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Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease in adults
and primarily targets upper and lower motor neurons. The progression of the disease
is mostly mediated by altered intercellular communication in the spinal cord between
neurons and glial cells. One of the possible ways by which intercellular communication
occurs is through extracellular vesicles (EVs) that are responsible for the horizontal
transfer of proteins and RNAs to recipient cells. EVs are nanoparticles released by the
plasma membrane and this review will describe all evidence connecting ALS, intercellular
miscommunication and EVs. We mainly focus on mutant proteins causing ALS and
their accumulation in EVs, along with the propensity of mutant proteins to misfold and
propagate through EVs in prion-like behavior. EVs are a promising source of biomarkers
and the state of the art in ALS will be discussed along with the gaps and challenges still
present in this blooming field of investigation.
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INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease, with a prevalence
of five cases per 100,000 persons. It is a rare and fatal neurodegenerative disorder that primarily
targets upper and lower motor neurons in the motor cortex, brainstem, and spinal cord. It results
in progressive paralysis and death, generally within three to 5 years from onset, although the
progression is slower in some patients (Hardiman et al., 2017). Genetic mutations associated with
ALS have been observed both in sporadic cases, where the mutation may occur ex novo, and in
familial cases, where the mutation is inherited from generation to generation. Most ALS cases are
sporadic, and 10% are familial, almost always as a dominant trait (Table 1).

In 1993 the first genetic mutation found to cause ALS was reported in the gene SOD1, which
encodes the superoxide-dismutase protein (Rosen et al., 1993). More than thirty genes have been
linked to ALS, but causality has been validated only for about fourteen (Taylor et al., 2016)
(Table 1). These genes are involved in proteostasis and protein quality control (e.g., SOD1, VCP,
OPTN, UBQLN2, SQSTM1, TBK1) (Rosen et al., 1993; Johnson et al., 2010; Maruyama et al., 2010;
Deng et al., 2011; Fecto et al., 2011; Freischmidt et al., 2015), RNA processing and metabolism
(e.g., AGN, TARDBP, FUS, C9ORF72, HNRNPA1, MATR3) (Greenway et al., 2006; Sreedharan
et al., 2008; Kwiatkowski et al., 2009; DeJesus-Hernandez et al., 2011; Renton et al., 2011; Kim
et al., 2013; Johnson et al., 2014) and cytoskeletal dynamics (e.g., DCTN1, TUBA4A) (Munch et al.,
2004; Smith et al., 2014) which are impaired in ALS. Interestingly, many of the mutant genes
cause either ALS or another neurodegenerative disease named frontotemporal dementia (FTD),
or a degenerative condition with common traits of ALS and FTD (Nguyen et al., 2018). A typical
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hallmark of the pathology are the protein inclusions that are often
ubiquitinated and enriched in TDP-43 (Neumann et al., 2006).
Another characteristic of ALS is illustrated by clinical evidence
that the disease begins focally and spreads during progression,
propagating motor neuron death from one starting motor unit
to adjacent ones (Brettschneider et al., 2015), possibly through
a mechanism involving altered intercellular communication
between neurons and glial cells (Garden and La Spada, 2012).

ALS IS A NON-CELL AUTONOMOUS
DISEASE

Amyotrophic lateral sclerosis is a non-cell autonomous disease,
and motor neuron degeneration is modulated by intracellular and
intercellular damages (Ilieva et al., 2009). Elegant studies have
demonstrated that the knock-out or reduction, respectively, of
mutant SOD1 or TDP-43 selectively in motor neurons delayed
disease onset but did not affect its progression (Clement et al.,
2003; Ditsworth et al., 2017). In contrast, the selective removal
of mutant SOD1 from microglia or astrocytes in vivo slowed the
progression of the disease (Beers et al., 2006; Boillee et al., 2006;
Yamanaka et al., 2008; Wang et al., 2009), giving glial cells a
central role in disease propagation (Ilieva et al., 2009).

Lymphocytes may serve as another layer of regulation because
removal of CD4+ T lymphocytes in an ALS mouse model
increased disease severity by impairing the trophic responses of
microglia and astrocytes (Beers et al., 2008). Moreover, reduction
of regulatory T-lymphocyte numbers and function correlates with
faster progression and greater severity in patients (Beers et al.,
2011; Beers et al., 2017).

