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Mounting evidence suggested that the gut microbiota has a significant role in the
metabolism and disease status of the host. In particular, Type 2 Diabetes (T2D), which
has a complex etiology that includes obesity and chronic low-grade inflammation, is
modulated by the gut microbiota and microbial metabolites. Current literature supports
that unbalanced gut microbial composition (dysbiosis) is a risk factor for T2D. In this
review, we critically summarize the recent findings regarding the role of gut microbiota in
T2D. Beyond these associative studies, we focus on the causal relationship between
microbiota and T2D established using fecal microbiota transplantation (FMT) or probiotic
supplementation, and the potential underlying mechanisms such as byproducts of
microbial metabolism. These microbial metabolites are small molecules that establish
communication between microbiota and host cells. We critically summarize the
associations between T2D and microbial metabolites such as short-chain fatty acids
(SCFAs) and trimethylamine N-Oxide (TMAO). Additionally, we comment on how host
genetic architecture and the epigenome influence the microbial composition and thus how
the gut microbiota may explain part of the missing heritability of T2D found by GWAS
analysis. We also discuss future directions in this field and how approaches such as FMT,
prebiotics, and probiotics supplementation are being considered as potential therapeutics
for T2D.

Keywords: microbiota (16S), type 2 diabetes (T2D), metabolites, probiotics, prebioitcs, intermittent fasting,
genetics, epigenetics
INTRODUCTION

Diabetes is a metabolic disorder characterized by elevated blood glucose levels. The incidence of
diabetes is widespread and the International Diabetes Federation (IDF) reports that 463 million
people in the world are suffering from diabetes, which is estimated to reach 700 million by the year
2045 (1). In the USA, 13% of adults aged 18 or older have diabetes (2). Diabetes has been categorized
into three classes (type 1, type 2, and gestational diabetes) depending on the underlying
pathophysiology. Among them, type 2 diabetes (T2D) accounts for more than 90% of all
diabetes (1, 2). Though genetic susceptibility is a critical determinant of T2D, non-genetic
n.org April 2021 | Volume 12 | Article 6323351
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factors, including diet, physical activity, also play a significant
role in the development and severity of T2D. The recent
understanding that microbiota is a critical determinant of
human health has opened a new avenue of basic and clinical
research for T2D.

Themicrobiota refers to an assemblage of living microorganisms
including bacteria, archaea, and fungi present in a defined
environment (3). The microbiota can reside within or on the host
and can modulate nutritional status, health, and diseases of the host
(4). The most widely used technique to assay microbiota is to
quantify the variable region(s) of the 16S rRNA gene (5). 16S rRNA
gene analysis is economical and straightforward, however, it
provides a limited regulation of taxonomic information, up to the
genus level reliably. Alternatively, metagenomics, a whole-genome
shotgun sequencing approach of all the DNA present in the sample,
provides much better taxonomic resolution down to species or
strain level. Additionally, metagenomics encompasses the collective
functional genomes of all microorganisms, thus provides an
opportunity for functional profiling of the metabolic pathways
present in a community (6). The diversity and composition of the
gut bacteria have been intensely studied, as well as their impact on
health and diseases (7), including obesity (8), inflammation (9), and
T2D (10). A better understanding of the link between the gut
microbiota and metabolic disorders, especially T2D, may lead to
advances in current treatment approaches, accurate disease
monitoring, and development of novel therapeutics.

In addition to sex and age, both diet and the immune system
contribute to the composition of the microbiota (11). The
underlying architecture of the host’s genetics may also shape the
community structure of the gut microbiota (12). Several genetic
variants are associated with T2D susceptibility (13) and it is
speculated that a part of “missing heritability” described in
genome-wide association study (GWAS) studies (14) may be
explained by gut microbiota. Moreover, growing evidence suggests
that gut microbial metabolites regulate gene expression through a
variety of classic signaling pathways (14) and more recently
epigenetics (15). Thus, understanding the complex interactions
between microbiome, microbial metabolome, and host genome
will assist the development of novel therapeutics.

In this review, we critically summarize the recent developments
describing the role of microbiota on T2D susceptibility,
development, and severity. In particular, we focus on the
underlying biochemical mechanisms by which gut microbiota
may affect T2D. A number of these mechanisms may be
mediated by the host genetics, and epigenetics thus may be viable
targets for precision medicine. The potential effects of prebiotics,
probiotics, medication, and intermittent fasting on the microbiota
and T2D are extensively discussed. Finally, we comment on the
future direction in this field.
DYSBIOSIS, OBESITY, LOW-GRADE
INFLAMMATION AND T2D

A growing number of studies suggest that gut microbiota
influences T2D susceptibility, development, severity, and
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progression. Dysbiosis, an alteration of a healthy microbiota, is
associated with obesity, low-grade inflammation, insulin
resistance, and T2D which potentially reflects a causal role
linking these pathologies (16). Along with animal studies,
numerous human cohorts also have reported specific gut
bacteria enriched or depleted in T2D patients compared to
healthy controls. A summary of the recent reports of altered
microbiota found in T2D patients is depicted in Table 1, and the
interactions between environmental factors, genetics,
microbiota, microbial metabolites, obesity, inflammation, and
T2D are shown in Figure 1.

Landmark studies in the 2000s (27–29) demonstrated that the
microbiota contributes to digestion, carbohydrate metabolism,
obesity, and plasma glucose levels. Additionally, those studies
established a causal relationship by showing that the
susceptibility to obesity could be transferred between mice
when the fecal microbiota of obese mice was transplanted into
non-obese animals. Consistent with these findings, several other
studies have reported enrichment or depletion of specific
obesity-related gut bacteria and indicated a connection
between gut microbiota, adiposity, and T2D. For example,
increased abundance of Prevotella and decreased abundance of
Bacteroides were associated with a higher risk of obesity with
metabolic syndrome, while body mass index and body fat
percentage were negatively correlated with Coprococcus
abundance (30). More recent data suggests that the abundance
of a bacteria in the Bacilli family was positively associated with
fat mass, and negatively associated with lean mass and plasma
glucose level (31). Additionally, Peptostreptococcaceae, Blautia,
and a bacterium related to the Clostridiaceae family were
positively associated with plasma glucose levels (31). In a
recent randomized, double-blind, placebo-controlled clinical
trial with overweight or obese insulin-resistant subjects,
pasteurized Akkermansia muciniphila supplementation was
associated with weight loss, improved insulin sensitivity, and
reduced insulinemia (32). A potential mechanism of these
positive effects is an interaction between temperature stable
outer membrane protein Amuc 1100 found in pasteurized
Akkermansia muciniphila and Toll-like receptor 2 (33).

