2017.07.001

12. Jang S, Vitale JM, Jyung RW, Black JB. Direct manipulation is better than passive viewing for learning

anatomy in a three-dimensional virtual reality environment. Comput Amp Educ. 2017; 106: 150–165.

https://doi.org/10.1016/j.compedu.2016.12.009

13. Chen J. Three-dimensional virtual reality simulation of periarticular tumors using Dextroscope recon-

struction and simulated surgery: A preliminary 10-case study. Med Sci Monit. 2014; 20: 1043–1050.

https://doi.org/10.12659/MSM.889770 PMID: 24961404

14. Angel-Urdinola D, Castillo-Castro C, Hoyos A. Meta-analysis assessing the effects of virtual reality

training on student learning and skills development. The World Bank, Education Global Practice;

2021 pp. 958–7. Available: https://openknowledge.worldbank.org/bitstream/handle/10986/35299/Meta-

Analysis-Assessing-the-Effects-of-Virtual-Reality-Training-on-Student-Learning-and-Skills-

Development.pdf?sequence=1&isAllowed=y

15. Jensen L, Konradsen F. A review of the use of virtual reality head-mounted displays in education and

training. Educ Inf Technol. 2017; 23: 1515–1529. https://doi.org/10.1007/s10639-017-9676-0

16. Bingham GP, Bradley A, Bailey M, Vinner R. Accommodation, occlusion, and disparity matching are

used to guide reaching: A comparison of actual versus virtual environments. J Exp Psychol Hum Per-

cept Perform. 2001; 27: 1314–1334. https://doi.org/10.1037//0096-1523.27.6.1314 PMID: 11766927

PLOS ONE Comparing virtual reality, desktop-based 3D, and 2D versions of a category learning experiment

PLOS ONE | https://doi.org/10.1371/journal.pone.0275119 October 6, 2022 19 / 22

https://doi.org/10.1016/j.visres.2013.04.012
http://www.ncbi.nlm.nih.gov/pubmed/23664881
https://doi.org/10.3758/s13423-019-01605-w
http://www.ncbi.nlm.nih.gov/pubmed/31037605
https://doi.org/10.1080/09602011.2018.1477684
https://doi.org/10.1080/09602011.2018.1477684
http://www.ncbi.nlm.nih.gov/pubmed/29807474
https://doi.org/10.1162/jocn%5Fa%5F01560
http://www.ncbi.nlm.nih.gov/pubmed/32286132
https://doi.org/10.3389/fcomp.2019.00012
https://doi.org/10.3389/fnhum.2015.00660
https://doi.org/10.3389/fnhum.2015.00660
http://www.ncbi.nlm.nih.gov/pubmed/26696869
https://doi.org/10.1038/nrn3122
http://www.ncbi.nlm.nih.gov/pubmed/22048061
https://doi.org/10.3389/fpsyg.2018.02086
https://doi.org/10.3389/fpsyg.2018.02086
http://www.ncbi.nlm.nih.gov/pubmed/30459681
https://doi.org/10.3389/frobt.2016.00074
https://doi.org/10.1016/j.nedt.2019.06.008
http://www.ncbi.nlm.nih.gov/pubmed/31306850
https://doi.org/10.1016/j.displa.2017.07.001
https://doi.org/10.1016/j.displa.2017.07.001
https://doi.org/10.1016/j.compedu.2016.12.009
https://doi.org/10.12659/MSM.889770
http://www.ncbi.nlm.nih.gov/pubmed/24961404
https://openknowledge.worldbank.org/bitstream/handle/10986/35299/Meta-Analysis-Assessing-the-Effects-of-Virtual-Reality-Training-on-Student-Learning-and-Skills-Development.pdf?sequence=1&isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/35299/Meta-Analysis-Assessing-the-Effects-of-Virtual-Reality-Training-on-Student-Learning-and-Skills-Development.pdf?sequence=1&isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/35299/Meta-Analysis-Assessing-the-Effects-of-Virtual-Reality-Training-on-Student-Learning-and-Skills-Development.pdf?sequence=1&isAllowed=y
https://doi.org/10.1007/s10639-017-9676-0
https://doi.org/10.1037//0096-1523.27.6.1314
http://www.ncbi.nlm.nih.gov/pubmed/11766927
https://doi.org/10.1371/journal.pone.0275119


17. Aronov D, Tank DW. Engagement of Neural Circuits Underlying 2D Spatial Navigation in a Rodent Vir-

tual Reality System. Neuron. 2014; 84: 442–456. https://doi.org/10.1016/j.neuron.2014.08.042 PMID:

25374363

18. Lessiter J, Freeman J, Keogh E, Davidoff J. A Cross-Media Presence Questionnaire: The ITC-Sense of

Presence Inventory. Presence Teleoperators Virtual Environ. 2001; 10: 282–297. https://doi.org/10.

1162/105474601300343612

19. Makransky G, Terkildsen TS, Mayer RE. Adding immersive virtual reality to a science lab simulation

causes more presence but less learning. Learn Instr. 2019; 60: 225–236. https://doi.org/10.1016/j.

learninstruc.2017.12.007

20. Vora J, Nair S, Gramopadhye AK, Duchowski AT, Melloy BJ, Kanki B. Using virtual reality technology

for aircraft visual inspection training: presence and comparison studies. Appl Ergon. 2002; 33: 559–

570. https://doi.org/10.1016/s0003-6870(02)00039-x PMID: 12507340

21. Parong J, Mayer RE. Learning science in immersive virtual reality. J Educ Psychol. 2018; 110: 785–

797. https://doi.org/10.1037/edu0000241

22. Farra SL, Smith SJ, Ulrich DL. The Student Experience With Varying Immersion Levels of Virtual Reality

Simulation. Nurs Educ Perspect. 2018; 39: 99–101. https://doi.org/10.1097/01.NEP.

0000000000000258 PMID: 29286947

23. Makransky G, Andreasen N, Baceviciute S, Mayer R. Immersive virtual reality increases liking but not

learning with a science simulation and generative learning strategies promote learning in immersive vir-

tual reality. J Educ Psychol. 2021; 113: 719–35. https://doi.org/10.1037/edu0000473

24. Winn W, Hoffman H, Hollander A, Osberg K, Rose H, Char P. Student-Built Virtual Environments. Pres-

ence Teleoperators Virtual Environ. 1999; 8: 283–292. https://doi.org/10.1162/105474699566233

25. Kontogeorgiou A, Bellou J, Mikropoulos T. Being inside the quantum atom. PsychNology J. 2008; 6:

83–98.

26. Mikropoulos TA. Presence: a unique characteristic in educational virtual environments. Virtual Real.

2006; 10: 197–206. https://doi.org/10.1007/s10055-006-0039-1

27. Petersen GB, Klingenberg S, Mayer RE, Makransky G. The virtual field trip: Investigating how to opti-

mize immersive virtual learning in climate change education. Br J Educ Technol. 2020; 51: 2099–2115.

https://doi.org/10.1111/bjet.12991

28. Makransky G, Petersen GB. The Cognitive Affective Model of Immersive Learning (CAMIL): a Theoreti-

cal Research-Based Model of Learning in Immersive Virtual Reality. Educ Psychol Rev. 2021; 33: 937–

958. https://doi.org/10.1007/s10648-020-09586-2
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