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Abstract

Background: Inflammatory cytokines play a crucial role in the pathophysiology of traumatic brain
injury (TBI), exerting either deleterious effects on the progression of tissue damage or beneficial
roles during recovery and repair. NNZ-2566, a synthetic analogue of the neuroprotective
tripeptide Glypromate®, has been shown to be neuroprotective in animal models of brain injury.
The goal of this study was to determine the effects of NNZ-2566 on inflammatory cytokine
expression and neuroinflammation induced by penetrating ballistic-like brain injury (PBBI) in rats.

Methods: NNZ-2566 or vehicle (saline) was administered intravenously as a bolus injection (10
mg/kg) at 30 min post-injury, immediately followed by a continuous infusion of NNZ-2566 (3 mg/
kg/h), or equal volume of vehicle, for various durations. Inflammatory cytokine gene expression
from the brain tissue of rats exposed to PBBI was evaluated using microarray, quantitative real time
PCR (QRT-PCR), and enzyme-linked immunosorbent assay (ELISA) array. Histopathology of the
injured brains was examined using hematoxylin and eosin (H&E) and immunocytochemistry of
inflammatory cytokine IL-1p.

Results: NNZ-2566 treatment significantly reduced injury-mediated up-regulation of IL-13, TNF-
o, E-selectin and IL-6 mRNA during the acute injury phase. ELISA cytokine array showed that NZ-
2566 treatment significantly reduced levels of the pro-inflammatory cytokines IL-1§3, TNF-a and
IFN-y in the injured brain, but did not affect anti-inflammatory cytokine IL-6 levels.

Conclusion: Collectively, these results suggest that the neuroprotective effects of NNZ-2566
may, in part, be functionally attributed to the compound's ability to modulate expression of multiple
neuroinflammatory mediators in the injured brain.
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Background

In the United States, traumatic brain injury (TBI) is the
primary cause of death and disability in persons under 45
years old, occurring more frequently than breast cancer,
HIV-AIDS, multiple sclerosis, and spinal cord injury com-
bined [1,2]. Overall, the leading causes of TBI are falls and
motor vehicle accidents; however, penetrating ballistic-
like brain injury (PBBI) represents one of the most severe
TBI categories and is the leading cause of TBI-related death
in both civilian and military populations [3,4].

Experimental studies of PBBI have demonstrated a rapid
activation and recruitment of inflammatory resident glial
cells, astrocytes, microglia, and blood leukocytes accumu-
lated in the injured brain that secretes soluble pro-inflam-
matory cytokines [5-7]. Although cerebral inflammation
can play both a beneficial and a detrimental role in the
injury repair process [8,9], reactive glial cells and leuko-
Cytes secrete a variety of neurotoxic molecules which likely
contribute to progressive neuronal death after TBI [9-11].
Treatment strategies targeting the more acute inflamma-
tory events in hypoxic-ischemic injury and other TBI mod-
els have demonstrated that a reduction in leukocyte
infiltration into the injured brain can improve both his-
topathological and functional outcomes [12,13].

NNZ-2566 is a synthetic analogue of the endogenous N-
terminus tripeptide, Glycine-Proline-Glutamate (GPE,
Glypromate®; Neuren Pharmaceuticals), which is proteo-
lytically cleaved from insulin-like growth factor-1 (IGF-1)
in the brain [14-19]. GPE has been shown to cross the
blood-brain barrier and protect against cell death both in
vitro [20,21] and in vivo [22,23] but is rapidly metabo-
lized [22,23]. GPE has been shown to have potent neuro-
protective effects in animal models of hypoxic-ischemic
brain injury [23,24] and neurodegenerative disease [20].
The GPE analogue, NNZ-2566, was designed to have an
extended (> 70 minute) half-life in order to optimize its
therapeutic potential. Most recently, the results of a com-
prehensive, dose-response study demonstrated that treat-
ment with NNZ-2566 protects against PBBI-induced
inflammation and apoptosis and promotes functional
recovery [25]. The present study was designed to further
elucidate mechanisms of NNZ-2566-mediated neuropro-
tection by assessing its effect on PBBI-induced up-regula-
tion of pro-inflammatory cytokines in both the acute (4 h-
3 day-) and chronic (7 day) post-injury periods.