Obesity and dysbiosis may cause low-grade inflammation
(Figure 2) which also contributes to insulin resistance and the
development of T2D. Several studies have demonstrated
associations between gut microbiota, or microbial components,
and low-grade inflammation in T2D (34). An array of bacterial
components such as lipopolysaccharides (LPS) (35), flagellin
(36), and peptidoglycan (37) can elicit an inflammatory
response. LPS binds to immune cell receptors such as Toll-like
receptors and Nucleotide Oligomerization Domain (NOD)-like
receptors and triggers the expression of proinflammatory
mediators that fuel chronic inflammation, promoting
metabolic dysregulation and development of T2D (38). The
interaction of specific microbes in the gut with the immune
system is complex. Some gut bacteria and microbial components
promote low-grade inflammation, while others stimulate anti-
inflammatory cytokines and chemokines. For example,
induction of interleukin (IL)-10 and IL-22 by species of
April 2021 | Volume 12 | Article 632335
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Roseburia, Bacteroides, Akkermansia, and Lactobacillus (33, 39–
43) may contribute to restoring insulin sensitivity and improving
glucose metabolism (43, 44). Similarly, Bacteroides
thetaiotaomicron, Roseburia intestinalis, Clostridium clusters
IV, and XIVa induce Treg cells (45, 46), which are tolerogenic
immune cells and are important for maintaining a balance
between pro and anti-inflammatory immune responses (47).
Frontiers in Endocrinology | www.frontiersin.org 3
Additionally, butyrate produced by the gut microbiota
enhances colonic Treg differentiation through epigenetic
modification of histone deacetylase inhibition (48, 49) and is
discussed in detail below along with other short-chain fatty acids
(SCFAs). Inhibition of pro-inflammatory cytokines and
chemokines is another pathway that beneficial microbes use to
prevent low-grade inflammation. Various species of
TABLE 1 | T2D-related gut microbiota found in human studies.

Sample size Age Sex Technique Associated microbiota changes References

183 T2D
185 Controls
(Chinese)

13–86 Women (153)
Men (209)

Metagenomic
sequencing

Increased in T2D: Akkermansia muciniphila, Bacteroides caccae, Clostridium
hathewayi, Clostridium ramosum, Clostridium symbiosum, Desulfovibrio sp.,
Eggerthella lenta, and Escherichia coli

Qin et al. (17)

Decreased in T2D: Clostridiales sp. SS3/4, Eubacterium rectale,
Faecalibacterium prausnitzii, Roseburia intestinalis, and Roseburia inulinivorans
Significantly correlated bacteria with T2D related traits: Roseburia
intestinalis (-), Faecalibacterium prausnitzii (-), Akkermansia muciniphila
(-), Desulfovibrio (-), Bacteroides caccae (+).

53 T2D
49 Impaired
glucose tolerance
43 Controls
(Swedish females)

69–72 Women (145) Metagenomic
sequencing

Increased in T2D: Clostridium clostridioforme, Lactobacillus gasseri, and
Streptococcus mutans

Karlsson et al. (18)

Decreased in T2D: Roseburia, Clostridium spp., Eubacterium eligens, and
Bacteroides intestinalis
Significantly correlated bacteria with T2D related traits: Roseburia
intestinalis (-), Faecalibacterium prausnitzii (-), Akkermansia muciniphila
(-), Bacteroides intestinalis (-), Clostridium clostridioforme (+),
Lactobacillus gasseri (+).

75 T2D,
291 Controls
(Danish)

50–66 Women (187)
Men (179)

Metagenomic
sequencing

Increased in T2D: BCAA-producing bacteria (Prevotella copri and Bacteroides
vulgatus)

Pedersen et al. (19)

Decreased in T2D: Faecalibacterium, Oscillibacter, Roseburia, Bifidobacterium,
Coprococcus, and Butyrivibrio
Significantly correlated bacteria with T2D related traits:
Faecalibacterium prausnitzii (-), Akkermansia muciniphila (-),
Bacteroides vulgatus (+), Prevotella copri (+), and Clostridia sp.

46 T2D,
75 Combined
glucose intolerance
178 Impaired
glucose tolerance
189 Impaired
fasting glucose
523 Controls
(Swedish)

57–61 Women (568)
Men (443)

Metagenomic
sequencing

Increased in T2D: Coprococcus eutactus, Clostridiales bacterium, and
Lachnospiraceae bacterium

Wu et al. (20)

Decreased in T2D: Clostridium sp., Clostridium hathewayi, Clostridium bolteae,
Clostridium symbiosum, and Roseburia faecis

13 T2D,
64 Prediabetes
44 Controls
(Chinese)

52–55 NA 16S rRNA
V3-V5 region

Increased in T2D: Clostridia, Collinsella, Dorea, Prevotella, Ruminococcus, and
Verrucomicrobia

Zhang et al. (21)

Decreased in T2D: Bacteroides, Akkermansia muciniphila, Faecalibacterium
prausnitzii, Roseburia, and Streptococcus

20 T2D,
40 Controls
(Chinese)

NA Women (42)
Men (18)

16S rRNA
V4-V5 region

Increased in T2D: Streptococcus, Dorea, and Fusobacterium Li et al. (22)
Decreased in T2D: Akkermansia, Bifidobacterium, Faecalibacterium, and
Parabacteroides

98 T2D,
193 Controls
(Nigerian)

41–70 NA 16S rRNA V4
region

Increased in T2D: Bacteroidetes, Prevotella, Desulfovibrio piger, Eubacteriu, and
Peptostreptococcus

Doumatey et al.
(23)

Decreased in T2D: Anaerostipes, Ruminococcus, Cellulosilyticum ruminicola,
Clostridium paraputrificum, Clostridium butyricum, Collinsella, and Epulopiscium

18 T2D,
18 Controls (Danish
males)

31–73 Men (36) 16S rRNA V4
region

Increased in T2D: Betaproteobacteria Larsen et al. (24)
Decreased in T2D: Firmicutes and Clostridia

134 T2D,
37 Controls
(Chinese)

45–67 Women (92)
Men (79)

16S rRNA
V3-V4 region

Increased in T2D: Prevotella, Dialister, and Sutterella Wang et al. (25)
Decreased in T2D: Bacteroides, Bifidobacterium, Clostridium XIVa,
Parabacteroides, Staphylococcus, Granulicatella, Porphyromonas, Clostridium
XI, Blautia, Anaerostipes, Clostridium XVIII, Fusicatenibacter, Enterococcus,
Clostridium IV, Eggerthella, and Flavonifractor.