Finally, overexpression of mutant SOD1 in skeletal muscle
affected motor neuron viability and suggested that the physical
communication between skeletal muscle and nerve influenced
neuronal survival, axonal growth, and maintenance of synaptic
connections in ALS (Dobrowolny et al., 2008). These data suggest
that interactions between different cell population are affected.

INTERCELLULAR COMMUNICATIONS,
UNCONVENTIONAL PROTEIN
SECRETION AND EXTRACELLULAR
VESICLES

In the Central Nervous System (CNS), intercellular crosstalk
happens among neurons, between neurons and glia or cells of the
innate immune system, through different modalities, involving
the release into the extracellular space of molecules such as

TABLE 1 | List of genes implicated in ALS pathogenesis, according to OMIM.

Gene/Locus Location Phenotype Inheritance ExoCarta References∗

TARDBP 1p36.22 ALS/FTD AD Y Ding et al., 2015; Feiler et al., 2015; Iguchi et al., 2016

ALS2 2q33.1 ALS, juvenile AR N

ERBB4 2q34 ALS AD Y

TUBA4A 2q35 ALS/FTD AD Y

CHMP2B 3p11.2 ALS AD Y

MATR3 5q31.2 ALS AD Y

SQSTM1 5q35.3 ALS/FTD AD Y

FIG4 6q21 ALS AD N

C9orf72 9p21.2 ALS/FTD AD N (DPR) Westergard et al., 2016

SIGMAR1 9p13.3 ALS, juvenile AR N

VCP 9p13.3 ALS/FTD Y

SETX 9q34.13 ALS, juvenile AD N

OPTN 10p13 ALS Y

ANXA11 10q22.3 ALS AD Y

HNRNPA1 12q13.13 ALS AD Y

TBK1 12q14.2 ALS/FTD AD Y

ANG 14q11.2 ALS Y

SPG11 15q21.1 ALS, juvenile AR Y

FUS 16p11.2 ALS/FTD Y Kamelgarn et al., 2016

PFN1 17p13.2 ALS Y

ALS3 18q21 ALS AD N

ALS7 20p13 ALS N

VAPB 20q13.32 ALS AD Y

SOD1 21q22.11 ALS AD, AR Y Gomes et al., 2007; Basso et al., 2013; Grad et al., 2014

CHCHD10 22q11.23 ALS/FTD AD N

UBQLN2 Xp11.21 ALS/FTD XLD Y

Y is the abbreviation for YES, N for NO. ∗References are related to EV protein cargos described in the paragraph “ALS-associated proteins as EV cargo and the prion-like
propagation of protein misfolding.” AD, autosomal dominant; AR, autosomal recessive; XLD, X-linked disease.
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neurotransmitters, neurotrophic factors, metabolites, and mutant
proteins encapsulated or not in vesicles (Fevrier et al., 2004;
Verkhratsky and Toescu, 2006; Basso and Bonetto, 2016; Garden
and La Spada, 2012; Verkhratsky et al., 2016).

Proteins are secreted by either a classical or an unconventional
modality. The classical, or conventional, protein secretion refers
to the transport of secreted proteins through the endoplasmic
reticulum (ER), to the endosomes, the Golgi and then to the
plasma membrane, if appropriately folded. Eventually, immature
cargos are efficiently transported back to the ER. The transport of
proteins between organelles within the secretory pathway occurs
via vesicles characterized by different sets of cytosolic proteins
that generate distinct classes of transport vesicles. There are
three principal categories characterized by evolutionarily related
coat proteins, named clathrin, COPI, and COPII. The clathrin-
coated vesicles are necessary to transport vesicles between the
plasma membrane and the trans-Golgi Network to fuse with
endosomes or lysosomes; COPI-coated vesicles transport cargo
from the Golgi back to the ER. COPII vesicles transport cargo
proteins from the ER to the Golgi [for a detailed review on
the conventional protein secretion, refer to Gomez-Navarro and
Miller (2016)]. With unconventional protein secretion (UPS),
proteins that do not present a signal peptide for secretion
(leaderless proteins) are released into the extracellular space. UPS
occurs by different modes: it is usually induced by cell stress, and
also involves the transport of proteins to the plasma membrane
in vesicular intermediates such as CUPS (compartment for
unconventional protein secretion), late endosomes, secretory
autophagosomes, and lysosomes (Malhotra, 2013; Dimou and
Nickel, 2018). Once the leaderless proteins reach the plasma
membrane, they are released into the extracellular space as free
cargos. In addition to the UPS pathways, leaderless proteins
reach the extracellular space through extracellular vesicles (EVs)
(Rabouille, 2017). These include exosomes, microvesicles, and
apoptotic bodies, differing in size, biogenesis and mechanism
of secretion (Raposo and Stoorvogel, 2013; Baixauli et al.,
2014). In the CNS, all cell types release EVs which contain
proteins, RNA and metabolites (Tkach and Thery, 2016).
Exosomes are small vesicles (50–100 nm) and derive from the
inward budding of endosomal multivesicular bodies (MVBs).
In the early endosomes, ubiquitinated proteins are recognized
by the endosomal sorting complexes required for transport
(ESCRT) machinery and targeted to the late endosomes, in
the intraluminal vesicles (ILV) of the MVBs (Colombo et al.,
2013).

