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Abstract 

Background:  Both Culex quinquefasciatus and Cx. pipiens molestus are sibling species within Cx. pipiens complex. 
Even though they are hard to distinguish morphologically, they have different physiological behaviors. However, the 
molecular mechanisms underlying these differences remain poorly understood.

Methods:  Transcriptome sequencing was conducted on antennae of two sibling species. The identification of the 
differentially expressed genes (DEGs) was performed by the software DESeq2. Database for Annotation, Visualization 
and Integrated Discovery was used to perform GO pathway enrichment analysis. The protein–protein interaction 
(PPI) network was constructed with Cytoscape software. The hub genes were screened by the CytoHubba plugin and 
Degree algorithms. The identified genes were verified by quantitative real-time PCR.

Results:  Most annotated transcripts (14,687/16,005) were expressed in both sibling species. Among 15 identified 
odorant-related DEGs, OBP10 was expressed 17.17 fold higher in Cx. pipiens molestus than Cx. quinquefasciatus. Eight-
een resistance-related DEGs were identified, including 15 from CYP gene family and three from acetylcholinesterase, 
in which CYP4d1 was 86.59 fold more highly expressed in C. quinquefasciatus. Three reproductive DEGs were indenti-
fied with the expression from 5.01 to 6.55 fold. Among eight vision-related DEGs, retinoic acid receptor RXR-gamma 
in Cx. pipiens molestus group was more expressed with 214.08 fold. Among the 30 hub genes, there are 10 olfactory-
related DEGs, 16 resistance-related DEGs, and four vision-related DEGs, with the highest score hub genes being OBP 
lush (6041148), CYP4C21 (6044704), and Rdh12 (6043932). The RT-qPCR results were consistent with the transcriptomic 
data with the correlation coefficient R = 0.78.

Conclusion:  The study provided clues that antennae might play special roles in reproduction, drug resistance, and 
vision, not only the traditional olfactory function. OBP lush, CYP4C21, and Rdh12 may be key hints to the potential 
molecular mechanisms behind the two sibling species’ biological differences.
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Background
Mosquitoes are not only annoying but can also transmit 
pathogens, resulting in billions of potential infections 
and approximately 700,000 deaths worldwide each year. 
Different species of mosquitoes carry and transmit dif-
ferent pathogens [1, 2]. For example, some species of 
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Culex mosquitos are vectors of West Nile virus, Japa-
nese encephalitis virus, and lymphatic filariasis [3].

Culex quinquefasciatus (Cx. quinquefasciatus, Cqui) 
and Cx. pipiens molestus (Cx. p. molestus, Cmls) are 
sibling species within Cx. pipiens complex whose mor-
phologies are difficult to distinguish [4]. However, Cx. 
p. molestus and Cx. quinquefasciatus have very differ-
ent physiological behaviors. For example, Cx. p. moles-
tus mainly mate in confined spaces. Their ovaries can 
develop normally, and they lay eggs without blood-
feeding in their first life cycle. On the other hand, Cx. 
quinquefasciatus mate in open areas. There are also 
differences in their preference for mammalian and bird 
blood sources [5]. Although the different blood-feeding 
habits and other physiological behaviors of the two sib-
ling species have been observed for a long time, their 
possible molecular mechanisms have still not been 
totally illustrated.

Antenna is the main chemosensory organ of mos-
quito and plays an important role in smell [6], hearing 
[7], host-locating [8], and courtship [9]. The mosquito 
antenna comprises three parts: scape, pedicel, and fla-
gellum. The antenna and maxillary palp detect odors 
emanating from the host. With the help of proboscis 
and eyes, which detect taste and visual cues, mosqui-
toes are successful in flight navigation toward the host 
[10]. The expressions of many chemoreceptor genes 
have been found in the antennae of Anopheles sinensis, 
and their expression levels are significantly regulated 
after the blood meal [11], quite similar to the antennae 
of the Culex pipiens complex [12] and Aedes aegypti 
[13–15]. Besides the typical olfactory function, the 
antennae of mosquitoes are model systems for other 
sensations, including acoustics [16].

We conducted transcriptome sequencing on anten-
nae of Cx. p. molestus and Cx. quinquefasciatus and then 
explored the differences in the expression and interaction 
of transcripts. Besides olfaction, antennae could also have 
special roles in reproduction, drug resistance, and visual 
function. The study provides hints about the potential 
molecular mechanisms behind the two sibling species’ 
biological differences.

Methods
Mosquitoes
Both Cx. p. molestus and Cx. quinquefasciatus were 
obtained from long-term laboratory-reared strains, 
which had been characterized by male genitalia and/
or cytochrome oxidase subunit I (COI) barcoding in 
advance [17, 18]. The breeding conditions were as fol-
lows: temperature 26 ± 1  °C, relative humidity 70 ± 5%, 
and a light:dark regime 14 h:10 h.

RNA extraction and library construction
Two groups of samples were designed in this study: 
antennae of Cx. quinquefasciatus (Cqui) and antennae 
of Cx. p. molestus (Cmls). Biological samples contain-
ing 50 antennae were set in four replicates for each 
group. RNA was extracted with TRIzol (Takara.9108). 
Libraries were constructed using the NEB Next Ultra 
RNA Library Prep Kit and finally sent to Beijing Macro-
Micro-test Biotechnology Co., Ltd., for transcriptome 
sequencing.

