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A B S T R A C T

Despite advances in high-throughput sequencing and bioinformatics, molecular investigations of snail interme-
diate hosts that transmit parasitic trematodes are scant. Here, we report the first transcriptome for Bulinus trun-
catus – a key intermediate host of Schistosoma haematobium – a blood fluke that causes urogenital schistosomiasis
in humans. We assembled this transcriptome from short- and long-read RNA-sequence data. From this tran-
scriptome, we predicted 12,998 proteins, 58% of which had orthologs in Biomphalaria glabrata – an intermediate
host of Schistosoma mansoni – a blood fluke that causes hepato-intestinal schistosomiasis. We predicted that select
protein groups are involved in signal transduction, cell growth and death, the immune system, environmental
adaptation and/or the excretory/secretory system, suggesting roles in immune responses, pathogen defence and/
or parasite-host interactions. The transcriptome of Bu. truncatus provides a useful resource to underpin future
molecular investigations of this and related snail species, and its interactions with pathogens including
S. haematobium. The present resource should enable comparative investigations of other molluscan hosts of so-
cioeconomically important parasites in the future.
1. Introduction

Substantial advances in high-throughput nucleic acid sequencing
technologies and bioinformatics have enabled transcriptomic and
genomic studies to elucidate molecular aspects of parasites and para-
sitism (Young et al., 2010; Schwarz et al., 2013; Anstead et al., 2015;
Korhonen et al., 2016; Howe et al., 2017; International Helminth Ge-
nomes Consortium, 2019; Stroehlein et al., 2019). However, there has
been relatively limited investigation of parasite systems which involve
snail intermediate hosts, such as digenean trematodes and their
amphibious or aquatic gastropod hosts (Adema et al., 2012). Under-
standing the molecular basis of interactions between a snail intermediate
host and invading, asexually replicating stages of a trematode species is
not only fundamentally interesting but could assist in finding ways of
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breaking or interfering with the parasite’s life-cycle (Adema et al., 2017;
Castillo et al., 2020).

The foundation for such work is the development of essential molec-
ular ‘omics’ resources (e.g. genome, transcriptome and proteome) for in-
termediate hosts.Most effort, to date, has focusedonBiomphalaria glabrata
– the key intermediate host of the socioeconomically-important human
blood fluke (schistosome) Schistosoma mansoni. This Neotropical species
has acclimatised well to long-term culture and continues to maintain
excellent compatibility with natural or laboratory-adapted isolates of
S. mansoni. Recent work (Kenny et al., 2016; Adema et al., 2017) has
created a useful molecular toolbox (genome and transcriptomes) for Bi.
glabrata, enabling investigations of the regulation of micro-RNA (miRNA)
and piwi-interacting RNA (piRNA) processing pathway genes (Queiroz
et al., 2017) and providing select insights into the snail neurophysiology,
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metabolism, immunity and key aspects of asexual reproduction of the
digenean within the snail host (Adema et al., 2017). Surprisingly, such
‘omics’ resources for other snail species that transmit blood flukes causing
a similar, or possibly greater, disease burden in humans (van der Werf
et al., 2003; Rollinson, 2009), are scarce.

By contrast, there has been limited scrutiny, at the molecular level, of
the planorbid snail Bulinus truncatus, which is a major intermediate host
of Schistosoma haematobium – the agent of urogenital schistosomiasis.
Bulinus truncatus commonly occurs in North-West Africa, lower Egypt and
Sudan, extending as far South as Malawi. The northern limit includes
Portugal, Sardinia and Corsica. Urogenital schistosomiasis affects more
than 200 million people worldwide (Murray et al., 2012; Colley et al.,
2014), and S. haematobium is a bio-carcinogen of malignant bladder
cancer (Palumbo, 2007). In consideration of the 36 snail species within
the genus Bulinus, Bu. truncatus is remarkable in being a tetraploid species
and thought to have arisen from ancestral hybridisation by alloploidy of
more common diploid species stocks (Brown, 1994). Although a her-
maphrodite, the species is unusual in having environmentally deter-
mined phally, with the balance between aphallic and euphallic snails
being temperature-dependent. Given the major socioeconomic impor-
tance of S. haematobium, and its recently acknowledged epidemiology
links with HIV/AIDS (Kjetland et al., 2014), here we focused our atten-
tion on developing a novel molecular resource (a representative tran-
scriptome) for Bu. truncatus to underpin detailed future investigations of
the biology of this snail and its interplay with asexual larval stages of
S. haematobium.

