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Abstract: The common dry bean (Phaseolus vulgaris L.) is a nutrient-dense pulse crop that is produced
globally for direct human consumption and is an important source of protein and micronutrients for
millions of people across Latin America, the Caribbean and Sub-Saharan Africa. Dry beans require
large amounts of heat energy and time to cook, which can deter consumers worldwide from using
beans. In regions where consumers rely on expensive fuelwood for food preparation, the yellow bean
is often marketed as fast cooking. This study evaluated the cooking time and health benefits of five
major market classes within the yellow bean seed type (Amarillo, Canary, Manteca, Mayocoba, Njano)
over two field seasons. This study shows how the Manteca yellow bean possesses a fast cooking
phenotype, which could serve as genetic resource for introducing fast cooking properties into a new
generation of dry beans with cooking times <20 min when pre-soaked and <80 min unsoaked. Mineral
analysis revealed fast cooking yellow beans have high iron retention (>80%) after boiling. An in vitro
digestion/Caco-2 cell culture bioassay revealed a strong negative association between cooking time
and iron bioavailability in yellow beans with r values = −0.76 when pre-soaked and −0.64 when
unsoaked across the two field seasons. When either pre-soaked or left unsoaked, the highest iron
bioavailability scores were measured in the fast cooking Manteca genotypes providing evidence
that this yellow market class is worthy of germplasm enhancement through the added benefit of
improved iron quality after cooking.

Keywords: Phaseolus vulgaris L.; yellow beans; Manteca; cooking time; iron; bioavailability; polyphenols;
food security

1. Introduction

Dry beans (Phaseolus vulgaris L.) are produced globally as a major pulse crop for direct human
consumption. Biofortification efforts over the last decade focused primarily on developing new
varieties of beans with increased iron concentrations adapted to thrive in Latin American and
Sub-Sahara Africa [1]. The premise of iron biofortification is that more dietary iron will be available for
absorption, thus alleviating iron deficiencies in regions where beans are a dietary staple [1,2]. Despite
their capacity to be a rich source of iron, polyphenols in seed coats, high concentrations of phytate and
thick cotyledon cell walls limit the bioavailability of iron from beans [3–5].

Cooking time is an additional factor that limits obtaining nutrients from beans, by simply
discouraging bean consumption [6,7]. Long cooking times deter consumers from purchasing dry beans
worldwide; especially in nations where energy needed for cooking is often expensive or scarce. Nearly
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three billion people in the world depend on traditional biomass, such as fuelwood or charcoal, as their
main source of energy for cooking [8,9]. Regions where fuelwood is the primary source of energy are
also the main areas with populations at risk for iron deficiencies, such as Sub-Sahara Africa, Central
America or the Caribbean [10,11]. The problem is aggravated by widespread deforestation in these
same nations, leading to dwindling stocks of fuelwood, and placing the burden of collecting cooking
provisions principally on rural families [12,13]. The behavioral responses to fuelwood shortages
in these communities are a significant impasse for using the bean as a biofortified crop to improve
the nutritional well-being and food security of their inhabitants [14,15]. Research by Brouwer et al.
demonstrated that as the scarcity of fuelwood increased, households of central Malawi would often
postpone, or even omit energy-demanding beans from their meals and replace them with foods that
required less fuelwood to cook [16,17].

There is great need for a fast cooking bean, which can positively impact consumers by reducing
fuelwood needs, while simultaneously boosting the iron quality of meals [18–20]. An excellent
opportunity to reduce the cooking time and improve the iron bioavailability of dry beans lies within
the yellow bean seed type [21,22]. A vast number of shades and tones distinguish the yellow bean as a
unique food crop, with “eye-catching” appeal in world marketplaces. While only a minor market class
produced and sold in the United States, yellow beans are an important crop in Mexico, South America,
and Sub-Saharan Africa, with a long history of domestication. Originating from the Peruano coast,
over the millennium the yellow bean has diversified into a wide landscape of seed types, with many
different shapes, sizes and market classes; facilitating their adaption into the traditional meals of
communities worldwide [23]. At least a dozen different types of yellow beans are grown and sold
throughout Latin America [23]. Yellow beans are also important in Africa, especially in Angola,
Mozambique, Uganda, Tanzania and Zambia. Their popularity has been increasing in recent years and
they often fetch the highest prices at the marketplace [24,25].

Notwithstanding their appeal to the modern day consumer, common bean breeding programs can
also benefit from focusing on how yellow beans might distinguish themselves—nutritionally—from
other bean market classes. The aim of this study was to examine the cooking quality, iron nutrition
and iron absorption properties of the yellow bean seed type. A panel of yellow beans representing five
market classes (Amarillo, Canary, Manteca, Mayocoba, Njano) that would be recognized by consumers
in the marketplaces of Africa, the Americas or the Caribbean were evaluated for cooking time and iron
density. An in vitro digestion/Caco-2 cell culture model was also used to measure iron bioavailability
after cooking either pre-soaked or unsoaked beans from the panel.

2. Materials and Methods

2.1. The Yellow Bean Panel

The Yellow Bean Panel (YBP) is a collection of 18 P. vulgaris genotypes selected to represent the
five major market classes of the yellow bean seed type with geographic origins from East and South
Africa, as well as North and South America. The market classes from lightest to darkest seed coat color
include Manteca (pale yellow), Mayocoba (Peruano), Canary (bright yellow), Amarillo (yellow-orange)
and Njano (yellow-green). A summary describing the collection sites, sources, cultivation status and
gene pool of the YBP genotypes is presented in Table 1. Photographs of the YBP arranged from the
lightest to darkest colored market classes are shown in Figure 1. The landraces Ervilha (Manteca)
and Canario (Canary) were both collected from the Instituto de Investigação Agronómica located
in the Huambo province of Angola. The landraces Cebo and Mantega Blanca (Manteca); Canario
Cela (Canary); Chumbo (Njano); as well as the Middle American landrace, Amarelo (Amarillo) were
all collected from the public marketplaces of Cuanza Sul province in Angola (Tim Porch, United
States Department of Agriculture-Agricultural Research Service; USDA-ARS, Mayaguez, Puerto Rico;
personal communication). The Njano, PI527538, was collected from Burundi. Genetic diversity analysis
with single-nucleotide polymorphism (SNP) markers indicates this landrace is from the Andean gene
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pool and is likely a member of race Nueva Granada. The Njano and Soya Njano are preferred seed
types grown in Eastern Africa [26] and are widely accepted for their agronomic performance, plant
architecture and high yields (Susan Nchimbi-Msolla, Sokoine University of Agriculture; personal
communication). Cultivars Uyole 98 and Uyole 04 were released in 1999 and 2004 by the Tanzanian
National breeding program, renowned for their high yields, disease resistance, fast cooking properties
and excellent ratings for palatability [27].