Endosomal sorting complexes required for transport-
independent mechanisms have now been reported for exosome
biogenesis in ILV and they are based on the interaction of the
cargo proteins with synthenin, syndecan, and ALG-2 interacting
protein X (ALIX) (Baietti et al., 2012). By mechanisms still
under investigation, MVBs either fuse with the lysosome for
protein degradation or transit to the plasma membrane for
exosome release. Recent data indicated that specific protein
post-transcriptional modifications, called ISGylation, inhibits
EV release and induces lysosome degradation (Villarroya-
Beltri et al., 2016). Accordingly, lysosome inhibition correlates
with increased release of alpha-synuclein from SH-SY5Y cells

(Alvarez-Erviti et al., 2011), supporting the hypothesis that
if lysosome is impaired, EVs can be used as a vehicle for the
disposal of unwanted material. Defects in the endolysosomal
pathway have been observed in Alzheimer’s disease (AD)
models, resulting in aberrant release of Amyloid Precursor
Protein (APP) species in exosomes, allowing for elimination
of lysosomal contents that cannot be efficiently degraded
(Miranda et al., 2018). C9orf72, which presents aberrant
hexanucleotide (GGGGCC) expansion in the non-coding
region in ALS patients, regulates vesicle trafficking (Aoki et al.,
2017; Farg et al., 2017). The expansion reduces the interaction
between C9orf72 and Rab7L1. Rab7L1 is a regulator of vesicle
transport from the MVB to the plasma membrane. The reduced
interaction between expanded C9orf72 and Ran7L1 correlates
with a diminished amount of released EVs (Farg et al., 2017).
The mechanisms responsible for impaired EV release are
not yet clear but recent reports indicate that expansion of
C9orf72 also alters lysosome degradation. Other genes linked
to ALS, namely FIG4, ALS2, CHMP2B, OPTN, SQSTM1, are
involved in endosomal maturation, lysosome biogenesis and
vesicle trafficking (Shi et al., 2018), suggesting this pathway as
pathogenic in ALS.

ALS-ASSOCIATED PROTEINS AS EV
CARGO AND THE PRION-LIKE
PROPAGATION OF PROTEIN
MISFOLDING

Extracellular vesicles deliver cargos from donor to recipient
cells. Pathogenic proteins such as prions, amyloid β peptide,
superoxide dismutase, alpha-synuclein, and tau are released in
association with EVs (Pimpinelli et al., 2005; Gomes et al., 2007;
Emmanouilidou et al., 2010; Alvarez-Erviti et al., 2011; Saman
et al., 2012; Yuyama et al., 2015) displaying a prion-like behavior
and propagating the disease (Ghidoni et al., 2008; Coleman and
Hill, 2015). Mutant proteins causative in ALS have been retrieved
in EVs and are transferred across the brain cells as a means of
spreading the disease (Silverman et al., 2016) (Figure 1).

