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Extended-spectrum β-lactamase and their molecular mechanism in Enterobacteriaceae were analyzed in 126 fish samples of 9 various
wild species, living in the lagoon of Bizerte in Tunisia. Fifty-nine (59) Gram-negative strains were isolated and identified as Escherichia
coli (n = 24), Klebsiella pneumonia (n = 21), Citrobacter freundii (n = 8), and Shigella boydii (n = 6). Forty-seven ESBL producers were
identified using the synergic test. β-Lactamase genes detected were blaCTX-M-1 (E. coli/15; K. pneumonia/8; C. freundii/1; Sh. boydii/1),
blaCTX-M-1+ blaOXA-1 (E. coli/4; K. pneumonia/3), blaCTX-M-1+ blaTEM-1-a (K. pneumonia/2), blaCTX-M-15+ blaTEM-1-a (K. pneumonia/1;
Sh. boydii/1), blaCTX-M-15+ blaOXA-1 (K. pneumonia/1), blaCTX-M-15 (E. coli/3; K. pneumonia/1; Sh. boydii/3), and blaCTX-M-9
(C. freundii/3). Most strains (84.7%) showed a multiresistant phenotype. qnrA and qnrB genes were identified in six E. coli
and in ten E. coli+one K. pneumonia isolates, respectively. The resistance to tetracycline and sulfonamide was conferred by the tet and
sul genes. Characterization of phylogenic groups in E. coli isolates revealed phylogroups D (n = 20 strains), B2 (n = 2), and A (n = 2).
The studied virulence factor showed prevalence of fimA genes in 9 E. coli isolates (37.5%). Similarly, no strain revealed the three other
virulence factors tested (eae, aer, and cnf1). Our findings confirmed that the lagoons of Bizerte may be a reservoir of multidrug
resistance/ESBL-producing Enterobacteriaceae. This could lead to indisputable impacts on human and animal health, through the
food chain.

1. Introduction

The increasing rates of land-based anthropogenic pollution
in marine ecosystems have become an important factor
that promotes the emergence of multidrug-resistant
(MDR) bacteria in aquatic animals [1–3]. The rapid dis-
semination of extended-spectrum β-lactamase-producing
Enterobacteriaceae in marine coastal ecosystems is worri-
some because enterobacteria species (mostly Escherichia
coli) are commensal bacteria in the gut microbiota of
fishes [4, 5].

Fish living in the natural environment harbored patho-
genic Enterobacteriaceae [6–8]. Therefore, fish are consid-
ered as a potential vehicle of foodborne bacterial infections,

which may present a threat for the human public health.
Contamination of fish with MDR bacteria could demonstrate
the risk of the persistence of these bacteria in the fish gut flora
and explain possible human gut contamination [9]. Besides,
significant antibiotics are excreted unaltered or as metabo-
lites (up to 75%), which present a major source of antibiotic
input into the aquatic environment. It is estimated that 49%
of marine ecosystems worldwide are strongly affected by
some anthropogenic factors of stress with significant and
serious economic implications [10, 11]. Many of these
compounds can now be detected easily in water resources.

Human survival and well-being depend on different
services of the marine ecosystem (such as fishing) and, there-
fore, on the conservation and the best management of the
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ecosystems. Research onmarine or lagoon ecosystem services
has grown exponentially during the last decade, for better
marine risk assessments. This pollution from a variety of
sources (urban, agricultural, and industrial) contributed to
altering the communities of different living beings that are
prevailing in the marine and lagoon environment and indi-
rectly presenting risks for human health [9, 12].

If mismanaged, multiple anthropogenic impacts on
marine ecosystems might also affect coastal fisheries and
aquaculture. The wide use of antimicrobial agents in clinical
settings, veterinary medicine, livestock industries, and aqua-
culture has led to a large-scale dissemination of antibiotic-
resistant bacteria in many environments [7, 8, 13, 14].