Table 1. Description, Collection Sites, Source, Cultivation Status and Center of Domestication (COD) of
the Eighteen Genotypes that Characterize the Yellow Bean Panel (YBP) 1.

Seed Type Genotype Collection Site Source Cultivation COD

Manteca Ervilha IIA Huambo, Angola Landrace * Andean
Manteca Cebo marketplace Cela, Angola Landrace * Andean
Manteca Mantega Blanca marketplace Kibala, Angola Landrace * Andean

Mayocoba CDC-Sol Canada Unv. of Saskatchewan Variety Andean
Mayocoba ACC Y012 Canada Alberta Variety Andean
Mayocoba Y11405 United States Michigan State Unv. Breeding Line Andean
Mayocoba DBY28-1 United States Oregon State Unv. Breeding Line Andean

Canary Canario IIA Huambo, Angola Landrace * Andean
Canary Canario, Cela marketplace Cela, Angola Landrace * Andean

Amarillo (lt.) Uyole 04 Tanzania Tanzania Breeding Variety Andean
Amarillo (dk.) Uyole 98 Tanzania Tanzania Breeding Variety Andean
Amarillo (dk.) Amarelo marketplace Cela, Angola Landrace * MA

Njano Chumbo marketplace Cela, Angola Landrace * Andean
Njano PI527538 Burundi US GRIN Landrace Andean
White PI527521 Burundi US GRIN Landrace Andean
White Blanco Fanesquero Ecuador INIAP Variety Andean

Red Mottled JB178 Dominican Rep. CIAS Variety Andean
Red Mottled PR0737-1 Puerto Rico Unv. of Puerto Rico Variety Andean

1 The YBP consists of medium to large Andeans ranging from 40–65 g/100 seed, and a small Middle American
(MA) averaging 30 g/100 seed. Genotypes are arranged from the lightest to the darkest yellow seed types, followed
by the white and red mottled controls. * Not verified as landraces; accessions collected from provinces located
in Angola, Africa. IIA, Instituto de Investigação Agronómica; US GRIN, U.S. Germplasm Resources Information
Network; INIAP, Instituto Nacional de Investigaciones Agropecuarias; CIAS, Centro de Investigación Agricolas del
Suroeste. (lt.) light yellow; (dk.) dark yellow.

The North American Mayocoba seed types include CDC-Sol, which was released in 2013
and developed by the Crop Development Centre, University of Saskatchewan, Saskatoon;
Saskatchewan [28]. This Canadian yellow is moderately resistance to Anthracnose (race 73), early
maturing, and maintains its bright yellow color after storage [28]. AAC Y012 is an early maturing,
high yielding yellow bean with partial field resistance to white mold, developed at the Agriculture
and Agri-Food Canada (AAFC) Research and Development Centre located in Lethbridge, Alberta [29].
Y11405 is an advanced breeding line of the Michigan State University Dry Bean Breeding program.
Y11405 is a North American adapted yellow bean with desirable end-use quality traits, such as a
bright “highlighter” yellow seed coat and a consumer preference in seed size (James D. Kelly, Michigan
State University; personal communication). DBY28-1 is a bean common mosaic virus (BCMV) and
beet curly top virus (BCTV) resistance sister line to the early maturing yellow bean variety named
“Patron”, which is a joint release of Oregon State University and the University of Idaho (James R.
Myers, Oregon State University; personal communication). Four non-yellow P. vulgaris controls are
also part of the YBP, which include a white bean landrace collected from Burundi (PI527521) and a
white bean variety from Ecuador (Blanco Fanesquero). The other two controls include the red mottled
JB178, a high yielding disease resistance variety released by the Dominican Republic in 1998 [30] and
PR0737-1, a high yielding virus resistant red mottled line released jointly in 2013 by the University of
Puerto Rico, USDA-ARS and the Haiti National Program [31]. The non-yellow controls were selected
based upon their unique fast or slow cooking properties, which were measured during previous
investigations [21,22,32].
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seeds from each field replicate were hand sorted to eliminate any external material and any 
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standard atmospheric pressure for six weeks. At this time, subsets of 100 randomly selected seeds 
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To equilibrate moisture content after six weeks of storage, seeds were placed into paper 
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25 piercing tip rods (70 g, 2 mm diameter) to pass completely through each seed under a low-steady 
boil at 100 °C [34,35]. Once removed from boiling water, cooked seeds were cooled for 10 min at 
room temperature. For serving size determinations (defined as a half cup; 89 g wet weight) the 
number of cooked seed to fill a quarter cup (44.5 g, wet weight) was recorded, then doubled. Raw 
whole seed and their cooked whole seed counterparts were frozen at −80 °C before freeze-drying 
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Figure 1. High-resolution photographs depicting the eighteen genotypes of the Yellow Bean Panel
(YBP) arranged in order from lightest to darkest yellow seed coat color, followed by the white and
red mottled controls. To compare differences in seed sizes, all photographs were taking to scale under
standardized lighting conditions.