Methods

Design

Male Sprague-Dawley rats (250-300 g; Charles River Labs,
Raleigh, VA) were used for this study, and all procedures
were approved by the Walter Reed Army Institute of
Research Animal Care and Use Committee. Research was
conducted in compliance with the Animal Welfare Act
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and other federal statutes and regulations relating to ani-
mals and experiments involving animals and adhered to
principles stated in the Guide for the Care and Use of Lab-
oratory Animals (NRC Publication, 1996 edition). Ani-
mals were housed individually under a 12 h light/dark
cycle in a facility accredited by the Association for Assess-
ment and Accreditation of Laboratory Animal Care Inter-
national.

Penetrating ballistic brain injury and treatments

The Dragonfly Model # HPD-1700 Variable Pressure
Waveform Generator and PBBI probe (Dragonfly Inc.,
WV) were used to simulate a right, frontal ballistic injury
to the rat brain [5]. Rats were anesthetized using 2% iso-
flurane delivered in oxygen and positioned in a stereotaxic
frame for probe insertion (Kopf, Tujunga, CA). Normoth-
ermia (37 + 1°C) was maintained throughout the surgical
procedure by means of a homoeothermic heating system
(Harvard Apparatus, South Natick, MA). PBBI was
induced by delivery of a pressure pulse calibrated to rap-
idly inflate/deflate the PBBI balloon to a diameter of
0.633 cm, which is 10% of total rat brain volume. A uni-
lateral frontal hemispheric injury at a 10% severity level
represents a survivable injury associated with well-
defined, consistent and reproducible histopathological
damage [5,26]. After surgery, animals were placed in a
warm heating blanket until they recovered from anesthe-
sia and food and water were provided ad libitum. Sham
animals were not subjected to probe insertion but other-
wise received all surgical manipulations including
anesthesia, scalp incision, and craniotomy.

Three groups of eight rats were evaluated: vehicle/sham,
vehicle/PBBI, NNZ-2566/PBBI. A bolus injection of 10
mg/kg NNZ-2566 or 1 ml/kg saline (vehicle) was admin-
istered intravenously (IV) to each animal at 30 minutes
post-PBBI surgery, immediately followed by a continuous
IV infusion of NNZ-2566 at a rate of 3 mg/kg/h or an
equal volume of vehicle for various durations (1 h, 4 h, or
12 h). Rats were subsequently euthanized and brain tis-
sues collected for processingat 1 h, 4 h, 12 h, 24 h, 3, and
7 days following the initiation of treatment.

Histopathology

At 3 and 7 days post-PBBI, animals were anesthetized as
described above and transcardially perfused with phos-
phate buffered saline (PBS, pH 7.4 at room temperature)
followed by 4% paraformaldehyde in 4°C. Brains were
extracted, immersed in 4% paraformaldehyde for 6 h and
then transferred to 0.1 M phosphate buffer containing
20% sucrose (pH 7.4, 4°C). All brain tissues were sent to
FD Neurotechnologies (Baltimore, MD) for histopatho-
logical and immunohistochemical processing where coro-
nal brain sections (40 pm thick) were cut through the
cerebrum from +4.0 to -7.0 mm AP to bregma with serial
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sections collected at 480 um intervals. Hematoxylin &
Eosin (H&E) staining was used for morphological assess-
ment of injury and detection of inflammatory cells includ-
ing polymorphonucleocytes (neutrophils), monocytes,
and macrophage-like cells defined by large irregular cyto-
plasm [27]. Brain sections were dehydrated in absolute
ethanol. All sections were covered with cover slips in Per-
mount® (Fisher Scientific, Fair Lawn, NJ). Morphological
changes in all tissue samples were visualized using light
microscopy (20 x magnifications). Due to the limited
number of samples available for each group (n = 2) these
data were not quantified.