SOD1, or superoxide dismutase one, is an abundant enzyme
that converts superoxide molecules into hydrogen peroxide and
dioxygen. SOD1 was the first ALS-associated protein to be
detected in EVs from stable mouse motor neuron-like (NSC-
34) cells that overexpressed human wild-type and mutant SOD1
(Gomes et al., 2007). Subsequently, we proved that ALS astrocytes
release mutant SOD1 both trough protein secretion and EVs.
We exposed wild-type motor neurons to either the astrocyte
secretome depleted of EVs or to purified EVs. Only purified EVs
transmitted mutant SOD1 and induced the death of wild-type
motor neurons, suggesting that EVs are mediators of toxicity
(Basso et al., 2013). SOD1 can self-replicate in vitro and transfer
aggregates from cell to cell in culture (Sibilla and Bertolotti, 2017).

Grad and colleagues further characterized the aggregation
state of mutant SOD1 in EVs and proposed that misfolded SOD1
in EVs contributes to the prion-like propagation of the pathology
in the CNS (Grad et al., 2014). Misfolded SOD1 associated with
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FIGURE 1 | EVs in ALS pathology. Motor neurons, astrocytes, microglia, lymphocytes, and muscles interplay and contribute to ALS pathogenesis. Mutant proteins
implicated in ALS, such as mutant SOD1, TDP-43, FUS, and DPRs derived from expanded C9orf72, were detected in EVs and suggest EVs as means of disease
spreading.

the outer leaflet of exosomes in NSC-34 cells stably-expressing
mutant or wild-type SOD1, and was propagated to naïve NSC-34
cells. Similarly, cells exposed to conditioned media derived from
HEK293 cells overexpressing mutant SOD1 had intracellular
accumulation of misfolded SOD1. However, the EV-depleted
media failed to propagate misfolded SOD1, suggesting that it is
mainly transmitted by EVs (Grad et al., 2014).

Another protein retrieved in EVs is TDP-43. This DNA
and RNA binding protein mostly resides in the nucleus
and has multiple functions in transcriptional repression,
pre-mRNA splicing and translational regulation (Mackenzie
et al., 2010). When mutated, it translocates to the cytosol
and its cytoplasmic aggregation is a pathological hallmark
of ALS and FTD (Scotter et al., 2015). TDP-43 presents
a prion-like structure at the C-terminal domain of the
protein sequence, that has a tendency to oligomerize and
aggregate. With a protein complementation assay, Feiler
and colleagues demonstrated that TDP-43 oligomers were
loaded in EVs and taken up by the neuronal soma and
the synaptic cleft, and contributed to neuronal degeneration
(Feiler et al., 2015). Additionally, TDP-43 was enriched in
the cerebrospinal fluid (CSF) of ALS-FTD patients (Ding
et al., 2015). Treatment of U251 cells with ALS-FTD CSF
for 21 days increased the accumulation of the toxic TDP-
43 C-terminus fragments in cell lysate (Ding et al., 2015).
The authors speculated that TDP-43 C-terminus fragments
in CSF act as a “seed” to spread pathological TDP-43 in
cultured cells, providing indirect evidence of TDP-43 prion-
like behavior mediated by EVs. TDP-43 was also detected
in EVs released by Neuro2a cells and primary neurons but
not from astrocytes or microglia (Iguchi et al., 2016). The
authors correlated TDP-43 loading in EVs as beneficial in

neuronal clearance of pathological TDP-43 because inhibition of
exosome secretion by inactivation of neutral sphingomyelinase
two with GW4869 or by silencing RAB27A enhanced TDP-
43 aggregates in Neuro2a cells and exacerbated the disease
progression in a TDP-43 transgenic mouse model (Iguchi et al.,
2016).

Fused in Sarcoma (FUS) is another nuclear RNA-binding
protein implicated in a subset of familial and sporadic ALS
cases. Like in TDP-43 pathology, FUS mutations induce
cytoplasmic mislocalization and the formation of stress granule-
like structures (Mackenzie et al., 2010). Kamelgarn and colleagues
analyzed FUS interacting partners in Neuro2a and SHSY5Y
cells and noted that 42 interacting partners were annotated
in ExoCarta. By analyzing the EV cargos purified from cells
overexpressing FUS-WT or mutant (R521G, R495X), FUS was
detected in the EVs and particularly enriched in the FUS-R495X
expressing cells (Kamelgarn et al., 2016), suggesting that FUS
secretion might contribute to the cell-to-cell spreading of FUS
pathology.