2.2. Field Design and Storage Conditions

All YBP genotypes were planted in a Randomized-Complete-Block Design with 2 field replicates
at the Michigan State University, Montcalm Research Farm near Entrican, MI in 2015 and 2016.
Experimental units for each genotype consisted of two rows 4.75 m long with 0.5 m spacing between
rows. Each experimental unit was separated by a broader row using the commercially available dark
red kidney variety Red Hawk. The soil type is Eutric Glossoboralfs (coarse-loamy, mixed) and Alfic
Fragiorthods (coarse-loamy, mixed, frigid). Rainfall was supplemented with overhead irrigation as
needed. Daytime temperatures for field season 2015 averaged 76.4 ◦F and night temperatures averaged
54.7 ◦F. For field season 2016, daytime temperatures averaged 80.4 ◦F and night temperatures averaged
58.4 ◦F (www.usclimatedata.com). Weeds and pests were controlled throughout the season by hand,
or with small amounts of herbicide if needed. Seed were harvested upon maturity by hand pulling the
entire experimental unit and threshing with a Hege 140 plot harvester (Wintersteiger Inc., Salt Lake
City, UT, USA). Immediately after harvest, bean seeds from each field replicate were hand sorted to
eliminate any external material and any immature, wrinkled, discolored or damaged seeds. Sorted
seed (moisture content 14–20%) was placed into dark storage under ambient conditions (20–22 ◦C,
50–60% relative humidity RH) at standard atmospheric pressure for six weeks. At this time, subsets of
100 randomly selected seeds from each field replicate were evaluated for cooking time, iron analysis
and iron bioavailability.

2.3. Moisture Equilibration, Cooking Time Determination and Sample Preparation

To equilibrate moisture content after six weeks of storage, seeds were placed into paper envelopes
and stored at room temperature until seed reached a moisture content range of 10–12% [33]. Prior
to cooking, moisture-equilibrated bean seeds were either left unsoaked or soaked in distilled water
(1:8 weight/weight) for 12 h at room temperature. Cooking time was determined using a Mattson
pin drop cooking device fitted into a 4 L stainless steel beaker containing 1.8 L of boiling distilled
water heated over a Waring SB30™ portable burner (Waring Commercial®, Torrington, CT, USA).
Cooking time was standardized as the number of minutes required for 80% of 25 piercing tip rods (70 g,
2 mm diameter) to pass completely through each seed under a low-steady boil at 100 ◦C [34,35]. Once
removed from boiling water, cooked seeds were cooled for 10 min at room temperature. For serving
size determinations (defined as a half cup; 89 g wet weight) the number of cooked seed to fill a quarter
cup (44.5 g, wet weight) was recorded, then doubled. Raw whole seed and their cooked whole seed
counterparts were frozen at −80 ◦C before freeze-drying (VirTis Research Equip. Gardiner, NY, USA).
To create a homogenous mixture of each genotype for chemical analysis, pre-weighed lyophilized
raw seed and lyophilized cooked seed were ground into a fine powder with a Kinematica Polymix®

www.usclimatedata.com
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analytical mill (PX-MFC 90D, Bohemia, NY, USA) fitted with a 0.5 mm sieve followed by storage in
sealed, opaque polypropylene plastic containers at 22 ◦C. A schematic illustrating the processing and
cooking of the YBP is shown in Figure 2.
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Figure 2. Flow diagram illustrating how cooking time is measured for bean seeds and how raw/cooked
seed are processed for nutritional analysis and bioavailability assays.

2.4. Iron Analysis

For iron analysis, 500 mg of lyophilized powder from raw and cooked seed was pre-digested in
boro-silicate glass tubes with 3 mL of a concentrated ultra-pure nitric acid and perchloric acid mixture
(60:40 v/v) for 16 h at room temperature. Samples were then placed in a digestion block (Martin
Machine, Ivesdale, IL, USA) and heated incrementally over 4 h to a temperature of 120 ◦C with refluxing.
After incubating at 120 ◦C for 2 h, 2 mL of concentrated ultra-pure nitric acid was subsequently
added to each sample before raising the digestion block temperature to 145 ◦C for an additional 2 h.
The temperature of the digestion block was then raised to 190 ◦C and maintained for at least ten minutes
before samples were allowed to cool at room temperature. Digested samples were re-suspended
in 20 mL of ultrapure water prior to analysis using ICP-AES (inductively coupled plasma-atomic
emission spectroscopy; Thermo iCAP 6500 Series, Thermo Scientific, Cambridge, UK) with quality
control standards (High Purity Standards, Charleston, SC, USA) following every 10 samples. Yttrium
purchased from High Purity Standards (10M67-1) was used as an internal standard. To ensure
batch-to-batch accuracy and to correct for matrix inference, all samples were digested and measured
with 0.5 µg/mL of Yttrium (final concentration). The concentration of iron is expressed as the number
of micrograms per gram of a lyophilized/milled powder that represents a homogeneous mixture of
either 100 raw or 100 cooked seed for each YBP genotype.

2.5. Iron Content, Serving-Size, Dietary Reference Intake and Retention Values

To account for the intrinsic differences in seed sizes between the two field seasons and the extrinsic
losses of seed mass during the cooking process, iron content was calculated for each genotype as the
number of milligrams in 100 raw or 100 cooked seed. Iron contents are used to calculate serving size
densities, by accounting for the number of cooked seed needed to fill a fixed serving volume [36].
Utilized by dietitians, nutrition researchers and practitioners in the United States, the USDA National
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Nutrient Database for Standard Reference (https://ndb.nal.usda.gov/ndb/) defines one serving of
beans as a half of a cup, which equates to 89 g of cooked, drained and cooled whole seed (wet
weight). Nutritional impact between the different genotypes of the YBP can be measured using the
National Academy of Science’s Dietary Reference Intake (DRI) that is met with each serving of cooked
seed [37]. Many initiatives sponsored by the U.S. Agency for International Development (USAID),
U.S. State Department and World Health Organization (WHO) are focused on improving the health of
vulnerable populations at risk to malnutrition, mainly women and children [19]. Therefore, the DRI
values calculated in this study are based on the daily needs of an active adult female 19–50 years
of age with a BMI ≤ 24 kg/m2 and an Estimated Energy Requirement (EER) of 2025 kcal/day [37].
Retention percentages were determined by comparing the total iron content between 100 raw and
100 cooked seeds. Iron content, serving size densities, DRI percentages and retention values are
calculated according to the following formulas:

iron content = [iron concentration in lyophilized powder (mg/g)] × [average weight of
lyophilized powder that represents 100 raw or cooked whole seeds (g/100 seed)]

