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Abstract

Management of patients with metastatic cancer and development of new treatments rely on imaging to provide non-
invasive biomarkers of tumour response and progression. The widely used size-based criteria have increasingly become
inadequate where early measures of response are required to avoid toxicity of ineffective treatments, as biological,
physiologic, and molecular modifications in tumours occur before changes in gross tumour size. A multiparametric
approach with the current range of imaging techniques allows functional aspects of tumours to be simultaneously
interrogated. Appropriate use of these imaging techniques and their timing in relation to the treatment schedule,
particularly in the context of clinical trials, is fundamental. There is a lack of consensus regarding which imaging
parameters are most informative for a particular disease site and the best time to image so that, despite an increasing
body of literature, open questions on these aspects remain. In addition, standardization of these new parameters is
required. This review summarizes the published literature over the last decade on functional and molecular imaging
techniques in assessing treatment response in liver and lung metastases.
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Introduction

Ideal oncologic response evaluation criteria should be
highly sensitive at an early time point after treatment,
as persisting with ineffective treatment increases toxic
chemotherapeutic effects, morbidity, and cost[1]. Histo-
pathologic response after treatment correlates best with
patient survival and prognosis[2]; however, a direct eval-
uation of tissue samples before and after treatment is
invasive, time consuming, and not always practical[3].
Imaging plays a fundamental role in oncology, providing
a non-invasive means of assessing clinical response[4].
However, the widely used anatomic World Health Orga-
nization criteria and Response Evaluation Criteria in
Solid Tumors (RECIST) 1.0 and 1.1 for the assessment
of clinical response to treatment[5�7] are inadequate to
assess therapeutic response in early-phase trials of tar-
geted anticancer drugs, as the predominant early effect
of therapy requires identification of tumour apoptosis,
necrosis, cystic degeneration, and/or intralesional

haemorrhage. A reduction in gross tumour size is delayed
and lags behind these early biological and molecular
modifications[1], so that clinical response criteria defined
by size alone can be misleading[8]. During the last
decade, significant technical improvements such as very
fast multislice computed tomography (CT), cross-
sectional three-dimensional multiplanar reconstructions,
and whole-body imaging techniques such as positron
emission tomography (PET) combined with CT (PET/
CT) and diffusion-weighted (DW) magnetic resonance
imaging (MRI) have extended the application of imaging
in oncology, particularly for therapeutic response assess-
ment in trials of targeted agents[9].

Novel complementary functional and metabolic ima-
ging techniques allow us to explore response at early
time points by evaluating alterations in tumour perfusion,
oxygenation, and metabolism[10]. The goal of finding a
comprehensive set of imaging biomarkers using a multi-
parametric approach is particularly appealing for thera-
peutic trials, as it may provide important reliable
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indicators of response to new therapies. Biologically vali-
dated and reproducible longitudinal functional response
assessment of metastases at common sites such as the
liver and lung is of major importance in such trials. The
QuIConCePT project[11] was set up to biologically vali-
date and establish the reproducibility of 2 key imaging
biomarkers: the apparent diffusion coefficient (ADC)
and [18F]fluorothymidine (FLT), primarily in liver and
lung metastases, to support their future implementation
in clinical practice. This review addresses emerging func-
tional and molecular imaging of liver and lung metastatic
disease, focusing on practical implications and challenges
related to response assessment.

Liver metastases

Several factors favour metastatic seeding within the liver:
a high volume of portohepatic blood flow, favourable
microscopic sinusoid anatomy that helps trap metastatic
cells, and a rich biochemical environment to nourish
tumoural cells[12]. Liver metastases are 18�40 times
more common than primary liver tumours[13] and are
found in 40% of patients dying of cancer[14]. The inci-
dence and pattern of liver metastases are influenced by
the patient�s age and sex, primary tumour site, histologic
type, and length of time since disease onset. Most hepatic
metastases are multiple and affect both lobes. A few
tumour types, such as colonic carcinoma, carcinoid,
and hepatocellular carcinoma (HCC) metastases, may
be confined to the liver; however, many other common
tumours that metastasize to the liver, such as breast and
lung, spread to other sites in the body at the same time.
There is a wide published literature on functional mea-
sures of response in liver metastases (summarized in
Table 1).

