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Abstract D-a-Tocopheryl polyethylene glycol 1000 succinate (TPGS, also known as vitamin E-TPGS)

is a biodegradable amphiphilic polymer prepared by esterification of vitamin E with polyethylene glycol

(PEG) 1000. It is approved by the US Food and Drug Administration (FDA) and has found wide appli-

cation in nanocarrier drug delivery systems (NDDS). Fully characterizing the in vivo fate and pharmaco-

kinetic behavior of TPGS is important to promote the further development of TPGS-based NDDS.

However, to date, a bioassay for the simultaneous quantitation of TPGS and its metabolite, PEG1000,

has not been reported. In the present study, we developed such an innovative bioassay and used it to inves-

tigate the pharmacokinetics, tissue distribution and excretion of TPGS and PEG1000 in rat after oral and

intravenous dosing. In addition, we evaluated the interaction of TPGS with cytochromes P450 (CYP450s)

in human liver microsomes. The results show that TPGS is poorly absorbed after oral administration with

very low bioavailability and that, after intravenous administration, TPGS and PEG1000 are mainly

distributed to the spleen, liver, lung and kidney before both being slowly eliminated in urine and feces

as PEG1000. In vitro studies show the inhibition of human CYP450 enzymes by TPGS is limited to a

weak inhibition of CYP3A4. Overall, our results provide a clear picture of the in vivo fate of TPGS which
5155380.
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Figure 1 Structures of TPGS an
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will be useful in evaluating the safety of TPGS-based NDDS in clinical use and in promoting their further

development.

ª 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

D-a-Tocopheryl polyethylene glycol 1000 succinate (TPGS,
Fig. 1) is a polydisperse polymer biomaterial synthesized by
esterification of vitamin E succinate with polyethylene glycol
(PEG) 10001. It has an amphiphilic structure with a hydrophilic
polar head and lipophilic alkyl tail which undergoes hydrolysis
in vivo to PEG1000 by esterase enzymes2. TPGS has been
approved by the US Food and Drug Administration (FDA) and has
found wide application in pharmacotherapy as an emulsifier,
solubilizer and permeation enhancer3,4. Of particular interest is its
potential use in anticancer therapy where it can act as a P-
glycoprotein (P-gp) inhibitor and contribute to the prevention of
multi-drug resistant tumors5,6. In fact, the use of TPGS in nano-
carrier drug delivery systems (NDDS) has proven to be one of the
most efficient strategies to increase the intracellular accumulation
of chemotherapeutic drugs in tumor cells7e9. In addition, it has
been demonstrated that TPGS exhibits selective anti-tumor ac-
tivity in its own right, suggesting the possibility of synergistic
antitumor effects with payload drugs10e12. Despite these potential
clinical benefits, TPGS-based NDDS remain in preclinical and
clinical trials and have yet to gain FDA approval for clinical use.

The low success in gaining clinical approval for such NDDS
can partly be ascribed to uncertainty surrounding the safety of the
carrier or encapsulation material released in vivo through break-
down, leakage or dissociation. These materials were previously
considered to be biocompatible and non-toxic but emerging evi-
dence has demonstrated that they or their degradation products can
(a) accumulate in certain vital organs and cause toxicological
effects and (b) change the pharmacokinetics of payload drugs by
interacting with the body’s metabolism, transport processes and
immune system13,14. For example, long-term administration of
pharmaceutical preparations containing low MW PEGs has been
found to cause azotemia and renal tubular necrosis in some pa-
tients15,16. PEG in the renal tubules has also been shown to cause
vacuolation of macrophages and secretory cells17,18. Furthermore,
d its metabolite PEG1000
polymeric nanocarrier materials with surfactant ability such as
TPGS can inhibit the activity of cytochromes P450
(CYP450s)19e22 and/or P-gp23,24 leading to significant changes in
exposure to certain drugs. Moreover, in a pivotal phase III trial of
a TPGS-based nanoemulsion of paclitaxel (PTX) (Tcocsol�) for
intravenous (i.v.) use1,25, a significant decrease in white blood
cells and an increase in neurological symptoms was observed
compared with a TPGS-free formulation of PTX25.