2. Materials and methods

2.1. Procurement of parasite material, RNA isolation, library preparation
and sequencing

Two adult specimens of Bu. truncatus (Egyptian strain) maintained in
artificial pond water at 26 �C at the NIH-NIAID Schistosomiasis Resource
Center, Biomedical Resource Institute (Rockville, MD 20850, USA)
following standard operating procedures (Tucker et al., 2013) were ob-
tained: one specimen had been exposed to S. haematobium and frozen at
patency (54 days), and the other (‘naïve’) specimen had not been
exposed. RNA was isolated from each specimen using the TriPure Isola-
tion Reagent (Sigma Aldrich, St. Louis, Missouri, USA) and DNase-treated
using a TURBO DNA-freeTM kit (Thermo Fisher Scientific, Waltham,
Massachusetts, USA). Messenger RNA (mRNA) was purified from total
RNA using the Dynabeads® mRNA Purification Kit (Thermo Fisher Sci-
entific). The size, integrity (expressed using an ‘RNA integrity number’
[RIN] of > 7.5 – consistent with a cleaved 28S band characteristic for
lophotrochozoan organisms – cf. Natsidis et al., 2019) and concentration
of RNA were determined using a 4200 TapeStation System RNA
ScreenTape Assay (Agilent Technologies, Waldbronn, Germany) and a
Qubit® 3.0 flourometer RNA High Sensitivity Assay (Life Technologies,
Carlsbad, California, USA).

A TruSeq Stranded mRNA (Illumina, San Diego, California, USA)
short-read library (150 bp, paired-end) was prepared from the mRNA
sample derived from the snail infected with S. haematobium, according to
the manufacturer’s instructions and sequenced on an Illumina NextSeq
500 sequencer. For the mRNA sample isolated from the naïve snail, a
long-read library was prepared using the Oxford Nanopore direct RNA-
sequencing kit (SQK-RNA002; Oxford Nanopore Technologies, Oxford,
UK), according to the manufacturer’s instructions. The prepared library
was sequenced on a MinION sequencer (Oxford Nanopore Technologies)
for 48 h until no more active pores were available, using an EXP-FLP002
flow cell priming kit and a R9.4.1 flow cell (FLO-MIN106).

2.2. Processing of sequence data and transcriptome assembly

Short-read data were quality-filtered, and adapters removed using the
program fastp v.0.20.1 (Chen et al., 2018) using the -m option to collapse
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read pairs that overlapped by� 30 nucleotides (nt) into a single read.
Then, reads were mapped to publicly available S. haematobium genome
scaffolds (Stroehlein et al., 2019) using HISAT2 v.2.1.0 (Kim et al., 2019)
employing the –fr and –rna-strandness RF options. All unmapped reads
were retained by filtering the alignment file using the -f4 flag employing
the program samtools v.1.9 (Li et al., 2009). The program centrifuge
v.1.0.4 (Kim et al., 2016) was used to remove potential contamination;
only unclassified reads or those assigned to the phylum Mollusca were
retained. Using the khmer software package v.3.0.0a3 (Crusoe et al.,
2015), all remaining reads were digitally normalised to a coverage of 20
(-C option), and reads containing low-abundance k-mers (k¼ 26) were
trimmed or removed. Long-reads produced from the SQK-RNA002 li-
brary were base-called from raw fast5 files using a GPU-enabled version
of the program Guppy v.3.2.4 and providing the configuration file
rna_r9.4.1_70bps_hac.cfg. Reads that did not pass the quality filter within
Guppy (i.e. Q< 7) were removed.

Decontaminated and trimmed, high-quality short-reads and quality-
filtered long-reads (–nanopore option) were then assembled using the
program Spades v.3.14.1 (Bushmanova et al., 2019) in RNA mode using
the –ss rf option (strand-specific assembly). The redundancy of the
resultant ‘hard-filtered’ (within Spades) transcript dataset was reduced
employing the program cd-hit-est v.4.6 (Fu et al., 2012), collapsing
transcripts with � 99% nucleotide identity into a single representative
transcript. Subsequently, candidate coding regions were identified
within transcript sequences using the TransDecoder software v.5.5.0
(Haas et al., 2013).