Assessing treatment response in liver
metastases

Size estimates

Standard RECIST criteria rely on longitudinal two-
dimensional measurements of lesions, and do not take
into account specific morphologic changes (e.g., tumour
necrosis) that frequently occur in response to novel ther-
apeutics. Volumetric estimates are preferred, as they
avoid the assumption that tumour grows or shrinks uni-
formly, although volume extrapolation using one mea-
surement is inaccurate in comparison with that
calculated by proper volumetry[15,16]. Volumetric assess-
ment in the liver would eliminate this source of error[16],
but it is time consuming, with limited accuracy and repro-
ducibility due to partial volume effects. Measurement
errors also occur in small metastatic lesions from using
different window settings, slice thickness, and intrave-
nous contrast media[17].

Dynamic enhancement patterns

Antiangiogenic drugs such as bevacizumab, recently
introduced into the portfolio for treating colorectal liver
metastases, may not necessarily induce changes in
tumour size. Morphologic contrast-enhanced CT
(CECT) criteria have been shown to be more robust
than standard RECIST criteria in predicting response
in these instances, because on CECT responding lesions
become homogeneously of low attenuation with a
smooth, sharp, tumour-normal liver interface. Non-
responding lesions lack these changes[18] (Fig. 1).

CT perfusion (CTp)[19], dynamic contrast-enhanced
MRI (DCE-MRI), and dynamic contrast-enhanced ultra-
sound (DCE-US) are a variety of different imaging tech-
niques that offer quantification of various vascular
parameters. CTp allows derivation of blood flow (BF),
blood volume (BV), capillary permeability (CP), and
time to peak enhancement (TTP), which have been
used to assess liver metastases of different primary
tumours[20,21]. Reduced arterial perfusion was observed
after 4�6 weeks treatment with a combination of antian-
giogenic drugs for several liver metastases[20]. A reduc-
tion in BF and BV was observed less than 48 hours after
commencing antiangiogenic treatment in carcinoid liver
metastases[21]. CP has been suggested as predictor of
response in colorectal liver metastases[22]. The applica-
bility of CTp has increased since the introduction of
wider CT detectors and periodic spiral techniques allow-
ing for 15�16-cm craniocaudal coverage with sufficiently
short image frequency. Using image registration software
can now compensate for respiratory motion. Significant
discrepancies between results provided by different com-
mercial software approved for the analyses should be
taken into account[23].

DCE-MRI has been mainly used to study colorectal
and neuroendocrine liver metastases by extrapolating
semi- or fully pharmacokinetic parameters such as area
under the concentration curve (AUC), transfer constant
Ktrans (min�1), extracellular extravascular space frac-
tional volume Ve and rate constant kep (min�1). The opti-
mal mathematical model needed to derive these
parameters remains controversial, and different methods
are available[24]. An additional quantitative kinetic
parameter that can be derived from DCE-MRI is the
hepatic perfusion index (HPI). This is the ratio of the
hepatic arterial perfusion to the sum of arterial and portal
perfusion. Although HPI measurements are potentially
more reproducible than Ktrans

[25], changes in the
median HPI in liver metastases are observed much later
following antiangiogenic treatment. By contrast, a reduc-
tion in Ktrans of up to 47% was detected after 48 h in
responders[26,27]. Responding neuroendocrine liver
metastases treated with radiolabelled targeted therapy
also showed decreased AUC and arterial flow fraction
soon after treatment[28]. In addition, both quantitative
and semiquantitative parameters correlate with response
rate and time to progression of colorectal liver
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metastases[27]. The technical limitations of DCE-MRI are
mainly related to motion artefacts, which can be reduced
by acquiring data in the coronal plane, applying fast
breath-hold acquisition techniques, or using respiration-
triggered sequences.