22 T1D,
23 T2D,
23 Controls
(Polish)

20–65 Women (40)
Men (28)

16S rRNA Increased: Firmicutes/Bacteroidetes ratio, Verrucomicrobia, Ruminococcus Salamon et al. (26)
Decreased: Bacteroides, Roseburia and Faecalibacterium
April 2021 | Volume
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Lactobacillus, Bacteroides, Roseburia, and Akkermansia can
decrease pro-inflammatory cytokines such as IL-1b, IL-6, IL-8,
IL-17, and tumor necrosis factor (TNF)-a (40, 50–52).
Conversely, Fusobacterium nucleatum and Ruminococcus
gnavus can increase inflammatory cytokine production.
Therefore, depending on the composition, the gut microbiota
may contribute to increased or decreased low-grade
inflammation, impacting insulin sensitivity and T2D.

Gut microbiota profiling performed on large cohorts of T2D
patients has found the abundance of several bacteria enriched or
depleted in T2D subjects compared to controls (Table 1). In
general, T2D patients commonly have a decreased abundance of
SCFA producing bacteria (Eubacterium rectale, Faecalibacterium
prausnitzii, Roseburia intestinalis, Roseburia inulinivorans,
Akkermansia, and Bifidobacterium) and tryptophan metabolite
producing bacteria (Lactobacillus, Bacteroides, Bifidobacterium,
Peptostreptococcus, Ruminococcus, Ruminiclostridium, and
Clostridium), and an increased abundance of opportunistic
pathogens (Bacteroides caccae and Clostridium hathewayi),
branch chain amino acid synthesizing bacteria (Bacteroides
Frontiers in Endocrinology | www.frontiersin.org 4
vulgatus and Prevotella copri), and sulfate-metabolizing
bacteria (Desulfovibrio, Lactobacillus gasseri, and Lactobacillus
reuteum) compared to healthy controls (17–22, 26, 53).
However, we note that not all the data derived from
observational studies have been consistent. For example, one
study comparing significant differences in gut microbiota
diversity between T2D patients and healthy individuals was
conducted on fecal samples from 18 men (24). In this study,
decreased Clostridia and increased Bacteroidetes and
Proteobacteria were observed, while overall diversity of the gut
microbiota was positively correlated with plasma glucose levels
in T2D patients. However, these results have not been identified
in three large-scale metagenomics analyses performed in Europe
and China (17, 18). A decrease in Prevotella was observed in 50
Japanese T2D patients compared to the healthy subjects (53), but
in studies of 291 Nigerians and 171 Chinese, increased Prevotella
abundance was associated with T2D (23, 25). The reason for the
discrepancy between studies may be due to a number of
confounding variables such as diet, genetics, medication use,
and sequencing techniques. Utilizing alternative approaches and
FIGURE 1 | Factors affecting gut microbiota. The gut microbial composition can be modulated by different interventions such as prebiotics, probiotics, FMT, and
intermittent fasting, all of which are considering as potential therapeutics for T2D. Host genetics, epigenetics, and immunity also modulate gut microbiota. Some T2D
medication improves circulating glucose levels partly through modulating gut microbiota, which further supports the usability of the gut microbiota as therapeutics for T2D.
April 2021 | Volume 12 | Article 632335
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developing new technologies are of critical need to determine which
of the associations between the microbiota and T2D are causal and
which of the microbial differences are responsive to T2D.
MICROBIAL METABOLITES

Beyond the direct effects of bacteria in the microbiota or their
components, such as LPS, we now appreciate that the microbiota
is a metabolically active “organ” that produces small
biomolecules. In the following section, we highlight two
important bacteria-derived metabolites TMAO and SFCAs,
and briefly comment on other metabolites important for T2D.
Gut microbiota is involved in the digestion of food ingredients
and produces metabolites supporting physiological function in
the human body (54). Microbial metabolites assist our
interpretation of the underlying mechanisms by which gut
bacterial taxa influence host health and disease (Figure 2 and
Table 2).

Trimethylamine N-Oxide
Trimethylamine (TMA) is produced by intestinal microbial
metabolism of dietary choline and carnitine and is transported to
the liver via the portal vein. In the liver, TMA is converted to
TMAO by the activity of flavin-containing monooxygenase 3
(FMO3) (70, 71). In vivo studies have identified several candidate
Frontiers in Endocrinology | www.frontiersin.org 5
microbial taxa associated with TMA/TMAO production including
Anaerococcus hydrogenalis, Clostridium asparagiforme, C.
hathewayi, C. sporogenes, Desulfovibrio desulfuricans, Edwardsiella
tarda, Escherichia fergusonii, Proteus penneri, and Providencia
rettgeri (55). TMAO concentrations are elevated in T2D patients,
suggesting that this pathway is associated with T2D (72, 73).
However, it is not yet clear if the elevated TMAO has a direct
causal effect on T2D development or if it is a consequence of T2D.
Animal studies have shown that TMAO consumption impairs
glucose tolerance by mediating the insulin signaling pathway in
the liver and upregulates the expression of pro-inflammatory
mediators in adipose tissue (56). Reduction of plasma TMAO by
FMO3 knockdown also decreases plasma glucose and insulin levels,
whereas FMO3 overexpression increases plasma glucose level and
induces insulin resistance (74). A similar relationship between
TMAO and T2D may exist in humans as circulating TMAO
concentration was found to be significantly higher in T2D
patients compared to control subjects observed in a meta-analysis
(75). In contrast, a recent Mendelian randomization analysis
suggests that elevated circulating TMAO is a consequence of T2D
not causal (76). Additional studies on the relationship between
TMAO and T2D are needed to clarify these results.

Short-Chain Fatty Acids
SCFAs are microbial metabolites produced in the colon and are
known to have a wide range of biochemical effects on the host (77).
FIGURE 2 | Effects of gut microbiota, microbial metabolites, and bacterial components on T2D. Gut microbiota and specific bacterial taxa are associated
with a risk of obesity, low-grade inflammation, and insulin resistance. Microbial metabolite TMA is converted to TMAO by the host enzyme and elevated TMAO is
associated with insulin resistance. Whereas some bacterial metabolites such as SCFAs may improve glucose homeostasis. Additionally, SCFAs influence epigenetic
programming by inhibiting histone deacetylase enzyme activity, which may improve insulin resistance and T2D. Besides live bacteria, bacterial components such as
LPS, flagellin, and peptidoglycan can elicit an inflammatory response and may contribute to the increased risk of T2D. Conversely, some bacterial components such
as Amuc 1100 can improve T2D. Referred studies can be found on the main body of this review.
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TABLE 2 | Role of microbial metabolites on T2D.