(1)

serving size =
= [iron content (mg/100 seed)] × [number of seed per serving (half cup)]

[100 seed]
(2)

% DRI =
milligrams iron per serving (mg/half cup)
milligrams iron required per day (mg/day)

× [100%] (3)

retention =
cooked iron content (g/100 seed)

raw iron content (g/100 seed)
× [100%] (4)

2.6. Iron Bioavailability: In Vitro Digestion/Caco-2 Cell Bioassay

A 500 mg sample of lyophilized powder from cooked seed was subject to an in vitro
digestion/Caco-2 cell culture model for the determination of iron bioavailability as described previously
in Glahn et al., 1998 [38]. Iron uptake is measured as the increase in Caco-2 cell ferritin production
(ng ferritin per milligram of total cell protein) following a simulated gastric and intestinal digestion, most
recently described in Glahn et al., 2017 [39]. Iron bioavailability is expressed as a percentage score of
Caco-2 cell ferritin formation that is relative to a control cooked/lyophilized/milled navy bean (variety
Merlin). The navy bean control was run with each assay to index the ferritin/total cell protein ratios of
the Caco-2 cells over the course of experimentation. Baseline ferritin values for the Caco-2 cells averaged
3.9 ± 1.6 ng/mg protein (mean ± Standard Deviation; SD) for 10 experiments spanning 3 months.
Ferritin values for the Merlin navy bean control averaged 15± 4.7 ng/mg protein (mean± SD). Ferritin
values for the white bean control PI527521 averaged 14 ± 4.4, and the ferritin values for a blank digest
with 66 µM FeCl3 averaged 64 ± 17 ng/mg protein (mean ± SD). The iron concentration of the cooked
navy bean control over the course of experimentation averaged 76 ± 1.9 µg/g (mean ± SD).

2.7. Statistical Analysis

All statistical analyses were conducted using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).
The normality of the residuals for each parameter was evaluated using the Kolmogorov-Smirnov
test. Measured parameters were found to have normal distribution, and were therefore acceptable
for ANOVA without additional data transformation steps. Mean separations for genotypes were
determined using the Proc MIXED procedure with the model including genotype (18 levels) and field
season (2 levels) as fixed effects and field replicates (2 levels) as a random effect; followed by a Tukey
post hoc test. Pearson correlation coefficients were calculated to determine the associations between
measured variables and cooking time of the YBP. Differences with p values of ≤0.05 were considered
statistically significant.

https://ndb.nal.usda.gov/ndb/
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3. Results

3.1. Cooking Times and Cooking Classifications of the YBP

The cooking times of the eighteen YBP genotypes after soaking are listed in Table 2. The genotypes
are ranked in Table 2 from fastest to slowest in one of three cooking classes: fast (<20 min), moderate
(20–35 min) or slow (>35 min). Cooking time rank of all eighteen genotypes in YBP remained the same
between the 2015 and 2016 field seasons (reported as combined means in Table 2). Year interactions
(p = 0.257), as well as genotype × year interactions (p = 0.899) were not significant. A wide variation
(p < 0.0001) in cooking times were measured among the yellow beans after soaking, ranging from
18–19 min for the three Manteca genotypes (Ervilha, Cebo, Mantega) to 69 min for the Middle American
genotype Amarelo (Table 2). Significant variations (p < 0.0001) in cooking times were also measured
between the yellow beans that were not soaked prior to cooking, ranging from 76–79 min for the
three Manteca genotypes (Ervilha, Cebo, Mantega) to 126 min for Amarelo (Table 3). Unsoaked
YBP genotypes listed in Table 3 are ranked from fastest to slowest in one of three cooking classes:
fast (<80 min), moderate (80–110 min) or slow (>110 min). Year interactions and genotype × year
interactions for cooking time were not significant among the unsoaked beans, and cooking time ranks
were similar between the two field seasons. There was a strong relationship between the cooking times
of the pre-soaked genotypes and the cooking times of the unsoaked genotypes in the YBP (r = 0.848,
p < 0.0001). The cooking classifications of unsoaked genotypes, however, were not necessarily the
same as pre-soaked genotypes (Tables 2 and 3), and are presented as a separate grouping for each
parameter measured in this study.

Table 2. Cooking Times of Pre-Soaked Genotypes in the Yellow Bean Panel 1.

Genotype (Seed Type) Cooking Time (min) 2 Cooking Class

Blanco (white) 16 k fast
PI527521 (white) 18 k fast

Ervilha (Manteca) 18 j,k fast
Cebo (Manteca) 19 j,k fast

Mantega (Manteca) 19 j,k fast
Uyole 04 (lt. Amarillo) 22 i,j moderate

Chumbo (Njano) 24 h,i moderate
Uyole 98 (dk. Amarillo) 26 f,g,h moderate

JB178 (Red Mottled) 26 g,h moderate
ACC Y012 (Mayocoba) 28 e,f,g moderate
Canario, Cela (Canary) 29 e,f,g moderate

CDC-Sol (Mayocoba) 30 d,e,f moderate
DBY28-1 (Mayocoba) 31 d,e moderate
Y11405 (Mayocoba) 33 d moderate
Canario (Canary) 38 c slow
PI527538 (Njano) 39 c slow

PR0737-1 (Red Mottled) 59 b slow
Amarelo (dk. Amarillo) 69 a slow

1 Values are combined means of duplicate measurements from two field replicates per genotype (n = 4) for field
seasons 2015 and 2016. Means sharing the same letter are not significantly different at p ≤ 0.05. 2 Raw seed were
soaked in distilled water for 12 h prior to determining the number of minutes to reach 80% cooking time with an
automated Mattson pin-drop device, then categorized top to bottom from the fastest to slowest cooking entry. (lt.)
light yellow; (dk.) dark yellow.