Finally, a recent paper described dipeptide repeat proteins
(DPRs) derived from non-ATG translation (RAN-translation) of
C9orf72 hexanucleotide repeat expansions in EVs (Westergard
et al., 2016). Aberrant hexanucleotide repeat expansions in
C9orf72 are the most common genetic alterations in ALS
and FTD (Renton et al., 2014). DPRs were detected in the
spinal cord of ALS patients (Gendron et al., 2013) and were
shown to contribute to motor neuron degeneration (Ash et al.,
2013; Wen et al., 2014). In an elegant in vitro setting, using
cell cultures in transwells and microfluidic fluid chambers,
NSC34 transfected with DPRs and spinal motor neurons
derived from induced pluripotent stem cells from C9orf72-
ALS patients released DPRs in EVs. Intercellular transmission
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of DRPs happened both through anterograde and retrograde
transport in neurons, similarly to TDP-43 (Feiler et al.,
2015), and also between neurons and astrocytes. These data
provided additional evidence that EVs contribute to disease
spreading. Unconventional DPR secretion was also reported
but the causative role in neuronal death was not explored
(Westergard et al., 2016). These results underline the importance
of EVs in spreading toxic proteins in the CNS cellular
environment and in contributing to the propagation of ALS
(Figure 1).

ALS-ASSOCIATED RNA AS EV CARGO

Extracellular vesicles are responsible for the horizontal transfer
not only of proteins but also of RNAs to recipient cells (Fruhbeis
et al., 2013), and the EV-transferred RNA (exRNA) is functionally
active (Lai et al., 2015; Tkach and Thery, 2016). RNA enriched
in EVs comprises mostly small non-coding RNA like microRNA,
rRNA, tRNA (also called tRFs, tRNA-derived RNA fragments),
YRNA, snRNA, snoRNA, lncRNA and vault RNA (Mateescu
et al., 2017). This intercellular transmission of RNA is of
interest for ALS pathology because of recent evidence pointing
to a fundamental role for RNA and RNA-binding protein
dyshomeostasis as crucial in this disease (Donnelly et al., 2014). In
fact, several pathogenic mutations in ALS occur in genes involved
in RNA processing and activity (ANG, TARDBP, FUS, ATXN2,
TAF15, MATR3) (Peters et al., 2015) and selective knockout of
Dicer, the critical enzyme in microRNA maturation, leads to
motor neuron death (Haramati et al., 2010). Accordingly, miRNA
218 is one of the most abundant RNA in motor neurons, and its
knockout leads to neuromuscular failure and motor degeneration
(Amin et al., 2015).

Several studies have investigated miRNA in CSF, urine, serum
or plasma of ALS patients but no biomarkers are available yet
for this disease, probably because of the technical variability in
the analysis of circulating miRNA (Grasso et al., 2015). EVs offer
an attractive alternative because small RNAs are protected by
the EV lipid bilayer; several laboratories are working to define
biomarkers from EVs, but data are mostly not yet available for
ALS [for a broader review of RNAs in EVs, refer to Basso and
Bonetto (2016)].

Pinto et al. (2017) analyzed EVs purified from NSC-34 cells
overexpressing SOD1-WT and G93A for the RNA content. EVs
derived from NSC-34 overexpressing SOD1-G93A transmitted
increased levels of miR-124 to microglia N9 cells and halved their
phagocytic ability. EVs also led to persistent NF-kB activation
as well as upregulation of genes involved in the activation
of microglia (Pinto et al., 2017). Conversely, in EVs isolated
from astrocyte primary cultures derived from SOD1-WT and
G93A no difference was seen between controls and mutant
EVs in miRNA cargos (Jovicic and Gitler, 2017), while the
toxicity of mutant EVs on motor neurons was confirmed, as
previously reported (Basso et al., 2013). These different results
may be linked to methodological challenges in EV purification
and library preparations for RNA-seq. Positional papers from
the International Society of Extracellular Vesicles (ISEV) are

available to standardize the techniques across laboratories to
improve reproducibility (Mateescu et al., 2017).