2.3. Functional annotation of inferred protein sequences

Protein sequences conceptually translated from the Bu. truncatus
transcriptome were compared with those of Bi. glabrata and orthologs
were inferred using the program orthoFinder v.2.2.6 (Emms & Kelly,
2019). The completeness of the inferred proteome was assessed
employing the program BUSCO v.4.1.2 (Waterhouse et al., 2017) using
the -l metazoa_odb10 (accessed 5 August 2020) and –update-data options.
We then employed complementary homology-based and sequence
domain-based approaches for functional annotation; first, functional
protein domains, families and superfamilies were inferred using the Pfam
(Finn et al., 2010), PANTHER (Mi et al., 2013) and SUPERFAMILY
(Wilson et al., 2009) databases within the program InterProScan
v.5.44-79.0 (Jones et al., 2014). Next, protein groups and pathways were
inferred based on Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthology (KO) terms (Kanehisa et al., 2016) using a hierarchical rep-
resentation of protein function (i.e. KO terms, KEGG BRITE hierarchy and
KEGG pathway hierarchy). Protein descriptions were assigned using the
program eggNOG-mapper (Huerta-Cepas et al., 2017) using the -m dia-
mond option and the eggNOG database v.5.0 (eukaryotes) (Huerta-Cepas
et al., 2019). The sub-cellular localisation of protein sequences was
predicted computationally using the program MultiLoc2 v.2.2.25 (Blum
et al., 2009) employing a stringent cut-off confidence score of � 0.8. The
structures of select unannotated (‘orphan’) protein sequences were
inferred using the program I-TASSER v.5.1 (Yang et al., 2015).

3. Results

3.1. Sequence data sets

A total of 76,372,022 paired-end sequences were obtained;
72,879,800 of these sequences were retained after trimming and quality-
filtering, of which 68,689,594 (89.9%) overlapped with their mate pair
and were collapsed into single, representative reads. Of the remaining
4,190,206 read pairs and 35,699,314 single-end reads, 166,296 and
2,228,343 (2,394,639 reads in total; 6.0%)mapped to the S. haematobium
genome, respectively, and were removed. Of the resultant 37,494,881
reads, 32,374,724 (86.3%) represented the phylumMollusca or were not
assigned to a taxon (“unclassified”) and were retained. The final short-



Table 2
Key sequence features and completeness metrics of coding sequences and
inferred protein sequences in the transcriptome of Bulinus truncatus

Count Percentage
of transcriptome

Non-redundant coding sequences 12,998 100
Complete ORFs 4,188 32
Transcripts with inferred 50 UTR 4,817 37
Transcripts with inferred 30 UTR 9,499 73
� 1 ortholog in Bi. glabrata 7,500 58
Single-copy orthologs in Bi. glabrata 4,460 34
Annotated via eggNOG database 9,275 71
Annotated via Pfam database 7,809 60
Annotated via PANTHER database 8,689 67
Annotated via SUPERFAMILY database 6,761 52
Gene Ontology (GO) term annotation (eggNog and
InterPro)

7,767 60

KEGG Orthology (KO) annotation 8,460 65
Pathway annotation via KEGG database 4,865 37
Annotated by� 1 method/database 10,349 80
Unannotated ‛orphansʼ 2,649 20
Unannotated ‛orphansʼ with complete ORF 959 7
Unannotated ‛orphansʼ with complete ORF and � 1
Bi. glabrata ortholog

312 2

Table 3
Benchmarking Universal Single Copy Orthologs (BUSCOs) detected in the tran-
scriptome of Bulinus truncatus

Count Percentage
of BUSCOs

Total number of metazoan BUSCOs 954 100
BUSCOs detected in Bu. truncatus transcriptome 653 68
Complete, single-copy BUSCOs 399 42
Complete, duplicated BUSCOs 46 5
Fragmented BUSCOs 208 22
Missing BUSCOs 301 32
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read data set represented 1,314,020 read pairs and 4,640,861 single-end
reads after digital normalisation and removal of low-abundance k-mers.
Complementing this data set, 2,442,455 long-reads were sequenced from
the SQK-RNA002 library. Of those, 2,109,546 reads (N50 length of
983 nt; median quality of 10.2) were retained after quality-filtering.