Nutrients 2018, 10, 1609 8 of 18

Table 3. Cooking Times of Unsoaked Genotypes in the Yellow Bean Panel 1.

Genotype (Seed Type) Cooking Time (min) 2 Cooking Class

Blanco (white) 76 k,l fast
PI527521 (white) 76 j,k,l fast

Ervilha (Manteca) 76 l fast
Cebo (Manteca) 76 l fast

Mantega (Manteca) 79 i,j,k fast
Uyole 04 (lt. Amarillo) 82 h,i,j moderate

Chumbo (Njano) 83 h moderate
Uyole 98 (dk. Amarillo) 83 h,i moderate

JB178 (Red Mottled) 95 g moderate
Canario, Cela (Canary) 101 f moderate

Y11405 (Mayocoba) 101 f moderate
DBY28-1 (Mayocoba) 108 d,e moderate

PI527538 (Njano) 108 e moderate
Canario (Canary) 112 c,d slow

ACC Y012 (Mayocoba) 113 b,c slow
CDC-Sol (Mayocoba) 116 b slow

PR0737-1 (Red Mottled) 124 a slow
Amarelo (dk. Amarillo) 126 a slow

1 Values are combined means of duplicate measurements from two field replicates per genotype (n = = 4) for field
seasons 2015 and 2016. Means sharing the same letter are not significantly different at p ≤ 0.05. 2 Raw seed were
left unsoaked prior to determining the number of minutes to reach 80% cooking time with an automated Mattson
pin-drop device, then categorized top to bottom from the fastest to slowest cooking entry. (lt.) light yellow; (dk.)
dark yellow.

3.2. Iron Density of the YBP

Tables 4 and 5 show the milligrams (mg) of iron provided in one serving of cooked beans from
pre-soaked and unsoaked genotypes of the YBP organized from the fastest to slowest cooking. Iron
DRI percentages for an adult female met with each serving of cooked beans are also shown in Tables 4
and 5. The measurements used to determine the serving densities of iron in the soaked and unsoaked
genotypes of the YBP, including the concentrations, contents and retention values of iron between the
raw and cooked seed are presented in Tables S1–S5. Genotype, year interactions as well as genotype ×
year interactions for iron densities in the pre-soaked beans of the YBP were significant (p < 0.0001) after
cooking. Serving densities ranged from 1.70 mg (9% of DRI) to 2.63 mg (15% of DRI) among the yellow
beans across the 2015 and 2016 field seasons (Table 4). High serving densities of iron (14–16% of DRI)
were measured in both the red mottled varieties JB178 and PR0737-1 in 2015 and in 2016. The yellow
breeding line Y11405 had the highest serving density of iron among the yellow beans (14–15% of
DRI) for both field seasons (Table 4). There was no relationship between the cooking times and the
iron densities of pre-soaked genotypes in the YBP for either the 2015 (r = 0.221, p = 0.299) and 2016
(r = −0.134, p = 0.533) field seasons.

The milligrams (mg) of iron provided in one serving of cooked beans from unsoaked genotypes
of the YBP are shown in Table 5. Genotype, year interactions and genotype × year interactions for
iron densities among the unsoaked bean samples were significant (p < 0.0001). Table 5 shows the
serving densities of iron ranged from 1.39 mg (8% of DRI) to 2.50 mg (14% of DRI) among the yellow
bean genotypes in both the 2015 and 2016 field season. The highest serving densities of the iron
(2.35–2.50 mg; 13–14% of DRI) were measured in the red mottled variety JB178 and the yellow breeding
line Y11405 (Table 5). There was no relationship between the cooking times and the iron densities of
the unsoaked genotypes for field seasons 2015 (r = 0.127, p = 0.556) and 2016 (r = 0.393, p = 0.058).
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Table 4. Cooked Seed Iron Density of Pre-Soaked Genotypes in the Yellow Bean Panel Organized by
Cooking Class 1.

One Serving Size (Half Cup)

2015 2016

Genotype (Seed Type) Cooking Class Iron (mg) 2 % DRI 3 Iron (mg) % DRI

Blanco (white) fast 1.95 d,e,f 11 2.28 b,c,d,e 13
PI527521 (white) fast 2.13 c,d 12 2.32 b,c,d 13

Ervilha (Manteca) fast 2.02 d,e 11 2.30 b,c,d,e 13
Cebo (Manteca) fast 1.75 f,g 10 2.02 g,h 11

Mantega (Manteca) fast 2.06 c,d 11 2.29 b,c,d,e 13
Uyole 04 (lt. Amarillo) moderate 1.84 e,f,g 10 2.16 d,e,f,g 12

Chumbo (Njano) moderate 1.98 d,e 11 2.25 c,d,e,f 12
Uyole 98 (dk. Amarillo) moderate 1.85 e,f,g 10 2.06 f,h,g 11

JB178 (Red Mottled) moderate 2.71 a 15 2.89 a 16
ACC Y012 (Mayocoba) moderate 1.84 e,f,g 10 2.10 e,f,g 12
Canario, Cela (Canary) moderate 2.24 c 12 2.30 b,c,d,e 13

CDC-Sol (Mayocoba) moderate 1.82 e,f,g 10 1.95 g,h 11
DBY28-1 (Mayocoba) moderate 1.73 g 10 2.02 g,h 11
Y11405 (Mayocoba) moderate 2.63 a,b 15 2.49 b 14
Canario (Canary) slow 1.98 d,e 11 2.14 d,e,f,g 12
PI527538 (Njano) slow 1.71 g 10 1.87 h 10

PR0737-1 (Red Mottled) slow 2.49 b 14 2.45 b,c 14
Amarelo (dk. Amarillo) slow 1.70 g 9 2.02 g,h 11

1 Values are means of duplicate measurements from two field replicates per genotype (n = 4), measured for field
seasons 2015 and 2016. Means sharing the same letter in each column are not significantly different at p ≤ 0.05.
2 Average grams of iron measured in a half cup (89 g, wet weight) of cooked drained whole seed that were first
soaked in distilled water for 12 h prior to determining the number of minutes to reach 80% cooking time. 3 Percent
of daily reference intake met for iron (18 mg) of an adult female (19–50 years) measured in each serving of cooked
whole seed. (lt.) light yellow; (dk.) dark yellow.