Mechanism on T2D risk References

Impair glucose tolerance by mediating the insulin signaling pathway in the liver
Increased HOMA-IR, exacerbated the impaired glucose tolerance, and upregulate
pression of pro-inflammatory mediators in adipose tissue

Qi et al. (55)
Gao et al. (56)

Improve glucose metabolism and energy homeostasis
Increase intestinal glucose production and epithelial barrier function by promoting
ithelial growth and Bacteroides species
Regulate the intestinal immune system by binding GPR41, GPR43, and GPR109A
Reduce plasma glucose level, appetite, insulin secretion, and slow gastric emptying by
imulating GLP-1 and GLP-2 secretion

Morrison et al. (57)
Hirasawa et al. (58)
Hamer et al. (59)
Ross et al. (60)

uppress insulin signaling by mediating the activation of signaling pathways and insulin
ceptor substrates including rapamycin complex 1 (mTORC1)

Koh et al. (61)

Reduce plasma glucose level, appetite, insulin secretion, and slow gastric emptying by
imulating GLP-1 secretion
Enhance the intestinal epithelial barrier by acting on the pregnane X receptor
Stimulate gastrointestinal motility by stimulating serotonin secretion
Activate the immune system by acting on the aryl hydrocarbon receptor
Exert anti-inflammatory and anti-oxidative effects in the systemic circulation

Roager et al. (62)
Dodd et al. (63)
Venkatesh et al.
(64)

Bind with host nuclear receptors such as FXR (Farnesoid X receptor), PXR (Pregnane X
ceptor), vitamin D Receptor, RAR-related orphan receptor gamma, and G-protein
upled membrane receptor (TGR-5) and modulate insulin sensitivity, and gluconeogenic
nes expression

Jia et al. (65)
Chiang et al. (66)
Zhou et al. (67)

Interfere with insulin signaling via phosphorylation of insulin receptor substrate-1 (IRS-1)
serine residue by stimulating rapamycin and its downstream effector, mTOR/S6

nase

Chen et al. (69)
Mutaguchi et al.
(173)

H
uda

et
al.

M
icrobiota

and
T2D

Frontiers
in

Endocrinology
|
w
w
w
.frontiersin.org

A
pril2021

|
Volum

e
12

|
A
rticle

632335
6

Metabolites Metabolite
production pathway

Metabolite-producing bacteria (genus)

TMAO Choline (diet)
-> TMA (intestine)
-> TMAO (liver)

• TMA: Anaerococcus, Clostridium,
Desulfovibrio, Edwardsiella, Proteus,
Providencia, and others

-
-
ex

SCFA
(Acetate, propionate, and
butyrate)

Fiber (diet)
-> Acetate, propionate,
and butyrate (intestine)

• SCFA:
Anaerostipes, Blautia, Coprococcus,
Eubacterium, Faecalibacterium,
Marvinbryantia, Megasphaera, Roseburia,
Ruminococcus, and others

-
-
ep
-
-
st

Imidazole propionate Histidine (diet)
-> Imidazole
propionate (intestine)

• Imidazole propionate:
Citrobacter, Dickeya, Eggerthella,
Lactobacillus, Pectobacterium
Staphylococcus, and Streptococcus

-S
re

Tryptophan metabolites
(tryptamine, indole, indolelactic
acid (ILA), indolepropionic acid
(IPA), indoleacetic acid (IAA),
and skatole

Tryptophan (diet)
-> tryptamine, indole,
ILA, IPA, IAA, and
skatole
(intestine)

• All tryptophan metabolites:
Clostridium
• Tryptamine:
Ruminococcus
• ILA:
Lactobacillus and Bifidobacterium
• IPA: Peptostreptococcus
• ILA, IAA, and skatole:
Bacteroides

-
st
-
-
-
-

Bile acids (BA) Cholesterol (liver)
-> Primary BA (liver)
-> Secondary BA
(intestine)

• Secondary BA:
Bacteroides, Bifidobacterium, Clostridium,
Eubacterium, Lactobacillus,
Listeria, Peptostreptococcus, and
Ruminococcus

-
re
co
ge

Branched-chain amino acids
(BCAA)

Glucose, amino acid
(diet)
-> BCAA (intestine)

• BCAA:
Lactobacillus,
Leuconostoc, and
Weissella

-
on
ki
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Anaero s t i p e s , Blaut ia , Coproco ccus , Eubac t e r ium ,
Faecalibacterium, Marvinbryantia, Megasphaera, Roseburia,
and Ruminococcus are among the primary gut microbes that
produce SCFAs. The SCFAs acetate and butyrate improve
glucose homeostasis by inducing intestinal production of
glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). These
peptides in turn stimulate insulin secretion, suppress appetite,
and slow gastric emptying (78–80). GLP-1 is released from
colonic enteroendocrine L cells that are distributed along the
length of the intestinal epithelium and are in direct contact with
the gut microbiota (81). Additionally, SCFAs can regulate the
intestinal immune system through G protein-coupled receptors
(GPCRs) such as GPR41 and GPR43 (82). Reduced abundance
of SCFA producing bacteria was observed in T2D patients
suggesting that this pathway is altered in T2D (17, 83). A
clinical trial demonstrated that selective enrichment of SCFA
producing bacteria, achieved by dietary fiber supplementation,
was associated with lower hemoglobin A1c (HbA1c) levels and
improved glucose metabolism (84). Stool samples collected prior
to and following the intervention were then mechanistically
tested via adoptive transfer experiments using mice to
establish causality (84). Overall, SCFAs are involved in glucose
and lipid metabolism via activation of SCFA receptors (85).
Therefore, SCFA could be an intermediate phenotype by which
microbiota provides a beneficial effect of T2D prevention.