Tissue processing for gene expression studies

At each endpoint, rats were deeply anesthetized with 70
mg/kg ketamine/6 mg/kg xylazine and fresh brain tissue
was harvested for analysis. A 3-mm section was dissected
from both ipsilateral and contralateral hemispheres of
each rat brain (0-3 mm rostral to bregma), rapidly frozen
on dry ice, and stored at -70° C for RNA extraction. Frozen
brain tissue was homogenized in the lysis buffer, and total
RNA was extracted using Qiagen RNeasy Liquid Tissue
Mini Kit according to the manufacturer's instructions
(Qiagen Science, Germantown, MD). RNA purity and
concentration were determined spectrophotometrically
by calculating the ratio between the absorbance at 260 nm
and 280 nm. The absorbance ratio for all samples ranged
from 1.8 to 2.1. The quality of RNA for all samples was
confirmed by resolving on a 1.5% formaldehyde agarose
gel.

Microarray analysis

Microarray analysis of inflammatory cytokine gene
expression was performed on mRNA using the Oligo
GEArray Rat Inflammatory Cytokines and Receptors
Microarray (Superarray Biosciences, Frederick, MD). The
cDNA array membrane contained 112 inflammatory
cytokines, chemokines, cytokine/chemokine receptors,
and housekeeping genes. Ribosomal protein L32 (RPL32)
and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) genes were used as controls, and global changes
in cytokine gene expression levels at 4 h following PBBI
were compared in sham, vehicle and NNZ-2566 treated
animals. Brain tissues from 6 animals in each group were
pooled and samples were run in duplicate. Hybridization
procedures were performed as per the manufacturer's
instructions. Biotin-labeled cRNA probes were synthe-
sized from total RNA using a TruelLabeling-AMP Linear
RNA Amplification Kit (SuperArray Biosciences, Frederick,
MD). The labeled cRNA probes were hybridized to oligo-
nucleotide fragments spotted on the gene array mem-
branes. Membranes were washed to remove any
unincorporated probe and incubated with alkaline phos-
phatase-conjugated streptavidin (AP-streptavidin). The
chemiluminescence array images, generated from the
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alkaline phosphatase substrate CDPStar, were captured by
a Fuji LAS-3000 cooled CCD camera system. The images
were analyzed using the web-based software GEArray
Expression Analysis Suite (Superarray Biosciences, Freder-
cik, MD). The values of mRNA were normalized for the
amount of RPL32 presented in each sample.

Quantitative RT-PCR

Interleukin 1 beta (IL-1B), interleukin 6 (IL-6), tumor
necrosis factor alpha (TNF-a) and E-selectin were selected
for quantitative reverse transcriptase polymerase chain
reaction (qRT-PCR) analysis to confirm the oligo-cDNA
microarray findings. Reverse transcription reactions were
carried out using RNA PCR Core Kit in a DNA Thermal
Cycler 480 (Perkin-Elmer). PCR primers and TagMan™
probes were designed using Primer Express 2.0 Software
and synthesis was performed by AB Applied Biosystems.
Primer/probe sequences were used according to the meth-
ods of Berti et al. [28]. Quantitative real time PCR was per-
formed with ABI Prism 7000 sequence detection system
(PE Applied Biosystems) as previously described [28]
using TagMan™ Universal PCR Master Mix (AB Applied
Biosystems) as per the manufacturer's instructions.
Amplification was achieved with thermal conditions of 2
minutes at 50°C and 10 minutes at 95°C. The samples
were then run for 40 cycles each at 95°C for 15 seconds
and 60°C for 1 minute. Data are presented as the relative
induction of each cytokine or cellular adhesion molecule
normalized to RPL32.

Multiplex cytokine ELISA assay

Brain tissue was homogenized in the lysis buffer and cen-
trifuged at 1500 g for 15 min at 4°C. The supernatant was
collected and stored frozen at -70°C. Cytokines were
quantified with samples containing 50 pg of protein using
SearchLight Rat Cytokine Array (Pierce Endogen, Woburn,
MA) according to the manufacturer's instructions.