3.3. Iron Retention Values of the YBP

The content and retention values for iron in 100 raw and 100 cooked seed of the YBP are presented
in Tables S4 and S5. Genotype, year interactions as well as genotype × year interactions for iron
retention after cooking the pre-soaked and unsoaked genotypes of the YBP were significant (p < 0.0001).
After soaking and cooking the YBP, iron retention values ranged from 77–91% across the 2015 and
2016 field seasons (Table S4). High retention values for iron (83–91%) were measured in the three fast
cooking Manteca yellow beans (Table S4), and there was a significant relationship between the cooking
times of the YBP and retention of iron in both the 2015 (r = −0.659, p = 0.0001) and 2016 (r = −0.572,
p = 0.003) field seasons.

Iron retention values in the unsoaked and cooked YBP genotypes ranged from 71–85% across the
2015 and 2016 field seasons (Table S5). Higher retention values for iron (80–84%) were measured in the
fast cooking Manteca yellows when compared to the slow cooking yellow beans (Table S5). There was
a strong relationship between the retention of iron and the cooking times of the eighteen unsoaked
YBP genotypes in 2015 (r = −0.789, p < 0.0001) and 2016 (r = −0.729, p < 0.0001).

3.4. Iron Bioavailability of the YBP

The results illustrated in Figure 3 and listed with mean separations in Table S6 show significant
variations (p < 0.0001) in the percentage scores of iron bioavailability after cooking the pre-soaked
genotypes of the YBP. Year interactions as well as genotype× year interactions for iron bioavailability in
pre-soaked/cooked beans of the YBP were significant (p < 0.0001). In 2015, iron bioavailability scores as
a percent of the navy bean control ranged from as low as 19% in the slow cooking Amarelo to a high of
107% in the fast cooking Manteca landrace, Ervilha (Figure 3A). Similar variations in iron bioavailability
among the YBP genotypes were also measured in 2016, ranging from 22% in Amarelo to 136% in
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Cebo, the fast cooking Manteca (Figure 3B). When compared to the other moderate and slow cooking
genotypes in the YBP, the fast cooking white bean controls and Manteca genotypes had significantly
higher iron bioavailability scores (Figure 3). Iron bioavailability was strongly correlated with the
cooking times of pre-soaked YBP genotypes in 2015 (r = −0.814, p < 0.0001) and 2016 (r = −0.737,
p < 0.0001). Iron bioavailability scores were low in red mottled varieties JB178 and PR0737-1, ranging
from only 29–45% across the 2015 and 2016 field seasons (Figure 3).

Significant variations (p < 0.0001) in iron bioavailability were also measured after cooking the
unsoaked genotypes of the YBP (Figure 4; Table S7). Year interactions and genotype× year interactions
were significant (p < 0.0001) with iron bioavailability scores ranging from a low of 20% in the slow
cooking Amarelo to as high as 159% in the fast cooking Mantega Blanca across the 2015 and 2016 field
seasons (Figure 4). For the unsoaked and cooked genotypes in the YBP, the highest iron bioavailability
scores were measured in the fast cooking three Manteca genotypes, while the lowest scores for iron
bioavailability were measured in the slow cooking red mottled PR0737-1 and the slow cooking yellow
Amarelo (Figure 4). There was a strong relationship between the cooking times and iron bioavailability
of unsoaked YBP genotypes in 2015 (r = −0.705, p < 0.0001) and 2016 (r = −0.604, p < 0.001).

Table 5. Cooked Seed Iron Density of Unsoaked Genotypes in the Yellow Bean Panel Organized by
Cooking Class 1.

One Serving Size (Half Cup)

2015 2016

Genotype (Seed Type) Cooking Class Iron (mg) 2 % DRI 3 Iron (mg) % DRI

Blanco (white) fast 2.07 c,d 11 2.24 b,c,d 12
PI527521 (white) fast 1.98 d,e 11 2.17 b,c,d,e,f 12

Ervilha (Manteca) fast 2.19 b,c 12 2.20 b,c,d,e 12
Cebo (Manteca) fast 1.62 i,j 9 2.00 e,f,g,h 11

Mantega (Manteca) fast 1.85 e,f 10 2.01 e,f,g,h 11
Uyole 04 (lt. Amarillo) moderate 1.68 f,g,h,i,j 9 2.12 d,e,f,g 12

Chumbo (Njano) moderate 1.83 e,f,g 10 1.95 g,h,i 11
Uyole 98 (dk. Amarillo) moderate 1.79 f,g,h 10 1.98 f,g,h,i 11

JB178 (Red Mottled) moderate 2.43 a 13 2.49 a 14
Canario, Cela (Canary) moderate 2.25 b 12 2.14 d,e,f,g 12

Y11405 (Mayocoba) moderate 2.50 a 14 2.35 a,b 13
DBY28-1 (Mayocoba) moderate 1.65 h,i,j 9 1.90 h,i 11

PI527538 (Njano) moderate 1.60 j 9 1.79 i 10
Canario (Canary) slow 2.01 d 11 2.04 e,f,g,h 11

ACC Y012 (Mayocoba) slow 1.68 g,h,i,j 9 1.89 h,i 10
CDC-Sol (Mayocoba) slow 1.77 f,g,h,i 10 1.83 h,i 10