The above results demonstrate the need to establish the
biological fate of nanocarrier materials and their interaction with
biological macromolecules like CYP450 enzymes. In the case of
TPGS, the presence of polydisperse PEG represents a major
challenge in the development of a suitable bioassay for the
simultaneous quantitation of TPGS and PEG1000. In this paper,
we report an analysis of the in vivo fate of TPGS and its metab-
olite PEG1000 in rat using an innovative bioassay based on an in-
source collision-induced dissociation (CID) strategy in liquid
chromatography tandem mass spectrometry (LC‒MS/MS). We
also carried out an in vitro study of the interaction of TPGS with
human liver CYP450 enzymes. We believe these studies increase
our understanding of the biological fate of TPGS and will
contribute to the design and development of safe TPGS-based
NDDS.

2. Materials and methods

2.1. Chemicals and materials

Chemicals and materials (suppliers) were as follows: TPGS
(Shanghai Ponsure Biotech Inc., Shanghai, China); PEG1000
(Changchun Institute of Applied Chemistry, Changchun, China);
diazepam for use as internal standard (I.S., National Institute for
the Control of Pharmaceutical and Biological Products, Beijing,
China); HPLC-grade distilled water (Watson’s Food & Beverage,
Guangzhou, China); acetonitrile, isopropanol and formic acid (all
HPLC-grade) (Fisher Scientific, Toronto, Canada); O,O-dimethyl-
O-2,2-dichlorovinyl phosphate (DDVP) (SigmaeAldrich, St.
Louis, MO, USA); human liver microsomes, NADPH, sulfapyr-
azole, a-naphthoflavone, quercetin, ticlopidine, ketoconazole and
quinidine (Research Institute for Liver Diseases. Shanghai,
China); phenacetin, dextromethorphan hydrobromide, tolbuta-
mide, testosterone, mephenytoin, midazolam, bupropion, acet-
aminophen, hydroxybupropion, dextrorphan, 1-hydroxy
midazolam, 4-hydroxytoluamide, 6b-hydroxytestosterone and
4-hydroxymephenytoin (iPhase Pharma Services, Beijing, China);
amodiaquine, N-desethylamodiaquine and cyTepa (Toronto
Research Chemicals, Toronto, Canada).

2.2. LC‒MS/MS assay

Chromatography was performed on a Shimadzu LC-20ADXR
HPLC system incorporating a CTO-20AC column oven

http://creativecommons.org/licenses/by-nc-nd/4.0/
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maintained at 55 �C, an LC-20ADXR binary pump, SIL-30AC
autosampler and a DGU-20A degasser. Separation was carried
out on a reversed phase PLRP-S 1000 Å polymer column
(50 mm � 4.6 mm, 8 mm) using a mobile phase consisting of
0.1% formic acid in water (solvent A) and 0.1% formic acid in
acetonitrile-isopropanol (50:50, v/v; solvent B) delivered at a
flow rate of 1 mL/min. The gradient elution program was as
follows: 0e0.5 min, 20% B; 0.5e1.0 min, 20%e80% B;
1.0e2.0 min, 80% B; 2.0e3.0 min, 80%e90% B; 3.0e6.0 min,
90% B; 6.0e6.1 min, 90%e20% B; 6.1e7.0 min, 20% B.

Analytes and diazepam (I.S.) were detected using a SCIEX
Triple quad 6500 mass spectrometer equipped with an ESI source
operated in the positive ion mode. Optimized ESI parameters were
as follows: Source temperature 400 �C; ion spray voltage 5500 V;
curtain gas, heater gas and nebulizer gas (N2) 25, 30 and 30 psi,
respectively. Multiple reaction monitoring (MRM) coupled with
in-source CID involved transitions (collision energies eV,
declustering potentials V) for TPGS at m/z 557.4 / 99.0 (35,
250), for PEG1000 at 221.3 / 89.1 (15, 180) and for I.S. at
285.2 / 193.1 (40, 100).