3.2. Characteristics of the Bu. truncatus transcriptome

The initial transcriptome (Table 1) assembled from short- and long-
read data, consisted of 28,743 high-quality (i.e. ‘hard-filtered’, cf. Bush-
manova et al., 2019) sequences, 13,615 of which had an open reading
frame (ORF) and were inferred to be protein-coding. After removing
redundancy, 12,792 transcripts containing 12,998 ORFs represented the
final transcriptome (Table 2, Supplementary Table S1), 4,188 of which
represented complete, 2,178 internal, 5,693 50-partial and 939 30-partial
ORFs, respectively. Totals of 4,817 50- and 9,499 30-untranslated regions
(UTRs; respective mean lengths: 152 nt and 310 nt) were identified for
this set of transcripts (Table 2; Supplementary Table S1).

3.3. Comparison of inferred proteomes

A comparison of protein sequences (n¼ 12,998) inferred from the
transcriptome of Bu. truncatus with those conceptionally translated from
predicted genes in the Bi. glabrata genome identified 7,500 (57.7%)
orthologous sequences (Table 2), 4,460 of which represented one-to-one
(‘single-copy’) orthologs (Supplementary Tables S2 and S3). In total,
5,498 of all sequences (42.3%) had no ortholog in Bi. glabrata.
Conversely, 25,937 of a total of 36,943 (70.2%) sequences of Bi. glabrata
had no ortholog in Bu. truncatus.

3.4. Functional annotation

In total, 653 of 954 (68.4%) metazoan Benchmarking Universal Single
Copy Orthologs (BUSCOs) were identified (Table 3), 445 of which
(46.6%; comprising 399 single-copy and 46 duplicated BUSCOs) were
complete and 208 (21.8%) fragmented (Supplementary Table S4). We
inferred annotations for 9,542 amino acid sequences based on information
from one or more of the three databases Pfam (n¼ 7,809), PANTHER
(n¼ 8,689) and SUPERFAMILY (n¼ 6,761) (Supplementary Table S5),
and 9,275 (71.4%) sequences were annotated using the eggNOG database
(Supplementary Table S6). Based on these analyses, Gene Ontology (GO)
terms were assigned to 7,767 of all 12,998 sequences (59.8%). Most se-
quences (8,460 of all sequences; 81.7%) had KEGG orthology terms
(Supplementary Table S7), and of those 3,317 (39.2%) were assigned to
seven enzyme sub-classes (KEGG Enzymes, Fig. 1); 2,902 (34.3%) se-
quences were linked to 25 protein groups/functions (KEGG BRITE; Fig. 2),
with most of them assigned to the categories “chromosome and associated
Table 1
Quality metrics for sequence data and the assembled transcriptome for Bulinus
truncatus

Count

Raw paired Illumina reads 76,372,022
Quality-filtered Illumina reads (paired/single) 8,380,412/35,699,314
Decontaminated and normalised
Illumina reads (paired/single)

2,628,040/4,640,861

Raw Nanopore long-reads 2,442,455
Quality-filtered long-reads 2,109,546
Long-read N50 983
Mean/median length of long-reads 821/699
Number of assembled transcript sequences 28,743
Protein-coding transcripts 13,615
Non-redundant protein-coding transcripts (transcriptome) 12,792
Transcriptome N50 1,136
Mean/median length of transcripts 1,014/833
Shortest/longest transcript 404/13,929
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proteins” (n¼ 384), “membrane trafficking” (n¼ 319), “peptidases and
inhibitors” (n¼ 295), “protein phosphatases and associated proteins”
(n¼ 196) and “transporters” (n¼ 186). More than half (57.7%) of the
8,460 sequences with KO terms were linked to 32 distinct KEGG pathway
modules (Fig. 3), including “signal transduction” (n¼ 1,041), “cell growth
and death” (n¼ 478), “immune system” (n¼ 458), “carbohydrate meta-
bolism” (n¼ 455), “environmental adaptation” (n¼ 260) and “excretory
system” (n¼ 86), and a total of 310 distinct pathways (Supplementary
Table S7). Sub-cellular localisations were inferred for 5,870 sequences,
with “cytoplasmic” (n¼ 4,189; 71.4%), extracellular (n¼ 598; 10.2%)
and nuclear (n¼ 570; 9.7%) being predominant (Supplementary
Table S8). Overall, 10,349 (79.6%) proteins were annotated, and 2,649
(20.4%) were not and were thus called ‘orphan’ (unknown) proteins
(Supplementary Table S9). Of these orphans, 959 had complete ORFs.