The micron-sized gas-filled intravascular microbubble
contrast agents used in DCE-US provide a measurement
of BV and BF, but not CP. Neovessels as small as 40mm
can be detected with this technique. Parameters such as
peak intensity (PI), TTP, AUC, and slope coefficient of
enhancement have been evaluated. In metastatic gastroin-
testinal stromal tumours (GIST), and colorectal and renal
cell carcinomas, a strong correlation between the decline
of vascular parameters at variable time points (3�43 days)
and tumour response was observed before any size
reduction[29�31]. Significantly lower baseline TTP values
in responders[29] and preliminary results correlating TTP
with progression-free survival (PFS) and overall survival
(OS) in a metastatic renal carcinoma population[31] illus-
trate its potential as a predictive imaging biomarker.

To correctly interpret functional imaging modalities
that explore vascularity, it is important to remember

that tumour heterogeneity is frequently observed at
onset and in response to therapy. A reduction in micro-
vascular density of a lesion could coexist with increased
tumoural blood perfusion (in case of shunt effects or
increased BF through residual viable tumour)[32].
Spatial variation within lesions pre- and posttreatment
is also reported with vascular disrupting agents, typically
affecting vascularity in the lesion centre but not at the
periphery[33].

Estimating cellularity and necrosis

DW-MRI can inform about tumour cellularity and mem-
brane integrity by quantifying the ADC. In responding
hepatic metastases significant mean ADC increases have
been observed, reflecting a decrease in cell density, an
increase in necrosis, and a loss of cell-membrane integri-
ty[34�38] (Fig. 2). Early increases in the ADC at 3�11
days in responding colorectal and breast liver metastases
have been found prior to any reduction in size[34,37].
Lower pretreatment mean ADC values may also predict
response to chemotherapy in patients with colorectal and

Figure 1 Metastatic non-small cell lung cancer (NSCLC) on crizotinib. Baseline axial CT (venous phase, A) demon-
strates multiple bilobar liver metastases. At 45 days (B), the disease has progressed by size (RECIST) criteria, although
lower attenuation of metastases suggests an early response to treatment. Subsequent follow-up images (C, D) at 5
months from baseline confirm a partial response to treatment.
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Figure 2 Metastatic breast cancer treated with lapatinib�capecitabine: axial T1-weighted image 20 minutes after
injection of a hepatospecific contrast agent (A), 900 b value DWI (B), and corresponding ADC map (C) before treat-
ment. Metastatic deposits in segment V/VI of the liver show restricted diffusion (ADC value¼ 0.85\ 10�3/mm2/s).
After 3 months of treatment, no significant change in size is demonstrated on the delayed postcontrast T1-weighted
image (E), whereas the ADC value has increased to 1.08\ 10�3/mm2/s as demonstrated qualitatively (F, G) and by
histogram analysis before and after treatment, respectively (D, H), suggesting a response to treatment.
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gastric hepatic metastases[39]. A weak, but significant,
correlation between final tumour size, lower pretreatment
ADC value, and early increase in ADC has also been
reported[37].

In patients responding to radiation therapy, bra-
chytherapy pellets and selective internal radiotherapy
(SIRT) can cause a temporary, paradoxical drop in the
ADC 2 days after commencing treatment with an asso-
ciated early increase in tumour volume. This is then fol-
lowed by an eventual increase in the ADC and lesion
shrinkage at 3 months[40,41], thought to be a consequence
of early transient cell swelling and transudation of plasma
components into the extravascular extracellular
space[40,41]. Radiation effects on tissues vary depending
on dose and number of fractions delivered, but overall
there is a larger increase in ADC seen in responders in
comparison with non-responders[42].

Metabolic effects

[18F]Fluorodeoxyglucose (FDG)-PET is reported to have
sensitivity of 100% and specificity of 90% in predicting
response to chemotherapy in colorectal liver metastases
after 4�5 weeks[43], with treatment effects detected much
earlier than if standard RECIST criteria are used
(4 weeks versus 2�4 months)[44]. False-positive results
from inflammation are seen, however, and not every