Immunostaining with the anti-IL-1 antibody

An additional series of brain sections were processed for
immunostaining with anti-IL-1 antibody to detect PBBI-
induced inflammatory cell and reactive gliosis response.
The sections were incubated, free-floating, with IL-1f anti-
body (1:1000; R&D systems, AF-501-NA, 0.2 mg/ml) in
0.1 M PBS containing 1% normal horse serum and 0.3%
Triton X-100 for 3 days at 4°C. The immunoreaction
product was visualized according to the avidin-biotin
complex method with Vectastin Elite ABC kit (Vector Lab-
oratory, Burlingame, CA).

Statistical analysis

Quantitative data (RT-PCR gene expression levels and
cytokine levels in brain tissue) were analyzed using one
way analysis of variance (ANOVA) followed by a Dun-
nett's post-hoc analysis for comparison between sham

Page 3 of 10

(page number not for citation purposes)



Journal of Neuroinflammation 2009, 6:19

controls and treated groups at each time point. Data are
presented as mean + S.E.M. (p < 0.05 indicates significant
difference among groups).

Results

Histopathology and inflammatory cell response (H&E
staining)

Upon gross microscopic evaluation, PBBI produced uni-
lateral hemorrhagic lesions that predominately involve
the frontal cortex and striatum (Figure 1A). NNZ-2566
treatment (Figure 1B) had no observable effect on reduc-
ing the size of the core lesion.

In the PBBI animals, inflammatory cell infiltration in tis-
sue surrounding the primary lesion site was clearly
observed with neutrophils and parenchymal monocytes/
macrophages being the dominant cell types. NNZ-2566
suppressed PBBI induced inflammatory cell infiltration at
3 days following PBBI (Figure 1D) as compared to vehicle

Figure |

NNZ-2566 treatment decreased inflammatory leuko-
cyte filtration (H & E staining) after PBBI. Neutrophils
(black arrows) and large macrophage-like cells (white
arrows) were prominent in area surrounding the lesion cav-
ity 3 days following PBBI (A, C). NNZ-2566 treatment (B, D)
inhibited the infiltration of neutrophils and macrophage-like
cells (B and D). By day 7, density of cellular infiltrate sur-
rounding the lesion cavity was also reduced with the NNZ-
2566 treatment (F) compared to the vehicle treatment (E).
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treatment (Figure 1C). By day 7, the majority of the
inflammatory response was restricted to peri-lesional
zones within the immediate region of the primary lesion,
forming a wide band of reactive gliosis (Figure 1E) which
was also decreased by NNZ-2566 treatment (Figure 1F).

Microarray analysis of brain inflammatory gene
expression responses to PBBI

Microarray results performed with RNA isolated from the
injured (right) brain hemisphere 4 h post-PBBI injury are
shown in Figure 2. Expression of the internal controls,
RPL32 and GAPDH genes, was similar in all groups. Con-
versely, PBBI produced robust increases in the expression
of IL-1B, IL-6, Chemokine (C-C motif) ligand 2 (CCL2,
also known as monocyte chemoattractant protein-1,
MCP-1), and Chemokine (C-X-C motif) ligand 2 (CXCL2,
also known as macrophage inflammatory protein 2-
alpha, MIP2-a) genes that were attenuated by post-injury
administration of NNZ-2566.

The effects of PBBI on the gene transcripts depicted in Fig-
ure 2 are summarized in Table 1. Following PBBI, 10 dif-
ferent chemokines and cytokines mRNAs showed a
greater-than 2-fold up-regulation whereas only one
cytokine mRNA was down-regulated greater than 2-fold.
Treatment with NNZ-2566 robustly reduced the increase
in transcription of the pro-inflammatory genes IL-1p, IL-
6, CCL2, and CXCL2. Microarray results with RNA iso-
lated from the contralateral (non-injured) brain hemi-
sphere were the same as RNA results from sham brains.