3.5. Protein groups inferred to be involved in parasite-host interplay

Subsequently, we inferred key protein groups in Bu. truncatus with
likely or suggested roles in the immune/defence system of the snail, in-
teractions with pathogens and/or susceptibility/resistance to schisto-
some infection(s), and associated signalling (Supplementary Tables S7,
S10 and S11), supported by published evidence or information (Table 4).

Sets of kinases (n¼ 113), phosphatases (n¼ 59) and Toll-/IL-1-related
proteins (n¼ 14) showed the highest degree of connectivity to key path-
ways (6–15), whereas the remaining protein groups were less connected
(1–5; Fig. 4). Of 137 methyltransferases inferred, most (n¼ 96; 70.0%)
were S-adenosyl-L-methionine-dependent methyltransferases
(IPR029063); 73 of them had single-copy orthologs, and 31 had multiple
(2–9) orthologs in Bi. glabrata. Of the 38 proteins predicted to be involved
in olfactory transduction, 31 were calcium-modulated proteins (calmod-
ulins) and the remaining seven were kinases, receptors, channels or



Fig. 1 Protein sequences (n¼ 3,317; 39.2%) encoded by the Bulinus truncatus transcriptome that represent one of seven enzyme sub-classes (KEGG Ontology, KO)
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calcium-binding proteins. Calmodulins and kinases (STE group;
BTRUNC_01512.1 and BTRUNC_06865.1) were also linked to roles in
interactions with pathogens (Supplementary Table S7; Fig. 4).

We identified 58 transcripts encoding baculovirus inhibitor of
apoptosis (IAP) repeat proteins (BIRs) consistent with earlier reports of
an expansion of this protein family in molluscs (Adema et al., 2017). All
BIRs were linked to roles in apoptosis and 33 of them were related to
Fig. 2 KEGG BRITE annotation for 2,902 (34.3%) protein se

4

necroptosis and Toll-, Imd-, and NF-kappa B-signalling pathways (Fig. 4).
Among other proteins related to Toll-signalling were 13 sequences with a
Toll/interleukin-1 receptor homology domain (IPR000157) of which
four were annotated as Toll-like receptors (TLRs). We did not observe an
expansion of TLRs as has been reported for Bi. glabrata (see Adema et al.,
2017) which has 56 TLR genes encoding 27 complete TLRs (compared
with ~10 TLR genes in insects and mammals).
quences encoded in the Bulinus truncatus transcriptome



Fig. 3 Protein sequences of Bulinus truncatus (n¼ 4,865; 37.4%) that were linked to one or more of 32 distinct KEGG pathway modules
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We detected transcripts encoding 121 lectins, including 42 and 27
annotated as ficolins and tenascins, respectively, and 26 representing
one of nine distinct C-type lectin family members. In addition, we
identified 69 other, lectin-like molecules that were annotated as
fibrinogen-related proteins (FREPs/FReDs; InterPro identifier
IPR036056) but lacked the IgSF domain(s) identified in FREPs of Bi.
glabrata (cf. Lu et al., 2020). These lectins and lectin-like molecules
were mainly assigned to the C-type lectin receptor signalling pathway
and associated with roles in focal adhesion, interaction with the
extracellular matrix (ECM) as well as the phagosome and lysosome
(Fig. 4). The latter two pathways were also assigned to cathepsins
(n¼ 23). FREPs/FReDs and cathepsins have been linked to resis-
tance/susceptibility to schistosome infection of Bi. glabrata, among
other families such as chitinases (Table 4). We identified 47 chitinases
of which 24 formed a cluster of paralogs/isoforms and 23 represented
single copies. Of all 47 sequences, 14 did not have an ortholog in Bi.
glabrata and 33 were orthologous to up to four sequences (total
number of orthologs in Bi. glabrata: 17), forming ten orthologous
clusters.