EXTRACELLULAR VESICLES AS
BIOMARKERS IN ALS

No biomarkers are available yet in ALS. This lack limits
the classification of the stage of illness, delaying development
of specific therapeutic interventions. EVs are potentially an
attractive source of biomarkers. They are released continuously
into biofluids (CSF and blood) and carry biomolecular signatures
(protein and nucleic acids) that reflect the pathological state of
the cells from which they derive. Despite remarkable advances in
the field, there are still technical issues that have to be overcome
before EVs arrive in the clinic. First of all, EV isolation needs
to become straightforward, rapid and cost-effective, with pre-
analytical procedures that preserve EV structural and molecular
integrity. Second, there is pressing need for gold standards
for instruments and assays for detection of EV-associated
biomarkers, as discussed in the latest ISEV workshop on the topic
“EVs as disease biomarkers” (Clayton et al., 2018). In ALS, few
data are publicly available on biological fluids from patients. In
a case report, a dramatic increase of leukocyte-derived EVs in
the CSF of one ALS patient was reported compared to healthy
controls (Zachau et al., 2012). Subsequently TDP-43 was detected
in exosomes derived from CSF in a limited cohort of ALS and
FTD patients, and its expression was not significantly different
from controls, although it tended to be higher in FTD patients
(Feneberg et al., 2014). Later, TDP-43 full-length and C-terminus
fragments were reported in a cohort of ALS-FTD patient-derived
EVs of CSF origin (Ding et al., 2015).

Blood is the most attractive source of biomarkers because it
involves only a minimally invasive medical procedure for patients
and is potentially very informative. In fact, the discovery of
exosomal-like vesicles in human blood plasma opened up new
opportunities for biomarker discovery (Caby et al., 2005). Blood
EVs derive mainly from erythrocytes and platelets, but a lower
percentage also comes from endothelial cells and leukocytes (Shet
et al., 2003; Nielsen et al., 2014). As mentioned earlier, ALS
is a non-cell autonomous and multisystem disease. Therefore,
blood EVs could deliver information on early pathological
events. Tomlinson et al., in a proteomic analysis of serum EVs
from Parkinson’s disease and ALS patients, found 54 proteins
that could discriminate between the two groups of patients
(Tomlinson et al., 2015). Several of the proteins identified
in this and other proteomic studies are abundant, deriving
from blood, and associate with EVs, as reported in EVpedia,
ExoCarta, Vesiclepedia, and Plasma Proteome Database, the
major curated databases on EVs (Mathivanan and Simpson, 2009;
Kalra et al., 2012; Nanjappa et al., 2014; Kim et al., 2015). The
high contamination from blood proteins, however, hinders a
more profound identification of the EV proteome, and shows that
analyses of EV cargos isolated from biofluids are still challenging.
Possibly, to overcome aspecificity, EV subpopulations should be
immunopurified. In a recently published approach, a two-step
procedure to select for neuronal or astrocytic surface markers
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allowed the isolation of EVs enriched for neuronal or astrocytic
origin, respectively (Mustapic et al., 2017). Preliminary data in
Alzheimer’s and FTD patients demonstrated good diagnostic
and predictive performance for this method (Goetzl et al., 2015,
2016a,b, 2018).

In conclusion, EV-associated cargos hold promise as
biomarkers for neurodegenerative diseases, however, a deep
information gap still need to be filled in ALS, where no study
on EV RNA cargos has been published yet. Proteomics combined
with other omics screenings such as lipidomics, metabolomics,
and transcriptomics will probably soon identify useful candidate
biomarkers to be validated in extensive clinical studies, while
standard operating procedures for collection, storage, handling
and analysis of EVs are still urgently awaited.

CONCLUSION: EXTRACELLULAR
VESICLES AS THERAPEUTIC
OPPORTUNITIES IN ALS

Extracellular vesicles are microparticles that hold out potentials
for pathogenesis investigation and biomarker discovery.
Important work has been recently published on the propensity

of EVs to propagate misfolded proteins from cell to cell in ALS
but thorough information on EV cargos, such as metabolites,
lipids, and RNA, is still lacking. A more recent application
of EVs is therapeutics. EVs derived from murine adipose-
derived stromal cells protected NSC-34 cells expressing ALS
mutations against oxidative stress-dependent damage (Bonafede
et al., 2016). Murine adipose-derived stromal cells EVs reduced
cytosolic SOD1 and ameliorated mitochondrial abnormalities
(Lee et al., 2016), and were proposed to attenuate the disease.
These promising preliminary data hold hope for the future but
highlight the need for more and deeper investigations in the field.
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