2.3. Preparation of calibration standards and quality control
(QC) samples

Mixed stock solutions containing TPGS (1 mg/mL) and PEG1000
(1 mg/mL) were prepared in acetonitrile‒water (50:50, v/v) and
diluted with the same solvent to produce mixed standard solutions
containing 5, 10, 30, 50, 100, 300 and 500 mg/mL of each analyte.
Mixed QC solutions containing 15, 80 and 400 mg/mL of each
analyte were prepared in a similar way. Calibration standards in
rat matrices were prepared by spiking samples of blank plasma,
urine, feces homogenate and pooled tissue homogenate containing
0.05% DDVP with mixed standard solutions to produce concen-
trations of each analyte of 50, 100, 300, 500, 1000, 3000 and
5000 ng/mL for plasma and pooled tissue homogenate and 250,
500, 1500, 2500, 5000, 15,000 and 25,000 ng/mL for urine and
feces homogenate. Corresponding QC samples were prepared at
concentrations of 150, 800 and 4000 ng/mL and 750, 4000 and
20,000 ng/mL, respectively, by spiking matrices with mixed QC
solutions.

2.4. Sample preparation

After thawing at room temperature, samples of rat matrices
(50 mL) were mixed with 50 mL I.S. working solution (1.5 ng/mL)
and 150 mL acetonitrile before being vortexed for 1 min and
centrifuged at 15,000�g for 10 min. Aliquots of supernatants
(100 mL) were collected, vortex mixed with 100 mL acetonitrile‒
water (30:70, v/v) and 20 mL portions transferred to the LC‒MS/
MS system for analysis of TPGS and PEG.

2.5. Assay validation

Calibration curves for quantitation of TPGS and PEG1000 in rat
matrices were based on peak area ratios and subjected to weighted
linear regression (1/x2) to assess linearity. Other validation pa-
rameters were evaluated (shown in Supporting Information Figs.
S1‒S9 and Tables S1‒S11) to confirm the assay was suitable for
simultaneous determination of the target analytes.
2.6. Animal experiments

Wistar rats (weight 200 � 20 g) were obtained from the Animal
Research Institute of Jilin University. All procedures involving
rats were carried out in accordance with the Guidance for the
Care and Use of Laboratory Animals of the National Research
Council of USA, 1996 and related ethical regulations of Jilin
University.

2.6.1. Plasma pharmacokinetic (PK) study
A group of 12 rats (6 males, 6 females) was randomly divided
into two equal groups (3 males, 3 females) and administered a
2 mg/mL solution of TPGS in saline either as a single i.v. injection
(5 mg/kg) or oral dose (5 mg/kg). Blood samples (approximately
150 mL) were collected into heparinized tubes containing 0.05%
DDVP before the dose and at 0.083, 0.167, 0.333, 0.5, 1.0, 1.5,
2.0, 4.0, 6.0, 8.0, 10 and 24 h after dosing. Plasma was collected
after centrifugation at 2500�g for 5 min and kept frozen at
�80 �C pending analysis. Phoenix WinNonlin 6.4 was used to
calculate non-compartmental PK parameters. The gender
difference was analyzed by Student’s t test via SPSS 19.0.

2.6.2. Tissue distribution
A group of 24 rats was randomly divided into four equal groups (3
males, 3 females) and administered single i.v. injections of TPGS
(5 mg/kg). At 10 min, 30 min, 2 h and 10 h after administration,
groups of rats were subjected to tissue perfusion and sacrificed
prior to excision of tissues including heart, liver, spleen, lung,
kidney, brain, muscle, fat, large intestine, small intestine, testes
and ovaries. After washing with saline, tissues were weighed and
0.5 g samples homogenized in 1.5 mL acetonitrile‒water (50/50,
v/v) containing 0.05% DDVP. Finally, tissue homogenates were
subjected to sample preparation and analysis.