Inflammatory gene RNA expression profile with QRT-PCR
QRT-PCR was used to confirm and expand upon the
results of the microarray screening by tracking the time
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Figure 2

Representative microarray images of inflammatory
cytokine gene arrays from sham-PBBI, PBBI, and
NNZ-2566 treated PBBI rats 4 hours after the injury
are shown. GAPDH and RPL32 served as internal controls.
Genes for which robust changes in mRNA expression were
observed are indicated by the arrows.
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Table I: Oligo-DNA microarray analysis of cytokine genes that exhibited a £ 2.0 fold change in expression level between the left

(uninjured) and right (injured) brain hemispheres (4 h post-injury).

Gene Name Gene Bank# PBBI NNZ-2566/PBBI Regulation (fold change)
Regulation (fold change)

Chemokine (C-C motif) ligand 2 NM 031530 1212 140
Chemokine (C-X-C motif) ligand 2 NM 053647 1200 T 46
Interleukin 6 NM 012589 T 124 151
Interleukin | beta NM_031512  T11.9 T28
Interleukin | alpha NM 017019 170 T32
Interleukin | receptor, type Il NM 053953 T 68 T<2(L1)
Chemokine (C-X-C motif) ligand 10 NM 139089 132 123
Chemokine (C-C motif) ligand 3 NM 013025 T30 T23
Interleukin 4 receptor NM 133380 128 T<2
Chemokine (C-C motif) ligand 20 NM 019233 127 T<2(10)
Interleukin 6 receptor NM 017020 T <2(l.1) 124
CREB binding protein NM 133381  T<2(Ll) 120
Lymphotoxin A NM 080769 {22 1<2(19)
Fibroblast growth factor receptor 3 NM 053429 | <2(l.5) 2l
Transforming growth factor alpha NM 012671 <2 (r.n 122

The results of the microarray were quantified using GEArray Expression Analysis Suite. Data are pooled from 6 rats per group and expressed as

folds over uninjured brain hemisphere.

course changes of the selected cytokines (IL-1p, IL-6, and
TNF-a) as well as the cellular adhesion molecule (E-selec-
tin) mRNA levels following PBBI (Figure 3; selected on the
basis of our earlier findings using an ischemic brain injury
model[27]). RNA expression from sham rats was consist-
ently expressed with minimal change during various
observation time points. TNF-qo, IL-1f, and IL-6 were sig-

1L-1p
N
R

INF-au

3 Sham 0.5
I PBBI
[ PBBI+NNZ-2566

Sham 1hr 4hr 12hr 24hr 3ds T7ds

E-selectin
0.6

Normalized mRNA level

0.5
0.4
0.3
0.2

0.1

Sham 1hr 4hr 12hr 24hr 3ds 7ds Sham Thr 4hr12hr 24hr 3ds - 7ds

Time point post-PBBI

Figure 3

Time-course of gene expression as measured by
qRT-PCR. The mRNA levels are given as the mean * stand-
ard error (n = 6 per group) normalized to RPL32 levels for
each sample. *P < 0.05 as compared to the sham and # P <
0.05 as compared to PBBI treated with the vehicle.

nificantly elevated between 1 h and 24 h post-PBBI with
peak expression levels occurring between 1 h and 4 h post-
injury. Significant expression of E-selectin was slightly
delayed (i.e. 4 h) and peaked at 24 h post-injury. Average
peak increases in gene transcription for the vehicle-treated
PBBI rats (compared to sham) were as follows: 60-fold for
IL-6, 14-fold for E-selectin, 12-fold for IL-1B, and 6-fold
for TNF-a.. The increase in expression of inflammatory
gene mRNAs subsided between 24 h to 3 days post-injury.
NNZ-2566 treatment significantly reduced the elevation
of IL-6 (79%), E-selectin (81%), IL-1B (76%) and TNF-a
(72%) mRNA levels in the injured hemisphere at 12 h
post-PBBI, with maximal inhibition occurring between 12
h and 24 h. The increase in expression of secondary chem-
okines like CCL2 and CXCL2 (> 10-15 folds) were also
confirmed by QRT/PCR at 4 h post-injury (data are not
shown). The effects of NNZ-2566 treatment on PBBI-
induced up-regulation of these and other related second-
ary cytokines/chemokines are currently under evaluation.