For enterobacteria, the problem of antibiotic resistance is
essentially related to the broad-spectrum family of cephalo-
sporin. Such resistance is usually due to the production of
extended-spectrum β-lactamases (ESBLs) or cephalospori-
nase plasmid (pAmpC). The producing ESBL or pAmpC
strains are largely isolated in hospital settings, animals, and
food products and from different aquatic environments
(such as lakes, rivers, and urban runoff). The CTX-M gene
is the most common ESBL gene detected [15].

Resistance genes may be transferred between bacteria via
mobile genetic elements [16]. One such mobile element
called integrons that mediate the integration of resistance
genes may also be involved, resulting in the development of
multidrug-resistant bacteria [17].

Thus, the lagoon of Bizerte could be a site of choice
allowing studies of the important triangular thematic aspect
of “pollution-aquatic ecosystems-biotic component,” by the
national and international scientific communities [18–20].
The lagoon of Bizerte receives various discharges through urban
and industrial wastewater and agricultural runoff [21, 22].

The main aim of this work was to detect, isolate, and
identify species multiresistant to antibiotics and producing
ESBL enterobacteria (ESBL-Eb), from the intestines and
gills of some species of wild fish, trapped in the lagoon of
Bizerte. In the first part, we have studied the mechanisms of
resistance in these enterobacteria isolates phenotypically
and genetically. In the second part, we investigated important
virulence factors involved in these isolates.

2. Materials and Methods

2.1. Sites of Fish Sampling. The isolation of enterobacteria
strains was performed by analyzing 126 samples of 9 wild
species of fish trapped during the second half of the year
2016, in the surroundings of Menzel Abdurrahman port
(north coast of Bizerte lagoon) (Table 1, Figure 1). The
lagoon of Bizerte is an isodiametric saltwater body, located
between latitude 37° 8′ and 37° 16′ N and longitude 9° 46′
and 9° 56′ E, in the north of Tunisia. It covers approximately
150 km2 and has an average depth of 8m. It communicates
with the Mediterranean Sea by a channel of 8.5 km in length
and is connected to the Lake of Ichkeul by the river of Tinja.
It represents an economically important body of water due to
a variety of fishing and aquaculture activities. These fish
samples were transported aseptically to the laboratory in a
refrigerated cooler at +4°C and analyzed within the 24h
following their collection. The samples of fish tissues were
primarily experimented for their intestinal tract and gills.

2.2. Bacteria Isolation. After dissecting the sampled fish, the
gills and the stomach contents were separately inoculated
into 225mL of buffered peptone water, pH = 7. After incu-
bation under shaking for 24 h at 37°C, dilutions in steril-
ized physiological water were performed, and a volume
of 1mL was seeded on MacConkey agar growth medium
supplemented with 2μg/mL of cefotaxime (CTX) for
enterobacteria recovery. All the plates were incubated at
37°C for 24 h.

From each inoculate sample and based on colony size and
morphology, a maximum of five suspected Enterobacteria-
ceae colonies were selected for E. coli isolate identification
by biochemical tests and specific PCR amplification of the
uidA gene [23]. Identification of other Enterobacteriaceae
was realized by PCR amplification and sequencing of 16S
rRNA genes [24]. E. coli strain (ATCC 25,922) was used as
the control.

2.3. Antibiotic Susceptibility Testing. Susceptibility to 16 anti-
microbial agents was performed using the disk diffusion
method, following the Clinical and Laboratory Standard

Table 1: Distribution of positive bacterial strains resistant to cefotaxime according to the different species of fish sampled.