2.6.3. Excretion
A group of 6 rats (3 males, 3 females) was administered single i.v.
injections of TPGS (5 mg/kg) before urine and feces were
collected over the periods of 4, 8, 12, 24, 36, 48, 60, 72, 84, 96 and
120 h after dosing. Urine samples were analyzed immediately
whereas feces samples were freeze-dried and ground to powders
prior to sample preparation of homogenates prepared using 0.2 g
portions of powder in 1.5 mL acetonitrile‒water (50/50, v/v).

2.7. Interaction of TPGS with CYP450 enzymes

Details of microsomal incubations and assay of probe metabolites
(sample preparation and LC‒MS/MS parameters) for CYP450
enzymes are given in Supporting Information Notes S-1 and S-2.

3. Results and discussion

3.1. Bioassay of TPGS and PEG1000

To our knowledge, a method for the direct quantitation of TPGS in
biological matrices has not been reported. Radiolabeling has been
commonly used to analyze PEG and PEG-related materials26 but it
does not differentiate PEG-related materials from their degrada-
tion products. Nuclear magnetic resonance (NMR) has been
applied to quantitate PEGylated protein27 but its low sensitivity



Figure 2 Q1 full scan of (A) TPGS and (B) PEG1000 at DP 50 V.

Figure 3 Q1 full scan of (A) TPGS and (B) PEG1000 at DP 200 V, TPGS fragment ions and PEG1000 fragment ions (red circle) produced by

DP 200 V; Optimizing DP of (C) TPGS-specific fragment ion (m/z 557.4) and (D) PEG1000-specific fragment ion (m/z 221.3).
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and lack of separation capability make it unsuitable for PK studies
in complex biological matrices. Although ELISA using a PEG-
antibody conjugate has been shown to provide good sensitivity
for PEG and PEG-related materials28, it displayed insufficient
selectivity to distinguish between analytes, degradation products
and endogenous compounds.

LC‒MS/MS is widely used in the bioanalysis of pharmaceu-
ticals due to its matchless selectivity and sensitivity29,30. Multiple
reaction monitoring (MRM) is the principal method applied to PK
and toxicokinetic studies. However, both TPGS and the PEG1000
produced by its hydrolysis are polydisperse molecules which ac-
quire multiple charges and form different adduct combinations in
the ESI source leading to complex mass spectra (Fig. 2). Thus, it is
a significant challenge to determine all the polymeric constituents
using LC‒MS/MS and traditional MRM. Fortunately, the
numerous precursor ions formed by polydisperse materials can be
further fragmented by in-source CID at a higher declustering
potential (DP) to a limited number of TPGS/PEG1000 specific
fragment ions which can be tested as surrogate ions of TPGS/
PEG1000 to allow quantitation of all polymers in the biological
sample (Fig. 3). MRM transitions (m/z 557.4e99.0 and
221.3e89.1) produced by the surrogate ions m/z 557.4 and 221.3
show the best signal-to-noise ratio for quantitation of TPGS and
PEG1000, respectively (Supporting Information Figs. S10 and
S11). Typical optimized chromatograms of TPGS and PEG1000
are shown in Fig. 4.



Figure 4 Representative in-source CID-MRM chromatograms of

(A) PEG1000 and (B) TPGS.

Table 1 Pharmacokinetic parameters of TPGS and its

metabolite PEG1000 in rats after single intravenous 5 mg/kg

injections of TPGS.

Parameter TPGSa PEG1000a

AUC0‒t (mg/mL$h) 28.3 � 6.5 5.70 � 1.82

AUC0‒N(mg/mL$h) 29.6 � 7.1 5.83 � 1.79

T1/2 (h) 11.9 � 1.4 1.77 � 0.53

Tmax (h) 0.083 � 0.001 0.153 � 0.034

Vd (L/kg) 3.10 � 1.17 e

CL (L/h/kg) 0.178 � 0.047 e

Cmax (mg/mL) 59.9 � 5.2 4.56 � 0.85

C0 (mg/mL) 95.3 � 13.2 3.86 � 1.42

‒, not applicable.
aData are means � SD, n Z 6.