Besides TMAO and SCFAs there are several other microbial
metabolites such as tryptophan catabolites: tryptamine, indole,
indolelactic acid (ILA), indolepropionic acid (IPA), indoleacetic
acid (IAA), indoleacrylic acid (IA), indolealdehyde (IAld), and 3-
methylindole (skatole) [reviewed in (62)]; bile acids: deoxycholic
acid (DCA) and lithocholic acid (LCA) [reviewed at (65, 86)],
histidine catabolite: imidazole propionate (Imp) (87), branched-
chain amino acids [reviewed at (88)], and hydrogen sulfide (84)
have been investigated in the context of T2D (89–92). These
microbial metabolites are involved in the regulation of host
metabolism, immunity, gene expression, and intestinal
integrity, creating an important link between the gut
microbiota, and insulin resistance and T2D development.
Individually, these results are intriguing but cumulatively the
results are complex and heterogeneous. Alterations in the
experimental system, environment, diet, or even circadian
rhythms (93) all have been implicated as sources of variation
contributing to the heterogeneity in the literature. Of particular
interest to this review, the overall variation in the microbiota
composition was better captured by a 17-day diet history (94).
Therefore, information from longitudinal sampling and
metabolomics is required to identify precise and dynamic
interactions between diet, microbiota, and host.
INTERACTION BETWEEN
HOST GENETICS AND GUT
MICROBIOTA ON T2D

In addition to environmental factors including gut microbiota
and microbial metabolites, host genetic architecture is associated
Frontiers in Endocrinology | www.frontiersin.org 7
with T2D (13). Many studies demonstrate that host genetics
influences the community structure of gut microbiota in
humans. This opens several interesting hypotheses regarding
host-microbe symbiosis and perhaps the microbiota as a
mediating variable contributing to the missing heritability in
GWAS. More specifically, the contribution of genetic
polymorphisms associated with T2D may be partly mediated
through gut microbiota. One could wonder if intervention in the
gut microbiota may improve T2D in susceptible individuals.
Here we provide some recent evidence implicating interactions
between host genetics and the microbiome that affect T2D.

Human studies of monozygotic and dizygotic twins have
demonstrated that host genetics contribute to the composition
of the microbiota (12), by tolerating or rejecting several microbial
taxa. For example, the abundance of Bifidobacterium, an
important commensal bacterium for T2D, is associated with
host genotype at the lactase gene locus (LCT, rs4988235, and
rs1446585) (95). Individuals with the GG genotype have reduced
lactase activity and harbor higher levels of Bifidobacterium in
their gut. Mechanistically these individuals provide more lactose
to the bifidobacteria for utilizing as an energy source, which
enriches bifidobacteria in their gut. Establishing if an increase in
Bifidobacterium due to LCT genotype affects T2D remains to
be determined.

In addition to the LCT locus and Bifidobacterium, genetic
studies are beginning to identify some bacteria associated with
specific genetic loci. For example, a recent GWAS found an
association between Ruminococcus and rs150018970 near the
gene RAPGEF1 (96). RAPGEF1 is a signaling protein that
transduces signals from GPCRs, which are involved in the
regulation of gastrointestinal tract physiology, such as
metabolism, immune cell differentiation, and tissue repair (97).
Similarly, another study (98) found a quantitative trait locus for
Butyricicoccus at the locus of SLC5A11 (rs72770483), which
encodes a sodium-dependent myo-inositol/glucose co-
transporter protein (99). These studies underscore the
influence of host genetics on gut microbial colonization.
However, further studies will be needed to determine to what
extent host genetics affects the gut microbiota and T2D.

In addition to interactions between the host genotype and
microbiota composition, we are now beginning to appreciate that
microbial metabolites can influence host gene expression
through epigenetic mechanisms (15). Thus, there seem to be
bi-directional interactions with effects on both the host and
specific bacteria of the microbiome. For example, in various
tissues, including proximal colon, liver and white adipose tissue,
microbial metabolites such as SCFAs influence epigenetic
programming by inhibiting histone deacetylase (HDAC)
enzyme activity, (100), which promotes de-condensation and
relaxation of chromatin and increases chromatin accessibility to
transcription factors (101). In particular, Faecalibacterium
prausnitzii is one of the most abundant anaerobic bacteria in
the healthy human gut that produces butyrate. Butyrate targeted
inhibition of HDAC1 may have anti-inflammatory effects and
ultimately improve insulin sensitivity by downregulating the IL-
6/STAT3/IL-17 pathway (102). Butyrate may also influence
April 2021 | Volume 12 | Article 632335
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differentiation of Th17 and Treg cells through enhanced
Forkhead Box P3 (Foxp3) expression (102). In human adipose
tissue, the epigenetic regulation of the expression of genes
involved in glucose and energy homeostasis, such as insulin-
like growth factor 2 mRNA binding protein 2(IGF2BP2), is
associated with gut bacterial populations (103). These data
support the idea that the gut microbiota could act as an
epigenetic regulator in T2D (104). A genome-wide DNA
methylation analysis of isolated human pancreatic islet cells
harvested from donors with and without T2D revealed 853
unique differential DNA methylation genes, including 17 genes
previously identified in GWAS such as TCF7L2, THADA,
KCNQ1, FTO, and IRS1 associated with the risk of T2D (105).
This reinforces the idea that genetic and epigenetic mechanisms
may interact to affect pancreatic b-cell function, development of
insulin resistance, and T2D. Understanding if the microbiota
specifically aids the host epigenetic changes associated with T2D
could be important in the development of novel therapies T2D or
comorbidities such as obesity.
THERAPEUTIC POTENTIAL OF GUT
MICROBIOTA FOR T2D

The associations between gut microbiota, microbial metabolites,
and T2D, opened a new perspective for potential novel
therapeutics for T2D. Several gut microbiota targeted
therapeutics including fecal microbiota transplantation (FMT),
medication, and dietary choices could be useful therapeutic
strategies to manage T2D (Figure 1). Several clinical trials to
evaluate the impact of these potential therapeutic agents on T2D
are currently completed or in progress (Table 3).

Fecal Microbiota Transplantation
FMT has gained attention over the past few years as a research
method demonstrating the contribution of gut microbiota to a
disease state. Most clinical trials with FMT have been performed
in patients with Clostridium difficile infections (106, 107) and
these studies have been successful. As an extension of these
studies, several additional diseases such as T2D have been
suggested responsive to microbiota transplantation (108). In
rodent models, insulin sensitivity significantly improved after
transferring microbiota in MyD88 deficient NOD mice (109).
Similar studies where human microbiota from healthy Chinese
subjects are transplanted into diabetic db/db mice remarkably
lowers fasting blood glucose concentrations (110). Likewise,
transplantation of fecal samples of patients treated with
metformin into germ-free mice improves glucose tolerance
(111). A limited number of studies have begun to suggest that
FMT from lean subjects into patients improves insulin sensitivity
which could be in part due to increased butyrate-producing
bacteria (108). One study examined the effects of lean donor
versus self-FMT on metabolic syndrome patients and found that
insulin sensitivity improves significantly at 6-weeks after FMT in
male recipients with the metabolic syndrome (112). However,
FMT treatment sometimes failed to improve targeted clinical
Frontiers in Endocrinology | www.frontiersin.org 8
phenotypes. For example, one study failed to show reduced
TMAO levels in the recipient of FMT from a vegan donor
(112), who have altered intestinal microbiota compared to
omnivores (114) and low production of TMAO (115). In
addition to inconsistent results, the long-term effects of FMT
have not been adequately examined. Thus, further studies are
needed to evaluate the long-term effectiveness and potential side-
effect of FMT in humans.