We investigated orthologs of members of two resistance gene clusters
in Bi. glabrata, the Guadeloupe Resistance Complex (GRC; cf. Tennessen
et al., 2015) and the Polymorphic Transmembrane Cluster 2 (PTC2; cf.
Tennessen et al., 2020) (Supplementary Table S11). Of the 15 proteins
encoded by the GRC cluster in Bi. glabrata, nine had orthologs in Bu.
truncatus. For the PTC2 cluster, we identified one ortholog via Ortho-
Finder (BTRUNC_12767.1, BGLB016855) and two additional sequence
matches via blastp (BTRUNC_01870.1, BGLB029318 and
BTRUNC_08140.1, BGLB027019, BGLB030379). Six out of those 12
orthologous sequences could not be annotated based on sequence fea-
tures. These six sequences were thus considered orphan sequences of
which three had a complete ORF and three had a 50-partial ORF (Sup-
plementary Table S9). Two sequence products were predicted to be
extracellular, whereas two others were inferred to be nuclear and cyto-
plasmic, respectively.
5

3.6. Functional predictions for select, unannotated proteins

Of all 959 orphans inferred, 312 (32.5%) had an ortholog in Bi.
glabrata (lengths: 95–897 amino acids (aa); mean: 216.2 aa, median:
192.5 aa) and were translated from high-confidence, full-length tran-
scripts with complete ORFs, thus representing bona fide transcripts
(Supplementary Table S9). We investigated the likely subcellular
localisation of the protein products encoded by these transcripts and
predicted that 58 are localised either to the plasmamembrane (n¼ 2) or
are extracellular (n¼ 56). Of the orthologs for these 58 sequences in Bi.
glabrata (n¼ 69), none were annotated in VectorBase (release 49 beta;
BglaB1.6.; https://vectorbase.org/vectorbase/app/record/orga-
nism/TMPTX_bglaBB02; Accessed 13 August 2020), but 45 were asso-
ciated with one or more GO terms. Themost-assigned GO terms for these
sequences were “integral component of membrane” (GO:0016021;
n¼ 32), “protein binding” (GO:0005515; n¼ 6), “membrane”
(GO:0016020; n¼ 5) and “transmembrane signalling receptor activity”
(GO:0004888; n¼ 5), as well as four GO terms related to extracellular
ligand-gated ion channel activity (GO:0034220, GO:0006811,
GO:0005230, GO:0005216; each n¼ 4). One of the 56 orphan proteins
predicted to be localised extracellularly (BTRUNC_07650.1) repre-
sented an ortholog of three sequences belonging to the resistance gene
cluster GRC in Bi. glabrata (BGLB003681, BGLB017395 and
BGLB033905) (Tennessen et al., 2015).

To further investigate the potential function of all 58 sequences, we
predicted their three-dimensional structure (Supplementary Table S12).
For five sequences we predicted a high confidence structural alignment
(normalised Z-score> 1) to entries in the Protein Data Bank (PDB), with
sequence identity values ranging from 8% to 29%, alignment coverage
between 64% and 99% and topology modelling (TM) scores between
0.21 and 0.63. One of the five structural matches was discarded due to
structural similarity to a synthetic construct. The other four sequences
were annotated as “tumor necrosis factor receptor” (BTRUNC_14698.1),
“Dickkopf-related protein 2” (BTRUNC_16137.1), “angiopoietin-1



Table 4
Key protein groups in Bulinus truncatus with likely or suggested roles in the immune/defence system of the snail, interactions with pathogens and/or susceptibility/
resistance to schistosome infection(s), and associated signalling, supported by published evidence or information

Protein group No. of
sequences

Known or suggested role(s) in Key module/pathway association(s) (KEGG pathway terms) Reference

Methyltransferases 137 Parasite-host interactions,
environmental signalling

Mitogen-activated protein kinase (MAPK) signalling pathway,
thermogenesis

Geyer et al. (2017)