3160 Tianming Ren et al.
3.2. Chromatography development

In order to carry out the simultaneous quantitation of TPGS and
PEG1000 by LC‒MS/MS, it is important to obtain adequate
chromatographic retention and good peak shape for both analytes.
However, the fact that the two analytes exhibit a large difference
in polarity makes simultaneous quantitation challenging. During
the early phase of method development, we found PEG1000
showed moderate retention on C8 and C18 columns whereas
Figure 5 Mass spectra of chromatographic peaks corresponding to PE

plasma sample collected from a rat 1 h after intravenous injection of TPG
TPGS was strongly bound resulting in an excessively long
retention time. In order to reduce the run time, a PLRP-S polymer
column (50 mm � 4.6 mm, 8 mm) was evaluated and found to
provide appropriate retention for both analytes. Moreover, the
large pore size (1000 Å) reduced the risk of the pores becoming
blocked by macromolecules thereby improving column efficiency
and extending column life.

Both TPGS and PEG1000 are mixtures of polymers of
different chain lengths which give rise to broad and asymmetric
chromatographic peaks when employing a shallow gradient
elution. We found peak shape was improved and the two peaks
baseline separated by using a steep gradient of a relatively polar
organic phase of isopropanol:acetonitrile (50:50, v/v) (Fig. 4). This
separation proved necessary to avoid interference because TPGS
G1000 and TPGS in (A and B) reference standards and (C and D) a

S.



Figure 6 Mean plasma concentration‒time curves (and inset of lg

concentrationetime curves) of TPGS and its metabolite PEG1000

after single intravenous 5 mg/kg injections of TPGS to rats (data are

means � SD, n Z 6).
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produced the same PEG related ions as PEG1000 (e.g., m/z 89.2,
133.2, 177.2, 221.2 for 2, 3, 4 and 5 repeating ethylene oxide
subunits.
3.3. Sample preparation

Biological matrices like plasma and tissue homogenate contain
large amounts of protein and phospholipid which can give rise to
serious matrix effects in the mass spectrometric analysis of TPGS
and PEG1000. Therefore, sample preparation with high recovery
of analytes was necessary to eliminate matrix interferences and
provide high sensitivity for quantitative analysis.

During method development, we found that solid-phase
extraction (SPE) and liquideliquid extraction (LLE) gave low
recovery for both TPGS and PEG1000. In contrast, due to the high
solubility of PEG in aqueous and organic solvents, simple protein
Figure 7 Tissue distribution of TPGS in rat at 10 min, 30 min, 2 h an

means � SD, n Z 6).
precipitation provided satisfactory recovery from rat plasma and
tissue homogenate. Organic solvents including acetonitrile,
methanol and isopropanol were tested as precipitation solvents
and a 3:1 ratio of acetonitrile:biological sample gave the highest
recovery (>90%).

3.4. Plasma PK study

After oral administration of TPGS to rats, neither TPGS nor
PEG1000 could be detected in plasma indicating that TPGS has
extremely low bioavailability. After i.v. injection of TPGS, Q1
scans of chromatographic peaks in plasma samples at 1.65 and
2.37 min showed they corresponded to PEG1000 and TPGS,
respectively (Fig. 5). Moreover, comparison of their MW distri-
butions with those in Q1 scans of reference samples showed there
was very little if any difference between them (Fig. 5).