PR0737-1 (Red Mottled) slow 2.11 b,c,d 12 2.28 a,b,c 13
Amarelo (dk. Amarillo) slow 1.56 j 9 1.39 j 8

1 Values are means of duplicate measurements from two field replicates per genotype (n = 4), measured for field
seasons 2015 and 2016. Means sharing the same letter in each column are not significantly different at p ≤ 0.05.
2 Average grams of iron measured in a half cup (89 g, wet weight) of cooked drained whole seed that were left
unsoaked prior to determining the number of minutes to reach 80% cooking time. 3 Percent of daily reference intake
met for iron (18 mg) of an adult female (19–50 years) measured in each serving of cooked whole seed. (lt.) light
yellow; (dk.) dark yellow.
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field season 2015 (A) and field season 2016 (B). Values are means (±Standard Deviation) of triplicate
measurements from two field replicates per genotype (n = 6). Genotypes are categorized on the x-axis
by cooking class, ranked from the fastest cooking genotype to slowest cooking entry. * Significantly
lower (p ≤ 0.05) iron bioavailability score when compared to the other YBP entries. ** Significantly
higher (p ≤ 0.05) iron bioavailability scores compared to the other YBP genotypes.
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fast cooking properties [22]. The two red mottled beans from the Caribbean were selected as 
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Figure 4. Iron bioavailability scores of unsoaked and cooked whole seed genotypes in the YBP for
field season 2015 (A) and field season 2016 (B). Values are means (±Standard Deviation) of triplicate
measurements from two field replicates per genotype (n = 6). Genotypes are categorized on the x-axis
by cooking class, ranked from the fastest cooking genotype to slowest cooking entry. * Significantly
lower (p ≤ 0.05) iron bioavailability score when compared to the other YBP entries. ** Significantly
higher (p ≤ 0.05) iron bioavailability scores compared to the other YBP genotypes.
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4. Discussion

4.1. The YBP Is a Model to Explore the Health Benefits Yellow Beans

The YBP includes a diverse set of landraces, varieties and breeding lines within five yellow
bean market classes. The model takes into consideration how different cultures around the world
traditionally prepare beans for cooking: by either soaking or not soaking prior to boiling [6,40]. The two
white beans from Burundi and Ecuador were selected as non-yellow controls because of their fast
cooking properties [22]. The two red mottled beans from the Caribbean were selected as non-yellow
controls because of their ability to acquire high concentrations of iron at the Montcalm Research Farm in
Michigan. They also have contrasting fast (JB178) and slow (PR0737-1) cooking properties [21]. White
and red mottled beans are on opposite ends of the iron bioavailability spectrum for dry beans [41,42],
creating the ideal framework for evaluating the iron quality of the different yellow beans in the YBP.

Information on dry bean nutrition is most often reported on raw seed, which is first milled into a
powder, then dried to remove moisture [43,44]. This study is unique because the nutritional evaluation
was conducted after cooking, allowing for the genotypic differences in nutrient retention to be expressed
in the model. Raw seed analysis of the dry bean does not take into consideration the genetic variability in
(1) the loss of total seed mass during cooking process, (2) the retention of nutrients after cooking and (3)
the size of hydrated seed in a fixed volume for the calculation serving size density [21,45–47]. Minerals
in dry beans are particularly sensitive to long cooking times [21,35]. Even under the standardized
conditions of this study, the losses of iron in the yellow beans were not trivial after cooking. Retention
values below 75% for iron were measured in the slowest cooking genotypes of the YBP, especially when
the cooking times are extended in the unsoaked seed (Tables S4 and S5).

For breeding programs, advancing new traits into the next generation of food crops depends on
access to a large collection of diverse germplasm [48]. Although beneficial alleles can be introduced
between different the market classes of P. vulgaris (e.g., white bean crossed to a red mottled), common
bean breeding programs focus on crosses within a market class because of the challenge to maintain
the appropriate combination of genes for seed size, shape and color [44,49]. The YBP model shows
there is wide diversity in consumer friendly traits to explore within the yellow bean market classes. To
increase the consumption and health promoting properties of beans worldwide, consumer targeted
traits, such as fast cooking times and boosted nutritional value are now being considered in addition
to the new cultivar’s strong agronomic performance [19,20].

4.2. The Manteca Yellow Bean: A Genetic Resource for the New Generation of Fast Cooking Andean Beans

The Manteca is a pale lemon colored seed native to Chile, where traditional knowledge describes
the Manteca as an “easy-to-digest” bean with low flatulence [50–52]. The three Manteca landraces
collected from Angola had fast cooking times when either soaked or left unsoaked for both the 2015 and
2016 field season. Two previous studies have also identified the Manteca as a fast cooking yellow bean
when grown at the Montcalm Research Farm, cooking in less than 25 min under a set of standardized
storage and soaking conditions over the course of the 2012–2013 field seasons [21,22]. With a set of
nearly 5000 polymorphic SNPs, Nei genetic distance [53] on 206 genotypes of P. vulgaris revealed a
phylogenetic relationship between the Manteca landraces and other fast cooking beans, including
the white bean control PI527521 from Burundi and a fast cooking cranberry bean (G23086) from
Malawi [22]. The genetic relatedness of these genotypes suggests a common genetic control for the fast
cooking phenotype. Their origins are from regions in Africa where fuelwood is the major source of
energy for cooking, which could explain why farmers valued and maintained the fast cooking trait
within these landraces [22]. What impact the environment might play on the genetic expression of the
fast cooking phenotype is still under investigation.

Specific genetic mechanisms that control the cooking time of P. vulgaris have yet to be identified.
How different morphological features of a bean seed influence cooking time could be the clue to what
underlying genetic mechanisms might be involved. The surface area and shape of the seed, as well as
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the thickness and chemical composition of the seed coat can affect the water uptake and the cooking
time of dry beans [54–56]. The expression of flavanol glycosides, anthocyanins and condensed tannins
in seed coats not only leverages color, but also contribute to the hydration and cooking properties of
dry beans [57]. Previous research shows there is a strong positive correlation (r = 0.77) between cooking
time and seed tannin content in dry beans [58]. More recent research demonstrates after soaking and
boiling, fast cooking beans have higher soluble dietary fiber concentrations when compared to their
slow cooking counterparts from yellow, cranberry, red mottled and light red kidney market classes [32].
These findings suggest the physical and chemical composition of the fast cooking dry bean may be
unique, and might have a common genetic architecture.