Lectins 123 Immune response C-type lectin receptor signalling pathway, extracellular matrix
(ECM)-receptor interaction, focal adhesion, lysosome,
phagosome

Dheilly et al. (2015);
Buddenborg et al. (2017)

Kinases 113 Signalling in response to
environmental and pathogenic
stressors

Apoptosis, autophagy, calcium signalling pathway, cyclic
adenosine monophosphate (cAMP) signalling pathway, C-type
lectin receptor signalling pathway, ECM-receptor interaction,
focal adhesion, MAPK signalling pathway, necroptosis, NF-kappa
B signalling pathway, olfactory transduction, peroxisome,
pathogen interaction, thermogenesis, Toll-like receptor
signalling pathway

Adema et al. (2017)

FREPs/FReDs 69 Susceptibility/resistance to
schistosome infection, immune
response

ECM-receptor interaction, focal adhesion Lockyer et al. (2012); Dheilly
et al. (2015); Gordy et al.
(2015); Lu et al. (2020)

Phosphatases 59 Signalling in response to
environmental and pathogenic
stressors

cAMP signalling pathway, C-type lectin receptor signalling
pathway, focal adhesion, MAPK signalling pathway, NF-kappa B
signalling pathway, Toll-like receptor signalling pathway

Adema et al. (2017)

BIRs/IAPs 58 Drug response, apoptosis, innate
immune responses

Toll and Imd signalling pathway, NF-kappa B signalling pathway Adema et al. (2017);
Buddenborg et al. (2019)

Chitinases 47 Susceptibility/resistance to
schistosome infection, excretory/
secretory product

Amino sugar and nucleotide sugar metabolism Tennessen et al. (2015);
Fogarty et al. (2019)

Calmodulins 31 Stress response, drug
susceptibility

C-type lectin receptor signalling pathway, environmental
adaptation

Buddenborg et al. (2019)

Cathepsins 23 Susceptibility/resistance to
schistosome infection, excretory/
secretory product

Antigen processing and presentation, apoptosis, autophagy,
lysosome, phagosome

Fogarty et al. (2019)

Toll-/IL-1-related
proteins

14 Susceptibility/resistance to
schistosome infection, immune
response

Cytokine–cytokine receptor interaction, MAPK signalling
pathway, necroptosis, NF-kappa B signalling pathway,
phagosome, Toll and Imd signalling pathway, Toll-like receptor
signalling pathway

Kenny et al. (2016); Pila et al.
(2016)

Guadeloupe
Resistance
Complex (GRC)

9 (15 in
Bi. glabrata)

Susceptibility/resistance to
schistosome infection

Lysosome, endocytosis Tennessen et al. (2015)

Polymorphic
Transmembrane
Cluster 2 (PTC2)

3 (11 in
Bi. glabrata)

Susceptibility/resistance to
schistosome infection

na Tennessen et al. (2020)

Abbreviation: na, not available.
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receptor” (BTRUNC_27016.1) and “acyl-CoA dehydrogenase”
(BTRUNC_03469.1), based on their closest structural match.

4. Discussion

The characterisation of the first transcriptome for Bu. truncatus and
the functional annotation of inferred proteins provide a foundation for
future molecular investigations of Bu. truncatus and comparative in-
vestigations of snail intermediate hosts of other schistosomes, such as Bi.
glabrata. This effort helps to set a new line of investigation of snail hosts
that transmit human and animal schistosomiasis in Africa, with a bearing
on recently described hybrid schistosomes within the S. haematobium
group and zoonotic transmission (Leger & Webster, 2017).

The present findings show that most conserved metazoan proteins
(BUSCOs) are encoded within the Bu. truncatus transcriptome, and that
most sequences have at least one ortholog in Bi. glabrata. The analyses
provided evidence for the presence of expansion events in some protein
groups, consistent with findings for Bi. glabrata (see Simpson et al., 2005;
Adema et al., 2017; Geyer et al., 2017). In this context, the large number
of S-adenosyl-L-methionine-dependent methyltransferases and their link
to roles in thermogenesis pathwaysmay indicate a role for methylation in
the snail's interactions with its environment and/or pathogens (Liebsch&
Becker, 1990; Nelson et al., 2016), as has been suggested previously
(Geyer et al., 2017). Similarly, we indicate an expansion of BIRs, as re-
ported earlier for Bi. glabrata (see Adema et al., 2017). While the exact
role of these molecules is not yet known, a larger number of copies
6

present in snails compared with other invertebrates might relate to reg-
ulatory roles in apoptosis and innate immune responses in molluscs
(Adema et al., 2017).