Plasma concentration‒time profiles and PK parameters of
TPGS after i.v. administration (Table 1 and Fig. 6) show TPGS is
rapidly distributed to tissues and organs with no significant dif-
ference between male and female rats. The apparent distribution
volume (Vd) of TPGS is much larger than the total volume of body
fluid indicating it has a wide distribution in vivo and is likely
bound to certain tissues. This together with the long elimination
half-life (t1/2) of TPGS indicates it has the potential to accumulate
in tissues on long-term administration. TPGS is rapidly hydro-
lyzed to free PEG1000 which reaches a peak concentration (Cmax)
at w10 min. Compared with TPGS, PEG1000 is rapidly elimi-
nated making it less likely to accumulate in tissues.

3.5. Tissue distribution

The tissue distribution of TPGS shown in Fig. 7 (Supporting
Information Tables S12 and S14) shows it reaches a high con-
centration in spleen, liver and lungs which correspond to tissues
with high blood perfusion rates and high expression of the retic-
uloendothelial system (RES). The latter is mainly present as
macrophages which have been shown to take up polymer
d 10 h after single intravenous 5 mg/kg injections of TPGS (data are



Figure 8 Tissue distribution of PEG1000 in rat at 10 min, 30 min, 2 h and 10 h after single intravenous 5 mg/kg injections of TPGS (data are

means � SD, n Z 6).

Figure 9 Tissue concentration‒time curves of TPGS and its metabolite PEG1000 after a single intravenous 5 mg/kg injections of TPGS (data

are means � SD, n Z 6).
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nanocarrier materials and contribute significantly to their elimi-
nation31,32. A low expression of the RES in heart and kidney
probably explains why the concentrations of TPGS in these tissues
are significantly less since heart and kidney both have high blood
perfusion rates. There is very little TPGS in brain tissue pre-
sumably due to its inability to cross the blood‒brain barrier.



Figure 10 Cumulative excretionetime curves of (A) TPGS in rat feces, (B) PEG1000 in rat feces, (C) PEG1000 in rat urine and (D) total TPGS

and PEG1000 in feces and urine after single intravenous 5 mg/kg injections of TPGS (data are means � SD, n Z 6).

The biological fate and interaction with CYP450 of TPGS 3163
Tissue levels are also low in muscle and fat reflecting their low
blood perfusion rates. The fact that the concentration in fat is
higher than in muscle can be attributed to the presence of the
lipophilic vitamin E moiety in TPGS. Interestingly, the concen-
tration of TPGS in testes is below the lower limit of quantitation
(50 ng/mL) in contrast to the concentration in ovaries which is
even higher than in heart and kidney.

The tissue distribution of PEG1000 shown in Fig. 8
(Supporting Information Tables S13 and S15) is somewhat
similar to that of TPGS except that the concentration in kidney is
Figure 11 Activity‒concentration profiles for the inhibition of human
significantly higher than that of TPGS reflecting the fact that the
kidney is the main organ of excretion of PEG26,33.

Tissue concentration‒time profiles of TPGS and PEG1000
after single i,v. injections of TPGS to rats are shown in Fig. 9.
After 10 h, the concentration of both analytes in most tissues was
less than 10% of their corresponding peak concentrations. The
relatively high concentration of PEG in the large intestine at 10 h
presumably results from it being the route of elimination. It is
worth noting that both TPGS and PEG1000 maintain high
concentrations in spleen over time suggesting that long-term
liver CYP450 enzymes by TPGS (data are means � SD, n Z 3).



Table 2 IC50 values for TPGS inhibition of human liver

CYP450 enzymes.

Enzyme IC50 (mmol/L)a

CYP2C8 785

CYP2C9 206

CYP2C19 296

CYP2D6 328

CYP3A4 (testosterone) 59.4

CYP3A4 (midazolam) 42.1

aData are means, n Z 3.
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administration could lead to accumulation in and potential toxicity
to this organ.

3.6. Metabolism and excretion

TPGS was undetectable in urine after i.v. injection indicating it is
not cleared by renal excretion. This result is consistent with the
fact that, in aqueous solution, TPGS undergoes self-assembly to
form nanoscale micelles that are inflexible and too big (particle
size >20 nm) to undergo glomerular filtration (size limit 10 nm)22.
The fact that TPGS micelles are in equilibrium with free TPGS
then raises the question of why free TPGS is unable to undergo
renal clearance. Presumably this is because of the lipophilicity of
the vitamin E component of amphiphilic TPGS.