Family Common name Scientific name Number of samples
Distribution isolates

Gills Stomach contents

Moronidae Loup Dicentrarchus labrax 14 4 2

Carangidae Chinchard commun Trachurus trachurus 14 6 6

Mugilidae
Muges Mugil cephalus 14 2 0

Mullet Chelon labrosus 14 5 3

Mullidae Rouget de roche Mullus surmuletus 14 5 3

Pomatomidae Tassergal Pomatomus saltatrix 14 0 0

Soleidae Sole commune Solea solea 14 0 0

Sparidae
Marbré Lithognathus mormyrus 14 1 0

Saupe Sarpa salpa 14 12 10

Total 126 35 24
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Institute (CLSI) recommendations [25]. The following
antimicrobial agents were tested (concentration in μg):
ampicillin (10μg), cefotaxime (30μg), cefoxitin (30μg), cef-
tazidime (30μg), chloramphenicol (30μg), ciprofloxacin
(5μg), gentamycin (10μg), imipenem (10μg), nalidixic acid
(30μg), streptomycin (10μg), sulfamethoxazole (300μg),
tetracycline (30μg), ticarcillin (75μg), tobramycin (10μg),
trimethoprim (5μg), and trimethoprim-sulfamethoxazole
(1:25 + 23:75μg). A screening test for the detection of ESBLs
was carried out by the double-disc synergy test (DDST),
according to the CLSI criteria [25].

2.4. Antibiotic Resistance Gene Characterization. The genes
encoding TEM, SHV, OXA, and CTX-M β-lactamases were
analyzed by PCR and sequencing in all ESBL-Eb [23]. The
nucleotides and their amino acid sequences were compared
with those deposited in the GenBank database and those
reported in the website http://www.lahey.org/Studies, to
confirm the specific β-lactamase genes. Genes encoding
resistance to tetracycline (tet A and tet B), quinolone
(aac[6′]-Ib, qnrA and qnrB), and sulfonamide (sul 1 and sul
2) were analyzed by PCR (and sequencing sometimes) [26].

2.5. Phylogenetic Groups and Virulence Factors. Identification
of the major phylogenetic groups of E. coli isolates was
determined by PCR, using a combination of three genes
(chuA, yjaA, and tSpeA.C2) [27].

E. coli strains were screened for the following virulence
factors: eae that codes for intimin, aer for aerobactin, cnf1
for cytotoxic necrotizing factors, and fimA for fimbriae of
type I genes [28].

3. Results

3.1. Identification of Isolates. Enterobacteria (n = 59) were
isolated from 126 wild fish sampled from the Bizerte lagoon.
All recovered isolates were cefotaxime resistant, and the
number of isolates from the gills (n = 35) was slightly higher
when compared to those from the viscera and the stomach
contents (n = 24) (Table 1). Biochemical and molecular
identification showed that the 24 isolates were assigned
to E. coli species harboring the specific gene iudA. Analysis
of the sequences of the 16S rRNA genes of the 36 remaining
isolates allowed the characterization of three enterobacteria
species: Klebsiella pneumonia [K. pneumonia] (n = 21),
Citrobacter freundii [C. freundii] (n = 8), and Shigella boydii
[Sh. boydii] (n = 6).

The rate of enterobacteria strain isolation showed a high
ratio of distribution over the fish species in the Bizerte
lagoon. However, we noticed a low ratio of segregation for
the fish species of Lithognathus mormyrus, Pomatomus salt-
atrix, and Solea solea, with a ratio close to zero (Table 1).

3.2. Antimicrobial Resistance Phenotypes. The highest resis-
tance frequency among the 59 cefotaxime-resistant strains
was registered for the family of β-lactam antibiotics. The
respective antibiotic resistance percentages were of 100%
for ampicillin, 96.3% for ticarcillin, 11.9% for amoxicillin/cla-
vulanic acid, 40.7% for ceftazidime, 24% for cefoxitin, 74.6%
for ertapenem, and 5.1% for imipenem.