tumour is hypermetabolic, meaning baseline maximum
standardized uptake values (SUVmax) are critical. The
absence of residual metabolic activity after treatment,
even in lesions that have not significantly reduced in
size, is proposed as a response biomarker[45]. However,
a recent case�control study indicates a high false-
negative rate at a 4-week time point, likely attributable
to metabolic inhibition caused by chemotherapy
agents[46]. Furthermore, complete metabolic response
after neoadjuvant chemotherapy for colorectal liver
metastases was reported to be an unreliable indicator of
complete pathologic response, with microscopic viable
tumour still present on histopathologic examination in
the majority of metabolically inactive lesions[47]. One
study reported that FDG-PET changes after 2 months
of chemotherapy was able to predict long-term sur-
vival[48], although these results have not been corrobo-
rated[46]. Combining morphologic features suggestive of
necrosis on CT with size criteria and FDG-PET may also
significantly improve the accuracy of response assess-
ment for radionuclide (yttrium-90 microsphere)
treatment[49,50].

FLT is an alternative radiotracer for imaging cell pro-
liferation. Although FLT-PET correlates with the cellular
proliferation marker (Ki-67) in metastatic colorectal
cancer[51], the high physiologic uptake of FLT limits its

Table 2 Literature summary: functional imaging for NSCLC and lung metastasesa

First author, year[Ref.] No. of
patients

Diameter
(cm)

Treatment Timing
(H: hours, D: day,
W: week, M: month)

Imaging
biomarkersb

Results in responders

Harvey, 2002[64] 3 n.a. FRT D0, W1, W2, W6, W12 Perfusion, CP " perfusion, " CP at W1�W2
Wang, 2009[63] 35 �3 CHEMO (19) D0, cycle2, end RT BV, BF, CP, MTT " BF at D0

RT (7) # BV, BF, CP post RT�CHEMO
CHEMORT (9) (no changes with chemo only)

Ng, 2007[66] 16 4.9�11.8 FRT D0, 2�4-6 fractions BV, CP " BV at fraction 2�4 (not 6)
Ng, 2007[65] 8 4.9�11.8 RTþVDA D0,2 fractions BV, CP " BV, " CP at fraction 2

H4, H72 post VDA # BV at H4�H72
Hegenscheid, 2010[68]a 22 0.8�5.4 LITT D0, D1, W4, W6 BV, BF, CP, MTT # BV, BF, CP at D1, W4, W6

Correlation with RECIST at M12
Yabuuchi, 2011[67] 28 2.3�9 CHEMO D0, W3,W4 TTP, WashOut

MaxEnh ratio
No change at W3,W4

ADC " ADC at W3, W4

(# size at W6, W8)
Chang, 2012[74] 14 �3 CHEMORT D0, at 40Gy ADC " ADC at 40 Gy
Okuma, 2009[73]a 20 1�4.5 RFA D0, D3 ADC " ADC at D3
Lee, 2009[77] 31 n.a. CHEMO D0, W3 SUVmax # SUV
MacManus, 2003[78] 10 n.a. RT D0, W, W12 Qualitative

assessment
# visual uptake

61 CHEMORT

Favourable prognosis
and outcome

Ohno, 2012[72] 64 �1 CHEMORT D0 ADC # ADC superior to # SUVmax

to predict response
SUVmax

de Geus-Oei, 2007[79] 51 n.a. CHEMO D0, W5,W8 SUV # SUV is prognostic

ADC, apparent diffusion coefficient; BF, blood flow; BV, blood volume; CHEMO, chemotherapy; CHEMORT, chemoradiotherapy; CP, capillary perme-
ability; FRT, fractionated radiotherapy; Gy, gray; LITT, laser-induced thermal therapy; ls, lesions; Max Enh, maximum enhancement; MTT, mean transit
time; NSCLC, non-small cell lung cancer; RFA, radiofrequency ablation.; RT, radiotherapy; SUV, standardized uptake value; TTP, time to peak; VDA,
vascular disruptive agent.
aIncludes lung metastases.
bDerivations of biomarkers: perfusion, BV, BF, CP, MTT (CTp); TTP, WashOut, Max Enh ratio (DCE-MRI); ADC (DW-MRI); SUV, SUVmax (PET).
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utility in assessing the liver. Using a kinetic filtering
method that highlights liver metastatic uptake and
excludes normal liver background uptake, a significant
reduction in FLT was found in responders 2 weeks
after treatment[52].