The cumulative amount of TPGS excreted in feces (Fig. 10A)
reaches a plateau of 85 � 30.4 mg after 60 h and accounts for
8.72% of the dose of TPGS (Supporting Information Table S16). It
has been reported that TPGS is not prone to hydrolysis by
pancreatic lipases in the gastrointestinal tract34,35 but could
undergo hydrolysis to PEG1000 by the carboxyl esterase 1
enzyme in cells, a suggestion supported by a molecular docking
model of enzyme binding36. Since previous studies have indicated
that TPGS may be excreted in feces and urine as PEG1000, we
also determined PEG1000 in urine and feces after i.v injection of
TPGS.

The cumulative amounts of PEG1000 excreted into urine and
feces over 120 h (Fig. 10B and C) of 210 � 67 and 212 � 66 mg,
respectively, accounting for 32.4% and 32.6% of the dose of
TPGS, respectively (Supporting Information Tables S17 and S18).
This indicates that the total PEG1000 excreted in urine and
feces after an i.v. dose accounts for 65% of the dose of TPGS and
that the cumulative amount of TPGS and PEG1000 excreted
(Fig. 10D) accounts for approximately 73% of the dose.

3.7. Effect of TPGS on CYP450 enzymes

The activityeconcentration profiles of TPGS on various CYP450
enzymes in human liver microsomes are shown in Fig. 11
(Supporting Information Table S19). TPGS showed no inhibition
of CYP1A2 and 2B6 but varying degrees of concentration-
dependent inhibition of the other 5 enzymes. The IC50 values
for inhibition of these 5 enzymes are given in Table 2.

Previous studies have shown that drugs with IC50 values in
the range 10e50 mmol/L are generally considered to be weak
inhibitors of CYP450 enzymes and those with IC50 > 50 mmol/L
to have negligible inhibitory effects37,38. On this basis, our re-
sults indicate that inhibition of CYP450 enzymes by TPGS is
negligible except for CYP3A4 where a weak inhibitory effect
may be observed. Whether this is of clinical concern depends on
the plasma concentration of TPGS attained during clinical use
of a TPGS-based NDDS. Since such NDDS normally contain a
significant proportion of TPGS, it would appear at least possible
that a concentration of TPGS sufficient to inhibit CYP3A4
could be reached. This points to the possibility that monitoring
the plasma concentration of TPGS during clinical use of a
TPGS-based NDDS is an appropriate strategy to avoid this
type of drug interaction. Of course the main concern must
apply to CYP3A4 in the wall of the small intestine since it is
rich in CYP3A4 and plays an important role in first-pass
metabolism of orally administered drugs39. Inhibition of
CYP3A4 by TPGS at this site could potentially lead to an
increased absorption of a co-administered drug or, in the worst
case scenario, an overdose.

4. Conclusions

In this study an innovative bioassay for TPGS has been developed
and applied to provide a description of its biological fate in rat.
The results show that TPGS has an extremely low oral bioavail-
ability but, after i.v. administration, is widely distributed to tissues
and is eliminated slowly from the systemic circulation. High
concentrations of TPGS and PEG1000 are found in organs with
high perfusion rates and active RES. Only small amounts of intact
TPGS are excreted in feces, most being metabolized to PEG1000
and subsequently excreted in urine and feces. In studies of the
interaction of TPGS with CYP450 enzymes, TPGS showed a
weak inhibitory effect on CYP3A4 which may be clinically sig-
nificant given the high concentration of nanocarriers like TPGS
used in nanocarrier drug delivery systems. We anticipate our
findings will facilitate the safety evaluation and development of
TPGS-based NDDS with the potential to promote their clinical
application.
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