Calcium-modulated proteins (calmodulins) also appear to be
expanded. These proteins transduce signals in response to increases in
intracellular Ca2þ and represent a major component of calcium-
dependent signalling pathways (Racioppi & Means, 2008). The expan-
sion seen in Bu. truncatus is in accord with findings in other snail species
(Simpson et al., 2005): in Bi. glabrata, 28 genes encoding 38 calmodulin
isoforms have been identified and linked to roles in shell formation and
defence to bacteria, yeast and S. mansoni (see Buddenborg et al., 2019),
and in Lymnaea stagnalis, a Ca2þ/calmodulin-dependent nitric oxide
synthase is reported to associate with nitric oxide production in hae-
mocytes – as a defence mechanism of this snail against pathogens (Wright
et al., 2006). Given these findings for other snail species, it is possible
that the apparent expansion of calmodulins encoded in the Bu. truncatus
transcriptome represents a functional and subcellular diversification, and
that these molecules play a role in biotic defence responses (McCormack
& Braam, 2003). This proposal is supported by the finding that most
calmodulins associate with the KEGG pathway “pathogen-interaction”
(KEGG pathway identifier: ko04626).

However, a number of kinase groups and families linked to this
pathway in the KEGG database, including Ca2þ/calmodulin-dependent
protein kinases (CAMKs), myosin light-chain kinases (MLCKs), phos-
phorylase kinases (PhKs), S locus receptor kinase (SRKs) and creatine
phosphokinase (CPKs), were not detected in the present Bu. truncatus
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transcriptome. Comprehensive transcriptomic and proteomic studies of
all developmental stages of Bu. truncatus should establish whether these
molecules are absent from this snail species, and should facilitate studies
of snail-schistosome interactions.

Other proteins encoded in the present Bu. truncatus transcriptome
could be linked to roles in signal transduction, cell growth and death, the
immune system, environmental adaptation and/or the excretory/secre-
tory system. For example, kinases and phosphatases linked to NF-kappa
B-, Toll-, IL-1- and C-type lectin receptor-signalling pathways could be
elements of the innate immune response in the snail (cf. Schultz &
Adema, 2017; Castillo et al., 2020; Li et al., 2020). Select lectins and
FREPs/FReDs as well as cathepsins might also be linked to snail de-
fence(s) against pathogens including schistosomes (cf. Lockyer et al.,
2012; Gordy et al., 2015; Lu et al., 2020).

A substantial number of transcripts in Bu. truncatus encoded orphan
molecules which could not be functionally annotated. Given that these
transcripts contained complete ORFs and were assembled based on
sequenced RNA molecules (rather than predicted de novo, without evi-
dence of being transcribed), they are unlikely to represent technical ar-
tifacts. The lack of homology to non-molluscan sequences may be
explained by rapid evolution, leading to taxon- or lineage-specific neo-
functionalisation of these proteins (Tautz & Domazet-Loso, 2011). Its
alloploidy and potential for other chromosomal-level events may also
facilitate accelerated change of gene content over time. The predicted
two- and three-dimensional structures of some of these molecules indi-
cate that they are located to the plasma membrane or are extracellular,
which may relate to interaction of the snail with the environment and/or
pathogens. Other orphans had orthologs in Bi. glabrata that were encoded
by members of resistance gene clusters, suggesting functions related to
resistance to infection by schistosomes. Such orphans deserve detailed
7

investigation, as they might represent snail-specific molecules involved
in pathogen recognition and defence.

In conclusion, the transcriptome and inferred proteome characterised
in the present study provide novel and important resources that will
assist future efforts to decode the entire genome of Bu. truncatus, un-
derpin proteomic and metabolomic studies, and aid in elucidating the
molecular biology of this snail and how it interacts with larval stages of
schistosome parasites. The present work also creates opportunities for
similar investigations of invertebrate intermediate hosts of socioeco-
nomically important parasitic trematodes.
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