Cytokine levels quantified with ELISA array

Levels of cytokines IL-1p, IL-6, interferon gamma (INF-y)
and TNF-a in brain tissue lysate at each time points meas-
ured using a commercially available ELISA array (that
measured only these four cytokines simultaneously) are
shown in Figure 4. The inflammatory cytokine levels in
sham rats tissue from different time points were consist-
ently presented in a low background. All four measured
cytokine levels exhibited rapid increases at the early time
points (4 h and 12 h post-injury) that, with the exception
of IL-1B, subsided by day 7 post-injury. Further, whereas
IL-1B and IL-6 showed a 15- to 19-fold increase in expres-
sion by 4 h post-PBBI, TNF-a and INF-y exhibited only 2-
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Figure 4

Multiplex cytokine array analysis of cytokine levels
following PBBI. NNZ-2566 treatment is similar to that
listed in legend of figure 3. (A) Schematic indicating the orien-
tation of cytokines (IL-1f, IL6, INF-y, and TNF-a) and repre-
sentative images of chemiluminiscent intensity from the
multiplex array (4 hours after PBBI). (B) Quantitative analysis
from the multiplex array measurements. The cytokine levels
are given as the mean * standard error (n = 6 per group). *P
< 0.05 as compared to the sham, and # P < 0.05 as compared
to PBBI with the vehicle.

to 3- fold increase. NNZ-2566 treatment did not affect the
PBBI-induced up-regulation of IL-6 expression at any time
point, but did produce significant reductions in the
injury-induced up-regulation of IL-1 INF-y, and TNF-a
expression.

Reactive gliosis

The changes in IL-1B immunoreactivity for both the vehi-
cle and NNZ-2566 treated animals are illustrated in Figure
5. The peri-lesional region exhibited highly ramified IL-
1B-positive microglia cells with a more abundant expres-
sion profile at 3 days post-PBBI and a less abundant
expression at 7 days post-PBBI. NNZ-2566 treatment sup-
pressed IL-1f expression in the injured brain hemisphere
for up to 7 days post-PBBI.

Discussion
Traumatic brain injury triggers an inflammatory response
characterized by the invasion of circulating immune cells
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Figure 5

PBBI-induced IL-1 3 immunoreactivity in vehicle (A)
or NNZ-2566 (B) treated rats at 3 (C and D) or 7
days (E and F). IL-13 positive cells are visible in the region
surrounding the lesion cavity at 3 days following PBBI (C)
which are reduced following NNZ-2566 treatment (D). Panel
E and F are representative photomicrographs of injured hem-
isphere at 7 days for PBBI (E) or PBBI + NNZ-2566 (F).

and release of pro-inflammatory cytokines [9,29]. In the
present study, PBBI produced an acute, severe neuroin-
flammatory response that consisted of the release of pro-
inflammatory cytokines, cellular adhesion molecules,
neutrophil infiltration, and reactive microgliosis. How-
ever, post-injury administration of NNZ-2566 signifi-
cantly attenuated PBBI-induced neuroinflammatory and
neuropathological events.

Post-injury administration of NNZ-2566, using the opti-
mal dose and treatment regimen selected from our most
recent neuroprotection study [25], caused broad inhibi-
tion of mRNA in 10 of the associated pro-inflammatory
chemokines and cytokines. Only one cytokine mRNA
(lymphotoxin A) showed a marginal decrease in expres-
sion following PBBI, which was not affected by NNZ-
2566. The current study focused on the inhibitory effect of
NNZ-2566 on selected up-regulated cytokines detected by
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microarray and confirmed by gRT-PCR. The inhibitory
effect of NNZ-2566 on these cytokine mRNA expressions
appeared 4 h post-injury, much earlier than the infiltra-
tion of blood-derived leukocytes and activation of neural-
glial cells, which in previous studies has been shown to
occur as early as 6 hours following the brain injury [5-7].