Anti-Diabetic Drugs
Metformin is a widely known common treatment for T2D but
the exact mechanisms underlying the hypoglycemic effect are not
yet fully understood. Metformin has been shown to have an
inhibitory effect on T2D by activating AMP-activated protein
kinase (AMPK) or inhibiting mitochondrial respiration and
glycerophosphate dehydrogenase (116–118). Recently, evidence
has been reported suggesting that the composition of the gut
microbiota mediates the efficacy of metformin to lower blood
glucose levels. The fact that intravenous injection of metformin,
unlike oral administration, does not lower hyperglycemia,
suggests that gut microbiota is an important part of metformin
action (119). Indeed, metformin shifts the composition of gut
microbiota in both mice and humans, making themmore similar
to the microbiota of a healthy host (111, 120, 121). Some of these
gut microbiota changes have also been seen in healthy people
who have not responded to glycemic control to metformin
treatment, thus suggesting shifts in the gut microbiota induced
by metformin itself, rather than simply reflecting lowered blood
glucose level. Metformin influences the abundance of several
microbial taxa, including increased abundance of A. muciniphila,
Bifidobacterium bifidum, Bilophila wadsworthia, Escherichia,
Lactobacillus, Shigella spp. as well as a reduced abundance of
Clostridium spp. and Intestinibacter spp. (111, 122, 123).
Regarding the effects of these changes on blood glucose,
metagenomic analysis of microbial composition demonstrates
changes in various functional pathways affecting the production
of propionate and butyrate (124, 125). Metformin stimulates the
activity of endocrine cells by regulating bile acid conversion,
improving intestinal permeability, reducing endotoxin levels,
and enhancing the release of GLP-1 and PYY peptides (126).
Metformin also decreases the TMA level and the growth of
bacteria that produce it in the gut, and thus the circulating
TMAO level in mice (127). The fact that transferring the
microbiota from metformin-treated mice improves metabolic
traits in aged mice indicates that the shifts in the gut microbiota
by metformin treatment are beneficial (111). The effect of the
microbiota on the efficacy of metformin remains unclear as a
recent study found that metformin’s ability to improve T2D in
mice was not affected by the elimination of gut microbiota using
gnotobiotic mice or antibiotics (128). Although previous studies
did not directly demonstrate the role of gut microbiota in
improving glycemic control by metformin, it is suggested that
the anti-inflammatory activity of metformin could potentially
play a role in eliciting some beneficial effects regardless of the
gut microbiota.

Another anti-diabetic drug with a link to the microbiota is
Acarbose, an a-glucosidase inhibitor. Acarbose suppresses the
April 2021 | Volume 12 | Article 632335
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TABLE 3 | Ongoing or completed clinical trials on T2D with FMT, medication, prebiotics/functional foods, or probiotics.

Country Age Phases Enrollment

Israel 18–65 Phase 2 30
China 18–70 Phase 2|

Phase 3
30

China 18–70 NA 61

Denmark 18–70 NA 15
China 40–70 NA 9

Denmark 35–80 NA 50

USA 12–25 Phase 1 92
China 18–65 Phase 4 52

China 40–60 Phase 4 160
Germany 18– Phase 3 50

China 20–65 Phase 4 100

China 18–65 Phase 4 180

Spain 65– NA 182
50–70 Phase 4 900

USA 20–65 NA 238
Portugal 40–80 NA 30
Spain 40–85 NA 35

USA 18– NA 50
China 20–75 Phase 4 350
Iran 30–65 Phase 2|

Phase 3
200

Scotland 18–65 NA 12
South
Korea

50– Phase 4 14

USA 18–65 Early
Phase 1

20

Saudi
Arabia

20–75 NA 83

China 20–80 NA 100

Poland 18–75 NA 50
England 18–30 NA 56
Germany 40–65 Phase 1|

Phase 2
20

Netherlands 18–65 Early
Phase 1

26

(Continued)
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Category NCT Number Title Interventions

FMT NCT02346669 Fecal Microbiota Transplantation for Diabetes Mellitus Type II in Obese Patients FMT
NCT01790711 Fecal Microbiota Transplantation on Type 2 Diabetes Mellitus FMT

NCT03127696 Randomized Placebo-controlled Study of FMT to Impact Body Weight and Glycemic
Control in Obese Subjects With T2DM

FMT

Medication NCT03018444 The Effect of HMG-CoA Reductase Inhibition on Postprandial GLP-1 Secretion Atorvastatin
NCT02900417 Evaluation of the Effect of Sitagliptin on Gut Microbiota in Patients With Newly Diagnosed

Type 2 Diabetes
Sitagliptin

NCT02061124 Effect of Bile Acid Sequestration on Postprandial GLP-1 Secretion, Glucose Homeostasis
and Gut Microbiota

Sevelamer 1600 mg for 7 days

NCT02960659 Therapeutic Targets in African-American Youth With Type 2 Diabetes Metformin and Liraglutide
NCT04426422 Effect of Metformin on Gut Microbiota Changes and Glycemic Control of Newly Diagnosed

Type 2 Diabetes
Metformin Hydrochloride

NCT01758471 Efficacy of Acarbose on Intestinal Microbiome and Incretins of Type 2 Diabetes Glipizide | Acarbose
NCT04057261 Effect of Liraglutide on the Metabolic Profile in Patients With Type 2 Diabetes and

Cardiovascular Disease
Liraglutide

NCT02583438 Evaluate the Effect of Saxagliptin on Gut Microbiota in Patients With Newly Diagnosed Type
2 Diabetes

Saxagliptin

NCT04287387 Response of Gut Microbiota in Type 2 Diabetes to Hypoglycemic Agents Glucophage | Acarbose | Sitagliptin |
Dapagliflozin | Pioglitazone | Glimepiride
Tablets

Prebiotics/
Functional
foods

NCT03557541 Sardine-enriched Diet for Prevention Type 2 Diabetes Sardine diet
NCT03708887 The Effect of Omega-3 FA on Glucose and Lipid Homeostasis Disorders in Obese/Diabetic

Patients
Omega-3 fatty acid

NCT03194152 Peanut Consumption and Cardiovascular Disease Risk in a Chinese Population Peanut
NCT04403217 Effect of MEDiterranean Diet on the microBIOME of Individuals With Type 2 Diabetes Individualized structured dietary plan
NCT02294526 A Sardine Diet Intervention Study to Assess Benefits to the Metabolic Profile in Type 2