This highest resistance frequency to β-lactam was
followed by an important resistance frequency of 71.2% for
the sulfonamides. For non-β-lactam antibiotics, such isolate
resistance frequencies were as follows for tobramycin
(47.5%), gentamicin (40.7%), nalidixic acid (37.3%),
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Figure 1: Map of Bizerte lagoon (Northern Tunisia). The black full star in the northern part of the lagoon shows the sampling site location.
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tetracycline (37.3%), ciprofloxacin (3.4%), and chloramphen-
icol (1.7%). None of the strains was resistant to trimetho-
prim/sulfamethoxazole. Fifty (84.7%) out of the 59 isolates
showed multiresistant phenotypes, including resistance to
at least three families of antimicrobial agents. A higher multi-
resistance was noticed especially for the isolates from the gills
than from the viscera and the stomach (58% and 42% of the
isolates, respectively). Detection of ESBL isolates by the
double-disc synergy test (DDST) revealed that 47
cefotaxime-resistant strains were ESBL-Eb-producing ones
and belonged further to the following four species: E. coli
(n = 22), Klebsiella pneumonia (n = 16), Citrobacter freundii
(n = 4), and Shigella boydii (n = 5).

3.3. Characterization of ESBL Genes. The sequence analysis of
the ESBL genes (blaCTXM, blaTEM, and blaOXA) of the isolated
strains from different fish species showed the dominance of
blaCTX-M-1 in the Enterobacteriaceae isolates. The ESBL genes
were (species/number of isolates) blaCTX-M-1 for E. coli/15, K.
pneumonia/8, C. freundii/1, and Sh. boydii/1; blaCTX-M-1+
blaOXA-1 for E. coli/4 and K. pneumonia/3; blaCTX-M-1+ bla-

TEM-1-a for K. pneumonia/2; blaCTX-M-15+ blaTEM-1-a for K.
pneumonia/1 and Sh. boydii/1; blaCTX-M-15+ blaOXA-1 for K.
pneumonia/1; blaCTX-M-15 for E. coli/3, K. pneumonia/1,
and Sh. boydii/3; and blaCTX-M-9 for C. freundii/3.

3.4. Resistance Mechanism of Non-β-Lactam Antimicrobial
Agents. Resistance to the sulfonamide of ESBL-Eb isolates
(n = 43) was shown to be conferred by either sul 1 genes for
15 isolates (E. coli [n = 7], K. pneumonia [n = 4], C. freundii
[n = 3], and Sh. boydii [n = 1]) or sul 2 genes for 13 other
strains (E. coli [n = 10], K. pneumonia [n = 2], and C. freundii
[n = 1]), with no sul gene being detected for the last 15
strains. For the resistance to the tetracycline, the tet A gene
appeared in all 22 resistant isolates of E. coli (n = 21) and K.
pneumonia (n = 1). Besides, for quinolone family resistance,
only six out of the 22 strains harbored the aac(6′)-Ib-cr gene
for E. coli (n = 5) and K. pneumonia (n = 1). Analysis of qnr
plasmids by PCR allowed the detection of the qnrA gene in
E. coli isolates (n = 10) and the qnrB gene in 10 strains [E. coli
(n = 9) and K. pneumonia (n = 1)].

3.5. Phylogenetic Groups of E. coli Isolates and Virulence
Factors. Amplification of the three genes ChuA, YjaA, and
TSPE4C2and their presence or absence in 24 ESBL-
producing E. coli strains has revealed that 20 strains (83.3%)
appeared to belong to the group D and 2 strains (8.3%) to
the group B2, while the two other strains (8.3%) belonged to
the group A. Characterization of the virulence factor demon-
strated the prevalence of the fimA gene in nine E. coli isolates
(37.5%), but there was no strain revealing the three other vir-
ulence factors considered (eae, aer, and cnf1) (Tables 2 and 3).

4. Discussion

In the present study, 59 Gram-negative and cefotaxime resis-
tant isolates, belonging to the Enterobacteriaceae family, were
recovered out of 126 samples of different wild fish species,
collected from the lagoon of Bizerte. Molecular identification

showed the dominance of E. coli isolates (40%) along with K.
pneumoniae (n = 21), C. freundii (n = 8), and Sh. boydii
(n = 6). The high frequency of E. coli and K. pneumoniae iso-
lation of 40.7 and 35.6%, respectively, registered in this study
is well reported in several similar studies worldwide and dif-
ferent environments [29–32].