Although our primary focus was pro-inflammatory
cytokines, it is worth noting that we also observed robust
upregulation of two secondary chemokines, CCL-2 and
CXCL-2, in microarray screening and were verified by
qRT-PCR at a single time point (4 h post-injury). How-
ever, evidence suggests that chemokine secretion by cells
at inflammatory sites may occur in response to up-regula-
tion of the major pro-inflammatory cytokines [70]. Fol-
low-up studies are currently in progress to determine the
effect of NNZ-2566 on this secondary pathway. Neverthe-
less, the main focus of this study was to determine the
potential neuroprotective effects of NNZ-2566 on PBBI-
induced up-regulation of major pro-inflammatory
cytokines, such as IL-1p, TNF-o, and INF-y.

These cytokines have been implicated in tissue damage via
recruitment of inflammatory cells [30-33] and appear to
play "dual roles" in CNS injury. Evidence suggests that
these cytokines may exert deleterious effects during acute
injury stages (4 h to 3 days) and a reparative effect, albeit
at much lower expression levels, during more delayed
recovery periods,[11,34,35]. In our studies, we have
observed induction of these cytokines as early as 1 h to 4
h post injury, followed by a decline in their expression at
later time points. Early induction could lead to the delete-
rious effects after PBBI and decline in cytokine expression
over time may indicate lack of repair.

NNZ-2566 effectively suppressed IL-1 up-regulation
caused by PBBI. The increased expression of IL-1f follow-
ing PBBI was profound (i.e. 15 fold > sham levels) and
prolonged (7 days) compared to moderate (2- to 3-fold)
and short-lived (< 3 days post-injury) increases in TNF-o
and INF-y levels. The role of IL-1f in exacerbating neuro-
degeneration is well-documented and sustained post-
injury up-regulation of IL-1B has been implicated in sec-
ondary neuronal loss [10,36,37]. NNZ-2566 significantly
decreased (50-90%) the PBBI-induced surge in IL-1P
mRNA and in protein levels quantified by qRT-PCR and
ELISA cytokine array as early as 4 hours post-injury; an
effect that was sustained out to 7 days. The ability of NNZ-
2566 to exert prolonged suppression of injury-induced IL-
1P expression may represent a critically important neuro-
protective mechanism of this compound,

In various experimental settings TNF-a. has been desig-
nated as a pro-inflammatory and harmful cytokine [35]
causing deleterious effects that were attenuated by TNF

http://www.jneuroinflammation.com/content/6/1/19

inhibition [36]. Other studies, however, demonstrated
that, while TNF-a. may be detrimental during the acute
brain injury [37], its expression is actually beneficial dur-
ing chronic (> 24 h) post-injury periods [37-39] where it
has been shown to play a reparative role in chronic
inflammation and promote the accumulation of prolifer-
ating oligodendrocyte progenitors required for remyelina-
tion [39,40]. In the present study, PBBI resulted in
significant up-regulation of TNF-a expression during the
acute (1-24 h) post-injury phase (the time period when it
is considered detrimental to neuronal cells) that slowly
declined during the chronic (3-7 days) post-injury phase.
Notably, NNZ-2566 treatment suppressed injury-induced
TNF-o upregulation during the acute (4-12 h) post-injury
time period, but had no prolonged effect on TNF-a
expression. While we cannot rule out that this result may
be linked to the duration (12 h) of NNZ-2566 administra-
tion, it may be pivotal in defining the neuroprotective
benefits of NNZ-2566 and how it should be applied to
achieve therapeutic benefits in brain injury therapy.

NNZ-2566 also protected against injury-induced up-regu-
lation of INF-y, a pro-inflammatory cytokine that orches-
trates the trafficking of specific immune cells to
inflammatory sites via up-regulation of adhesion mole-
cules and chemokines, and promotes the activation of
'killer' cells and lysosome activity in macrophages [41]. In
this study, NNZ-2566 reduced abnormal INF-y levels dur-
ing the acute injury stages (4 h and 12 h). However, this
inhibitory effect was not observed at 3 days post-infusion.