4.3. Iron Nutrition Benefits of the Fast Cooking Manteca Yellow Bean

Environmental factors, such as precipitation, drought stress and soil characteristics affect the mineral
concentrations of dry beans [44,59]. The iron nutrition of the YBP was diverse, and there was a significant
year and genotype × year interaction. There was no relationship between the cooking times of the
genotypes in the YBP and the intrinsic concentrations of iron in their raw seed. The amount of iron
retained after cooking, however, was strongly associated with cooking time in the YBP. Although the
Manteca landraces did not have high iron concentrations in their raw seed when compared to other
yellow and red mottled genotypes in the YBP, their fast cooking properties contribute to an improved
nutritional value through the benefit of high iron retention during the cooking process (Tables S4 and S5).

There was a large genotype and genotype × year interaction for iron bioavailability in the YBP,
with many of the yellows performing just as poorly as the low iron bioavailable red mottled controls.
The iron bioavailability of YBP was independent of iron concentrations in raw and cooked seed.
A strong relationship was detected between cooking time and iron bioavailability in the YBP. The light
colored and faster cooking Uyole 04 outperformed the darker orange Amarillo’s (Uyole 98, Amarelo);
suggesting that a darker seed coat color may be contributing to lower iron bioavailability [4,41,42].
The same observation was previously demonstrated in a separate cooking model for dry beans that
examined fast, moderate and slow cooking genotypes from four different market classes of economic
importance in Africa, the Americas and the Caribbean [21]. The evidence is building that breeding
for fast cooking times may have the added benefit of improving the iron absorption properties in dry
beans. Whether pre-soaked or left unsoaked, the fast cooking Mantecas distinguish themselves from
the other yellow seed types in the YBP with the highest iron bioavailability scores measured in both the
2015 and 2016 field seasons. Not soaking the Manteca yellow beans prior to boiling did not negatively
impact their iron bioavailability scores. This is an important feature of the Manteca to note, because
many cultures in Africa, Latin America and the Caribbean do not soak their beans before cooking
because it alters the flavor [6,40].

4.4. Profile of the Manteca

New questions arise in understanding how the alleged digestibility of the Mantecas might be
related to their high iron bioavailability. The antidotal claim of the “easy-to-digest” Manteca bean
was first investigated by British agriculture scientist Colin Leaky (1933–2018), who noticed the more
expensive Manteca in the markets of Chile in the late 1970′s, lauded by traders as “beans for the
rich man’s table” [51]. A decade earlier, Dr. Leaky was challenged by nutritionists in Uganda to
help improve the nutrient quality of meals by breeding a more digestible bean for babies to tolerant
as a first food [60]. Leakey was successful in releasing Prim (named after the saying “Prim and
Proper”) a modern Manteca variety with low-flatulence and excellent flavor [60,61]. Indeed, there
is evidence to support the Manteca yellow bean may have a unique nutritional profile compared to
other beans: with less dietary fiber, less indigestible protein and starch, but with similar concentrations
of oligosaccharides [32,52,61–63]. Manteca beans are also free of proanthocyanins and condensed
tannins—classes of compounds shown to reduce protein digestibility and iron absorption [3,64,65].
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Secondary metabolites in beans, such as phytate and certain polyphenolic compounds,
can inhibit the absorption of iron [3,4,66]. Yellow beans with the Prim heritage are believed to
carry a recessive allele that shifts the polyphenolic pathway in seed coats away from tannin and
proanthocyanin synthesis towards the accumulation of kaemperfol derived flavonoids, primarily
keampferol-3-glucoside [50,64]. Iron uptake assays with Caco-2 cells have recently demonstrated
that kaemperfol and kaemperfol-3-glucoside are actually promoters of iron absorption. In contrast,
polyphenols expressed in the seed coats of red or black beans, such as quercetin or myricetin act as
strong inhibitors to iron absorption [4,66]. As an example to support these findings, the Canary colored
yellow beans in the YBP (Canario, Canario, Cela) expresses a dominant form of this allele in their
seed coats, opening the biosynthetic pathway for the production of iron inhibitory polyphenols, such
as procyanidins and quercetin 3-glucoside [67,68]. In both the 2015 and 2016 field seasons, the two
Canary genotypes (Canario, Canario, Cela) had higher iron concentrations in their cooked seed (Tables
S2 and S3), but had significantly lower iron bioavailability scores when compared to the Manteca
landraces Ervilha, Cebo and Mantega (Figures 3 and 4). The secret of improved iron bioavailability
in the Manteca may be revealed by the unique polyphenolic pattern expressed in their seed coats.
Detailed studies examining the polyphenolic profile and how they might be related to the different
iron bioavailability properties of the yellow, white and red mottled genotypes in the YBP are currently
being conducted.

5. Conclusions

A sustainable public breeding effort is under way to increase the global production and health
benefits of the common dry bean. The purpose of this study was to explore five of the major yellow
bean market classes for promising phenotypes that can be added to the next generation of dry beans.
The Manteca yellow bean is certainly a prize of the Andean gene pool. This study provides evidence
that the Manteca is a nutritionally viable target for germplasm enhancement through the added benefit
of fast cooking times and improved iron bioavailability. The hope is the yellow bean can be used to
encourage more bean consumption by appealing to the consumers through traits not given a priority
in other bean market classes, such as fast cooking time for convenience or improved iron quality for
nutrition. Manteca beans formulated into bean-based diets for a long-term in vivo feeding trial is the
next step in evaluating the iron benefits of this market class beyond the current in vitro assessment
presented in this study.
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