In addition, the detection of CTX-resistant enterobac-
teria strains in the gills and the stomach contents of the dif-
ferent fish species was realized. Thus, the gill content
appeared to show higher frequency isolation of bacteria resis-
tant to cefotaxime as compared to those from the stomach
content. This would infer that the gills may be a very favor-
able reservoir to host resistant flora as compared to the stom-
ach. Resistant Enterobacteriaceae in the gills seems to be
caused by the ingestion of water contaminated with fecal bac-
teria and antibiotic residues in the lagoon of Bizerte. Some
studies reported that the high frequency of concentrations
of antibiotics reported in the marine environment and their
potential impacts on the aquatic ecosystems explain the
widespread of antibiotic resistance largely reported in fish,
marine mammals, and seabirds living in coastal waters [33].

In addition, the most important resistance frequencies,
registered in the different fish species tested, were shown
for Sarpa salpa, followed by the species of Trachurus tra-
churus, Chelon labrosus, Mullus surmuletus, and, finally,
Dicentrarchus labrax; such frequencies showed ratios fluc-
tuating between 1.6 and 0.4. However, reports on bacteria
isolation were low variable and being closer to zero forMugil
cephalus, Lithognathus mormyrus, Pomatomus saltatrix,
and Solea solea. These reports infer a great chance of fish
exposure to bacteria resistant to cefotaxime and other anti-
biotics, and such exposure seems to be primarily related to
the biological behavior of the fish as well as their wide
geographical distribution in the marine environment and
lagoons [34–37].

But, we have detected 47 ESBL-Eb-producing isolates,
especially in E. coli (n = 22), K. pneumoniae (n = 16), Sh.
Boydii (n = 5), and C. freundii (n = 4). This agrees with
the recent report of Ben Said et al. [38] that has described
ESBL Enterobacteriaceae isolates in sewage water, in Tuni-
sia. Singh et al. [39] have also reported a study of multiple
antibiotic-resistant, ESBL-producing enterobacteria in fresh
seafood such as Escherichia coli the predominant species
followed by Klebsiella oxytoca and K. pneumonia. It was
shown that the ESBL-positive phenotype is detected in
169 (78.60%) tested isolates, with E. coli being the pre-
dominant species (53), followed by Klebsiella oxytoca
(27) and K. pneumoniae (23).

Characterization of the ESBL genetic profile by amplifica-
tion and sequencing of different CTX-M groups showed the
dominance of blaCTX-M-1 among 35 isolates of E. coli (n = 19
), K. pneumonia (n = 13), Sh. Boydii (n = 6), and C. freundii
(n = 8). A similar study conducted, in Tunisia, by Ben Said
et al. [40] revealed the detection of enterobacteria-producing
ESBL species in agronomic soil, irrigation water, and various
vegetables. Besides the prevalence of CTX-M-1 enzymes,
CTX-M-15 (n = 10) and CTX-M-9 (n = 3) were also detected
in the study. Among these strains, we have noticed the exis-
tence of an association between blaCTX-M-1/blaCTX-M-15 and
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blaOXA-1 and blaTEM-1a. Indeed, the association between genes
encoding cefotaximases and those of other beta-lactamases
(TEM and OXA types) has been frequently identified among
our isolates and also previously reported in others [41].

All these results confirmed the high circulation of these
resistance genes in the environment and the lagoon of
Bizerte. In addition, the gene blaCTX-M-15, known as an ESBL
gene usually associated with strains found in the environ-
ment, and the gene blaCTX-M-1, known as the most detected
ESBL gene in food products, in vegetation, and in different
natural environments, explained the origin of the high trans-
mission and dissemination of these variants of resistant bac-
teria through the residual releases into the lagoon of Bizerte.