In contrast to TNF-q, IL-1B, and I[FN-y, IL-6 was originally
classified as a neuroprotective and anti-inflammatory
cytokine with pleiotropic functions, and as a regulator of
intracerebral homeostasis [42,43]. Its specific anti-inflam-
matory properties include the inhibition of TNF and
induction of IL-1RA (interleukine 1 receptor antagonist)
[38]. Its neuroprotective properties include the stimula-
tion of NGF (nerve growth factor) production, defense
against glutamate-mediated toxicity and oxidative stress,
and promotion of revascularization [44]. This classifica-
tion as a beneficial cytokine has been challenged by stud-
ies that demonstrate IL-6 contributes to adverse outcomes
in autoimmune neuropathology [45] and promotes
inflammation by influencing chemotaxis, which is corre-
lated with up-regulated chemokine production and adhe-
sion molecule expression [46,47]. However, most of the
clinical data support the classification of IL-6 as a neurore-
parative cytokine [35,42].

In our study, IL-6 mRNA up-regulation following injury
was detected in the acute phase (within 24 hours) but
returned to basal levels by 3 days post-injury. Although
up-regulation of IL-6 mRNA was significantly reduced by
NNZ-2566 treatment, elevation of IL-6 protein was not
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significantly altered. One plausible explanation for this
discrepancy may be that treatment with NNZ-2566 short-
ens the stability of IL-6 mRNA, but may not have signifi-
cant impact on IL-6 translational efficiency. This
hypothesis is supported by evidence that IL-6 mRNA con-
tains AU-rich elements (AREs) that are required to regu-
late the half-life of many cytokines mRNA [48,49].

We also analyzed the post-PBBI expression level of E-
selectin, a tissue adhesion molecule that is induced by
cytokines such as IL-1p and TNF-a [50,51]. E-selectin ini-
tiates low-affinity interaction between leukocytes and
endothelial cells and promotes the recruitment and "roll-
ing" of leukocytes along endothelial walls for accumula-
tion and activation of leukocytes in the injured tissue [52-
54]. We detected a strong up-regulation of E-selectin
mRNA expression starting at 4 hours and peaking at 24
hours after PBBI in the injured hemisphere, trailing the
upregulation of TNF and IL-1. This up-regulation of E-
selectin transcript after PPBI may be associated with the
recruitment of peripheral inflammatory cells, including
neutrophils and macrophages, into the brain that may fur-
ther aggravate the inflammatory response in the injured
brain regions. Treatment with NNZ-2566 produced a sig-
nificant inhibition of this adhesion molecule several
hours following the inhibition of IL-1 and TNF-a. RNA
expression. These results suggest that NNZ-2566-medi-
ated inhibition of PBBI-induced cytokine expression may,
in turn, suppress the expression of E-selectin mRNA thus
reducing leukocyte infiltration and subsequent neuroin-
flammation.

The concept of using anti-inflammatory or immunosup-
pressive compounds to treat brain injury is not new
[13,55-59]. However, despite promising preclinical
results these pharmacological strategies have failed to pro-
vide a benefit in clinical trials [60-62] suggesting that the
complex processes of neuroinflammation cannot be effi-
ciently interrupted by targeting just one single mediator of
inflammation [60], or one single neuronal injury mecha-
nism.

Conclusion

This is the first study to report that NNZ-2566 effectively
suppresses expression of multiple inflammatory media-
tors, IL-1B, TNF-a and IEN-y and E-selectin, and inhibits
both acute and delayed neuroinflammation following
PBBI. These results combined with those of our recent
studies demonstrating promotion of functional recovery
and attenuation of PBBI-induced inflammation and
apoptosis by NNZ-2566 [25] provide further support for
its use as a therapeutic agent for brain injury.
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