Diabetes Mellitus Patients
Sardine diet

NCT02717078 The LoBAG Diet and Type 2 Diabetes Mellitus Diet Therapy
NCT03120299 The Effect of Omega-3 FA on Hypertriglyceridemia in Patients With T2DM(OCEAN) Omega-3 fatty acid
NCT02929901 The Effects of Coffee Main Constituents (Caffeine and Chlorogenic Acid) Supplementation

on Inflammatory, Metabolic Factors, Hepatic Steatosis and Fibrosis in None- Alcoholic Fatty
Liver Patients With Type 2 Diabetes

Caffeine and chlorogenic acid

NCT03141710 Commercial Prebiotic Supplement Study Prebiotics
NCT03552991 Effects of Dietary Fiber on Glucose Control in Subjects With Type 2 Diabetes Mellitus Agiocur Pregranules

NCT02974699 Role of Gastrointestinal Microbes on Digestion of Resistant Starch and Tryptophan
Availability to Humans

Potato Starch | Pregelatinized Starch

Probiotics NCT01765517 Study to Explore the Effects of Probiotics on Endotoxin Levels in Type 2 Diabetes Mellitus
Patients

Probiotics

NCT02728414 Probiotics Effect on Glucose and Lipid Metabolism and Gut Microbiota in Patients With
Type 2 Diabetes

Probiotics

NCT04089280 Probiotics in Metformin Intolerant Patients With Type 2 Diabetes Sanprobi Barrier-multispecies probiotic
NCT03037918 Effect of Yakult Ingestion on Diet-induced Insulin Resistance in Humans Yakult light
NCT01250106 Probiotics as a Novel Approach to Modulate Gut Hormone Secretion and Risk Factors of

Type 2 Diabetes and Complications
Lactobacillus reuteri

NCT04495972 Intestinimonas for Prevention of Type 2 Diabetes Mellitus Intestinimonas-capsules
s
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conversion of oligosaccharides to monosaccharides and
disaccharides, delays the absorption of glucose in the intestine,
and lowers blood glucose levels after a meal. Due to its effects on
carbohydrate metabolism, Acarbose has been hypothesized to
affect microbiota composition. In T2D patients Acarbose treatment
alters the gut microbiota. The abundance of Dialister, B. longum,
Faecalibacterium, and Lactobacillus increases, while the abundance
of Butyricoccus, Phascolarctobacterium, and Ruminococcus is
reduced. These changes in composition may improve gut health
as evidenced by the decrease in circulating LPS levels (129–131).
This alteration in the gut microbiota composition after Acarbose
treatment suggests that the therapeutic effect of Acarbose may be
partially mediated through microbiota. Whether these changes in
microbial composition contribute to acarbose’s effect on lowering
blood glucose has not been extensively studied. Similarly, liraglutide,
a GLP-1 receptor agonist, stimulates satiety, slows gastric emptying,
inhibits glucagon, and promotes insulin secretion. In animal studies,
liraglutide increased the abundance of A. muciniphila, Allobaculum,
Anaerostipes, Blautia, Butyricimonas, Desulfovibrio, Lactobacillus,
Turicibacter, and SCFAs producing bacteria and decreased the
abundance of Bacteroidales, Clostridiales, Proteobacteria (132,
133). These data suggest that the beneficial effect on
hyperglycemia these drugs have, may in part be through the gut
microbiota, although further clinical studies are needed.

Probiotics
Probiotics are live microorganisms that have a beneficial effect on
human health (134). Various beneficial effects of taking
probiotics have been reported, including improving gut health,
alleviating symptoms of lactose intolerance, inhibiting the
growth of pathogenic bacteria, producing SCFAs, balancing
pH, and stimulating the immune system (135). The use of
probiotics to manage T2D is of interest, but a limited number
of studies have evaluated the effects in clinical settings.
Preliminary studies indicated that alteration of the gut
microbial composition by probiotics supplementation might
improve T2D by reducing pro-inflammatory cytokines,
intestinal permeability, and oxidative stress [reviewed at (136)].
Several bacterial species are used in commercial probiotics
supplement products, including Bifidobacterium longum subsp.
infantis, Lactobacillus, Streptococcus, Pediococcus, and
Lactococcus species (137). L. gasseri, Lactobacillus helveticus,
Lactobacillus casei, and Bifidobacterium bifidum probiotic
reduce fasting blood glucose levels with HbA1c (138–140).
Mechanistically, these probiotics have been shown to have
antioxidant and immunomodulatory effects by reducing
oxidative stress (140), reducing inflammatory molecules, and
inhibiting effector functions of CD4+ T-cells (142), which may
influence on the reducing blood glucose levels and T2D risk. A
randomized, double-blind, placebo-controlled trial of
administration of A. muciniphila in overweight/obesity insulin-
resistant volunteers improved insulin sensitivity and reduced
insulinemia, plasma total cholesterol, body fat mass, hip
circumference, and level of blood markers associated with liver
dysfunction and inflammation (32). Recent meta-analysis studies
showed that the probiotic supplementation improved the fasting
blood glucose, HbA1c, and homeostatic model assessment for
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insulin resistance (HOMA-IR) in T2D patients and thus can be
recommended as complementary advice alongside medicine and
lifestyle modifications for T2D treatment (143, 144).

Prebiotics
Prebiotics are the non-digestible food ingredients that beneficially
affect the host by selectively stimulating the growth and (or) the
activity of one or a limited number of bacterial species already
resident in the colon (145). Inulin, a linear b-2,1 fructosyl-fructose
polydisperse carbohydrate material with or without a a-D-glucose
moiety (146), is one of the most studied prebiotics. Inulin-type
fructooligosaccharide (ITF) improved glycemia by increasing the
production and release of the active forms of GLP-1 from the cecum
and proximal colon and reducing plasma ghrelin concentration in
the rat (147). The direct effect of inulin supplementation on the T2D
is not conclusive in human clinical trials. One study reported that
dietary inulin reduced fasting blood glucose, body weights, glycated
hemoglobin, plasma LPS, IL-6, TNF-a and IL-17A in T2D patients
(148). A recent placebo-controlled crossover clinical trial (149)
found enrichment of Bifidobacterium and Bacteroides with a
significantly higher fecal SCFAs concentration due to ITF
consumption compared to placebo (150). Additionally, the
relative abundance of Cyanobacteria and Bacteroides is increased,
and a reduction in the relative abundance of Ruminiclostridium,
Deferribacteres, and Tenericutes is observed due to inulin
supplementation, indicating that the dietary inulin alleviates T2D
via suppressing inflammation andmodulating gut microbiota (148).
A recent systemic review (151) has summarized clinical trials
conducted to evaluate the effect of dietary inulin on Akkermansia
muciniphila, which are usually present at a higher abundance in
healthy individuals compared to T2D patients and found an
increased abundance in the treatment group compared to
controls. However, others found no effect largely due to
interindividual variation at the baseline T2D phenotypes (152).