In vivo magnetic resonance spectroscopy (MRS) of the
liver is a potential alternative method for quantifying met-
abolic and biochemical composition of lesions. In con-
trast to FDG-PET/CT, MRS of the liver is particularly
challenging because of respiratory motion, poor signal to
noise ratio (SNR), magnetic field inhomogeneity, and
contamination from out-of-voxel signals. Although
proton (1H), phosphorus (31P), and carbon-13 (13C)
MRS is possible, hydrogen is the most studied nucleus
because of its best reported sensitivity. A significant
reduction of the choline spectral peak after transcatheter
arterial chemoembolization has been shown in HCC[53],
but no similar data are available for liver metastases.

Lung metastases

Pulmonary metastases are common, as the entire cardiac
output flows through the lungs. Most frequently they
occur with breast, colorectal, bronchial, bladder, renal,
and head and neck cancers. Pulmonary metastases are
found in up to 54% of patients dying of cancer, but their
incidence at presentation is lower and varies depending
on the primary tumour[54]. Pulmonary metastases are
usually multiple; solitary metastases are uncommon and
most likely from colorectal cancer. Morphologic features
can correlate with the primary site of disease, with miliary
micronodular dissemination indicating melanoma and
thyroid cancer, large lobulated masses sarcomas, cavitat-
ing lesions squamous cell carcinomas, calcifications
osteosarcomas and infiltrative or pneumonia-like pattern
adenocarcinomas[55]. In all cases, the presence of lung
metastases is a poor prognostic factor.

Figure 3 Volumetric assessment of lung metastasis. CT (A) and segmented volume (B) in a right upper lobe target
lesion with corresponding images (C, D) after 2 cycles of carboplatin. Although the disease is stable by RECIST criteria
(520% increase of the maximum diameter in the interval), the volumetric assessment of the same target lesion indicates
that the lesion has doubled in volume (B vs D) in the interval, suggesting disease progression.
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Imaging the lungs poses unique challenges attributable
to intrinsic respiratory motion and air content, which
particularly affects MRI as there is low proton density
and fast signal decay. In addition, significant tumoural
and interpatient heterogeneity is reported, with divergent
treatment responses[56,57]. Only 2 studies report response
to functional imaging parameters in lung metastases, and
more data are available for primary tumours (Table 2).

Assessing treatment response in lung
lesions

Size estimates

RECIST criteria are limited in the assessment of lung
nodules, as most of them do not grow uniformly and
target lesions do not necessarily represent the gross pul-
monary disease burden[58]. Surrounding inflammation
and atelectasis also obscure tumour foci on morphologic
imaging alone. Nodules adjacent to the pleura and situa-
tions where neighbouring vessels are not distinguished
from tumour make accurate lesion location challen-
ging[59]. Automatic segmentation methods are more
reproducible and accurate (reported accuracy within 3%
for 3-mm nodules) than one- or two-dimensional

measurements, and decrease interobserver variation in
RECIST measurements[60].

Arbitrary selection of lesions as targets could signifi-
cantly influence therapeutic response perception. A study
including only 35% of the total number of lung nodules
resulted in a different response assignment when com-
pared with assessment of 100% of lung nodules[57].
Interobserver agreement varied significantly when the
number of targets was changed from 5 to 1, suggesting
that at least 3 lesions should be followed up during treat-
ment[61]. A volume change of 30�40%[62] has recently
been proposed to differentiate stable from progressive
disease, but is not currently standard practice (Fig. 3).