It is well confirmed that the environment could play a
very important role in the diffusion of resistance. Antibiotics
used in agriculture and fish farming or arboriculture are
frequently found as metabolites in the soils and the waters
where they exert and maintain high genetic selection pres-
sure [40].

Most of our ESBL-Eb have shown a multiresistance phe-
notype and carried a different type of resistance genes (tet,
sul) encoding for tetracycline and sulfonamide resistance,
respectively, with this character being typical of ESBL-
producing bacteria in other studies [40, 42].

For quinolone resistance, it was conferred by aac(6′)-ib-
cr, qnrA, and qnrB genes. These antibiotic genetic determi-
nants are specifically related to pathogenic clinical strains
and were recently detected in the environment [40, 43, 44].

Detection of quinolone plasmid QNR confirmed the
circulation of these resistance genes by mobile genetic ele-
ments. In parallel, determining the phylogenetic groups
and analyzing the different virulence factors of E. coli isolates
resistant to cefotaxime showed mainly the dominance of the
phylogenetic group D with 81.9% (18/22 isolates). This group
is known to be principally composed of pathogenic strains
called “extraintestinal” pathogens. Among other antibiotic-
resistant isolates, two strains (9%) belonged to the phyloge-

netic group B2. This group B2 is known to be the most
virulent strain group [41]. Finally, only two strains
belonged to the phylogenetic group A as known as “com-
mensal” phylogenetic group strains. All these results are
similar to those reported by Ben Said et al. [38]. The
investigation on the 4 known virulence genes studied in all
E. coli isolates has revealed the dominance of the fimA gene
that belongs to the phylogenetic groups D and B2. The study
of Jouini et al. [45] has confirmed these findings and has
found that all strains isolated from many varieties of food
presented the fimA gene of virulence. Therefore, no other iso-
lates have revealed at least one of the four genes investigated
in the present work; these strains could host other virulence
determinants not yet investigated.

5. Conclusion

Our study appeared to be the first work done in Tunisia con-
cerning the lagoon of Bizerte and showed a high occurrence
of ESBL-Enterobacteriaceae as well as the CTX-M-1 group,
in some tested wild fish species. It allowed determination of
tet, sul, aac(6′)-ib-cr, and qnr resistance genes that confer
resistance to tetracycline, sulfonamide, and quinolone,
respectively. These findings demonstrated the role of the
Bizerte lagoon as hotspot collectors of ESBL-Enterobacteria-
ceae with high likelihood of dissemination and spread to
humans and animals throughout the food chain.
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Table 3: Characteristic of non ESBL-Eb strains detected in fish from lagoon of Bizerte.

Isolates Sampling Fish species Resistance to non-β-lactam Resistance genes Phylogenetic group Virulence factor

EC 3 G S. salpa CIP, TET, NAL tet A, qnrB D —

EC 24 (1) G L. mormyrus — — D —

K. p 25 G S. salpa NAL qnrB

K. p 75 G S. salpa — —

K. p 296 SC M. surmuletus TOB, SUL sul 1

K. p 311 SC M. surmuletus TOB, SUL sul 1

K. p348 G M. surmuletus STR —

C170 G P. saltatrix — —

C145 SC T. trachurus — —

C242 G Ch. labrosus CN, TOB, SUL sul 1

C270 SC T. trachurus CIP, TOB, SUL sul 1

SH300 G M. surmuletus TOB, SUL sul 1

SC: stomach content analysis; G: gills; EC: Escherichia coli; K. p: Klebsiella pneumoniae; CF: Citrobacter freundii; SH: Shigella boydii; S. salpa: Sarpa salpa; T.
trachurus: Trachurus trachurus; P. saltatrix: Pomatomus saltatrix; M. surmuletus: Mullus surmuletus; Ch. labrosus: Chelon labrosus; L. mormyrus:
Lithognathus mormyrus; TET: tetracycline; Nal: nalidixic acid; TOB: tobramycin; SUL: sulfonamide; CN: gentamicin; STR; streptomycin; C: chloramphenicol.
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