It should be noted that a symbiotic mixture of prebiotics and
probiotics (134), supplementation could provide a better beneficial
effect compared to prebiotic or probiotic alone (153). For example,
Lactobacillus acidophilus DSM20079 induces 14·5-times more
butyrate in the presence of inulin or pectin than glucose (154).
Berberine, a natural plant alkaloid extracted from Berberis aristata
and Coptis chinensis, is reported to be an effective remedy for T2D
(155). A recent randomized, double-blind, placebo-controlled trial
conducted in China demonstrates that administration of berberine
with probiotics improves HbA1C levels compared to the group
treated with berberine alone (156). A meta-analysis of randomized
controlled trials reported that diets supplemented with either
prebiotics or symbiotics improved fasting blood glucose and
HbA1C in patients with T2D (157). Therefore, symbiotic
products that selectively stimulate and (or) activate metabolism of
probiotics could be recommended to effectively lower the risk
of T2D.

Intermittent-Fasting
Intermittent fasting (IF) is defined as a periodic dietary
restriction, which has been shown to increase lifespan, and to
reduce the risk of developing various age-related pathologies
including T2D (158). Animal studies of IF have reported an
Frontiers in Endocrinology | www.frontiersin.org 11
improvement in body composition, glucose and lipid
metabolism, decreased inflammation, and autophagy (159) and
gut microbiota might play a pivotal role in this process (160,
161). Though most of the human IF studies show a beneficial
effect, the results are not completely conclusive. Two recent
reviews summarize the recent literature on the effect of IF on
T2D (162, 163). In this portion of the review, we will critically
evaluate the microbial aspect of the IF on T2D. A recent study
(164) using diabetic mice reported that a 28-day IF intervention
re-structured the gut microbiota by increasing the abundance of
Aerococcus, Corynebacterium, Odoribacter, and Lactobacillus
and dec r ea s ing the abundance o f S t r ep t o co c cu s ,
Rummeliibacillus, and Candidatusarthromitu, which reduced
plasma glucose and insulin levels, and improved energy
metabolism. The changes in bacterial abundances due to IF are
correlated with plasma secondary BAs concentration, increased
villi length and reduced gut leakage accompanied by decreased
plasma LPS levels (164), indicating improved low-grade
inflammation (165). More importantly, the effect of IF on the
T2D was suppressed by antibiotics treatment (164), suggesting
that the microbiota is a causative agent of improvement in T2D
by IF. An alternative to IF is a fasting-mimicking diet (FMD),
which contains very low calories and low protein (166).
Intermittent administration of FMD led to the reconstruction
of gut microbiota by increasing the genera of Parabacteroides
and Blautia while reducing Prevotellaceae, Alistipes, and
Ruminococcaceae, along with normalized blood glucose levels,
improved insulin sensitivity and b cell function in hyperglycemic
db/db mice. This study further underscores that the loss of
pancreatic islets and b cells can be prevented by the FMD-
mediated altered gut microbiota (167), indicating that FMD
improved T2D through pancreatic b cells function. Overall, IF
may modulate gut microbiota and improve T2D. However, these
findings need to be validated in human cohorts using
longitudinal studies to establish the long-term effectiveness of
IF in health outcomes including T2D.
CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Substantial evidence suggests the gut microbiota, and the
metabolites it produces, are critical to the etiology of T2D. A
strategy including FMT, medication, prebiotics, probiotics,
functional food, and intermittent fasting has been suggested as
strategies to reduce T2D. However, most studies have focused on
the characterization of gut microbiota rather than functional
validation of specific microbial taxa affecting T2D risk.
Identifying specific causally related microbial taxa or microbial
metabolites responsible for the pathogenesis of T2D could
provide interesting new opportunities for the diagnosis,
treatment, and prevention of T2D.

Recently several novel approaches have been taken to directly
modify the gut microbiota. For example, one study (168)
reported a novel approach to remodeling the gut microbiota
using cyclic d,l-a-peptides. Alternatively, the FXR agonist
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fexaramine, which was not absorbed by the intestine, binds the
FXR receptor on intestinal cells and induces enteric fibroblast
growth factor 15 that leads to alterations in bile acid
composition, reduces diet-induced weight gain, body-wide
inflammation, and hepatic glucose production (169). These
studies suggest that the development of therapeutics targeting
the microbiome instead of the host is a viable strategy for T2D.

As discussed above, probiotic supplementation and FMT
studies have established a causal relationship between gut
microbiota and T2D. However, studies (170, 171) using FMT
have demonstrated that the relationship between gut microbiota
and disease phenotype is more complex than usual thought. For
example, FMT may not always be able to transfer the beneficial
clinical phenotype, instead sometimes can be resulted in a
detrimental opposite effect. A recent FMT study (31) in which
the gut microbiota of C57BL/6J mice ablated using antibiotics
was reconstituted with either C57BL/6J or WSB/EiJ fecal
microbiota. C57BL/6J mice are more susceptible to obesity,
diabetes, and atherosclerosis compared to WSB/EiJ mice (170).
Paradoxically, mice reconstituted with WSB/EiJ microbiota had
significantly higher fat mass compared to the mice reconstituted
with C57BL/6J microbiota. Moreover, among the members of
gut microbiota, only the bacterial community is being studied
extensively. To date, enteric virus, fungal, or archaea
communities are still underappreciated mostly because of the
assay difficulties and lack of standard reference databases and
thus their contribution to T2D remains largely unknown.
Therefore, incorporating these members in analysis may
potentially lead to the development of novel therapeutics
for T2D.

Computational approaches such as machine learning
facilitate the analysis of large “-omics” datasets through the
development of algorithms and mathematical models designed
to predict outcomes. It remains to be determined how these
novel computational approaches can be harnessed to further our
understanding of the microbiota’s role in T2D but initial studies
are promising. Recently two studies used machine learning tools
Frontiers in Endocrinology | www.frontiersin.org 12
to explore the role of the microbiome in precision nutrition (172)
and to predict cirrhosis based on gut-microbiota features (173).
Thus, use of these novel computational approaches may further
our understanding of the metabolic consequences of how
alterations in dietary habits, microbiota, metabolomics,
genetics, and epigenetics, interact to alter metabolism. A better
understanding of the interactions between microbiota, lifestyle,
and host factors such as genetics and epigenetics might lead to a
novel therapeutic approach for T2D.
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