Dynamic enhancement patterns

Quantified vascular parameters such as BF, BV, mean
transit time (MTT), and CP are starting to be exploited
for the assessment of response of lung lesions[63�68] in
therapeutic trials. CTp parameters and microvascular
density correlate with vascular endothelial growth
factor, and are of potential value in monitoring antivas-
cular treatments[69]. In non-small cell lung cancer
(NSCLC) tumours, baseline BF was significantly higher

Figure 4 DW-MRI in lung metastases. Axial CT image shows multiple small bilateral lung metastases (�13 mm) (A).
These lesions are identified on a high b value DW image (b800, B) and have a low ADC value (0.4�0.7\ 10�3/mm2/s)
compared with muscle (1.3\ 10�3/mm2/s) on the ADC map (C).
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in responders than in non-responders after radiotherapy
or combined chemoradiotherapy, with a significant
decrease in BF, BV, and CP, and an increase in MTT
after treatment[63]; these differences were not seen with
chemotherapy alone. CTp can assess whole lung tumours
with a reproducibility of 10% for BV and 30% for tumour
permeability[70]. Issues related to the long breath-hold
required (approximately 40 s) have been overcome with
technical development and implementation of image reg-
istration algorithms to correct misregistration.

Very little is known regarding the use of DCE-MRI to
assess response to treatment of lung primaries, and there
are no dedicated data for lung metastases. Lung DCE-
MRI protocols and analysis methods vary considerably,
and modelling pulmonary tumour enhancement is com-
plex in the context of dual blood circulation and posi-
tional BF variation. In 28 patients with NSCLC, no
significant differences between baseline and postche-
motherapy (1 cycle) vascular parameters such as time
to peak, washout ratio, and maximum enhancement
ratio were achieved following variable treatment with
cytotoxic and cytostatic agents[67].

Estimating cellularity and necrosis

DW-MRI of the lung is gaining interest (Figs. 4 and 5)
for monitoring treatment response of lung lesions[71];
however, there are no data dedicated specifically to
lung metastases. Baseline ADC values in NSCLC are
predictive of chemoradiotherapy and radiofrequency
ablation response[72,73] with pretreatment ADCs
�2� 10�3 mm2/s indicating longer PFS. ADC values
have been shown to increase in response to chemoradia-
tion, with mean percentage increase much higher than
percentage decrease in tumour diameter[67,74]. Changes
in the ADC may be more effective than DCE-MRI in
these studies, probably because antiangiogenetic agents
were not part of the treatment regimens. However, there
are no consensus protocols for lung DW-MRI, and the
reproducibility of ADC measurements in the lung needs
to be established.

Metabolic effects

The poor spatial resolution of PET has been partly
resolved by integrated PET/CT imaging. Dedicated

Figure 5 Quantification of ADC in lung metastases. Axial T2 HASTE image (A), DWI (b800, B), and ADC map (C)
showing a dominant 16-mm right lung metastasis. Pixel-by-pixel quantification of the ADC is performed by drawing a
region of interest (ROI) around the lesion and determining the rate of decay of signal using a monoexponential fit of the
data (ADEPT in-house software; ICR, UK). A minimum, maximum, and mean value of ADC can be derived for the ROI
as well as a histogram plot of the ADC distribution in the lesion (D).
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studies assessing response in lung metastases using PET
or PET/CT are not available, although primary NSCLCs
have been investigated by several authors[75�79].
Metabolic response after 1�3 cycles of chemotherapy is
a better prognostic factor than size estimate on CT
(Fig. 6), and correlated well with the final outcome of
treatment[79]. There are inconsistent reports on the influ-
ence of metabolic response on long-term outcome, with
one group suggesting that an early metabolic response
does not translate into better survival outcome,[77]

whereas another reported a significantly longer median
survival for patients with complete early metabolic
response[78,79].

Conclusion

Accurate measurement of metastatic tumour burden
using imaging, both pretreatment and posttreatment, is
crucial for assessing response within clinical trials. Over

and above measures of disease burden, imaging can
inform about the effects of treatment on tissues at early
time points by selecting the most appropriate multipara-
metric imaging biomarkers and timing for their measure-
ment on the basis of specific effects on tumour biology.
However, technical challenges of making robust and
reproducible measurements in a multicenter setting
mean that there is a paucity of data using functional
imaging studies, particularly in the assessment of meta-
static lung disease. Imaging standardization within the
EU/Pharma-funded QuiConCePT project should provide
a platform to support and guide the future development
and implementation of imaging biomarkers in multicen-
ter response-assessment trials.
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