Transcriptome sequencing analysis
After the raw data were filtered, clean reads were com-
pared to the reference genome using HISAT2 software 
[19]. Reference genome file was acquired from the data 
in the National Center for Biotechnology Information 
(NCBI)(GCF_015732765.1) [20, 21]. Transcript assem-
bly was performed with StringTie software [22] followed 
by annotation from databases such as P fam [23], Gene 
Ontology (GO) [24, 25], and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [26].

A differential analysis was performed using DESeq2 
software [27]. The screening criteria for differentially 
expressed genes (DEGs) in antennae were padj  < 0.05 
and |log2(foldchange)|> 1. Functional annotation and GO 
enrichment analyses were carried out using the R and 
clusterProfiler [28, 29] to categorize the DEGs into bio-
logical process (BP), molecular function (MF), and cellu-
lar components (CC).

Protein-protein interaction (PPI) network analy-
sis obtained the interaction network file through the 
STRING database [30]. The files were displayed using 
Cytoscape software [31]. The cytoHubba plug-in Degree 
topology algorithm was used to predict and explore to 
calculate gene scores for hub genes [32].

qPCR verification of identified DEGs
Ten genes with relatively high expressions and significant 
differences were randomly selected and combined with 
housekeeping genes 18S ribosomal RNA (18S) to verify 
the accuracy of the transcriptome results. The primers 
were designed with Oligo Primer Analysis software ver-
sion 4.0 (Additional file 1: Table S1). A qPCR analysis was 
conducted with a One Step SYBR PrimeScript RT-PCR 
Kit II (Cat# RR086A, Takara). The reaction conditions 
were set as follows: 94 °C for 30 s, 94 °C for 5 s, and 60 °C 
for 30 s, repeated for 40 cycles. Three technical replicates 
were performed for each sample. The 2−ΔΔCT method was 
applied to calculate the relative gene expression [33, 34]. 
A chi-square test was used to confirm the pairwise differ-
ences at the significance level of α = 0.05. The correlation 



Page 3 of 10Gao et al. Parasites & Vectors          (2022) 15:353 	

between RNA-seq and RT-qPCR expression was calcu-
lated by Pearson correlation.

Result
Sequencing data quality
After sample data were filtered and the adapter removed, 
the metagenomic sequencing depth of eight samples was 
around 30G. The number of valid reads ranged from 
22876221 to 31754347. There were 206232097 reads 
(16,005 annotated transcripts) in total. The Q20 val-
ues were all > 95%, suggesting a high degree of quality 
(Table 1).

Transcriptome differential expression analysis of antennae
Principal component analysis showed that the ellipse 
represented the grouping area with 68% confidence inter-
val; all biological replicates of Cqui and Cmls sample 
were distributed in two distinct groups (Fig.  1A). Most 
annotated transcripts (14,687/16,005) were expressed in 
both sibling species. The number of Cx. quinquefascia-
tus- and Cx. p. molestus-specific transcripts were 890 and 
428, respectively (Fig. 1B). There were 1577 DEGs in the 
antennal transcriptome of Cqui and Cmls, of which 1166 
DEGs were more highly expressed in the Cqui group and 
411 DEGs were higher in the Cmls group (Fig. 1C).

With the purpose of better understanding the differ-
ences in regulation between the two sibling mosquito 
species’ antennae, we mapped all transcripts to GO 
pathways to exploit the pathways that were significantly 

enriched. DEGs with higher expression in the Cqui 
were enriched in signal transduction, cell communica-
tion in BP; channel complex and neural synapse in CC; 
signaling receptor activity and channel activity in MF 
(Fig.  1D). DEGs with higher expression in the Cmls 
group were enriched in defense response, carbohydrate 
metabolic process in BP; cell projection, component of 
endoplasmic reticulum membrane in CC; oxidoreduc-
tase activity and ion binding pathways in MF (Fig. 1E).

Specific functional DEGs in antennal transcriptome
By further mining the data, we focused on four types 
of specific functional DEGs, which would affect the key 
physiological behaviors of mosquitoes, including olfac-
tory, resistance, reproduction, and vision. A total of 
15 odorant-related DEGs were identified, of which 11 
were more highly expressed in the Cqui group and four 
more highly expressed in the Cmls group. Most (12/15) 
were odorant-binding proteins (OBP); two other DEGs 
(OR67d and OR7a) were odorant receptors (OR) and 
one (GR22) a gustatory receptor (GR). Of these, OBP10 
in cmls groups were specially more highly expressed 
at 17.17 fold times compared with the Cqui group 
(Fig. 2A, Additional file 1: Table S2).

A total of 18 resistance-related DEGs were identified, 
including 15 from cytochrome P450 (CYP) gene family 
and three from acetylcholinesterase (AchE). Eight CYP 
family DEGs were more expressed in Cqui; for exam-
ple, CYP4D1 was 86.59 fold more highly expressed. 
Three AchE genes were differentially expressed with 
fold change ranging from 0.39–4.59 (Fig. 2B, Additional 
file 1: Table S3).

Two related vitellogenin-A1 (Vg-A1) and one location 
of vulva defective 1 (lov-1) DEGs were more expressed 
in the Cmls, with expression from 5.01 to 6.55 fold. 
These three genes were all related to insect mating 
(Fig. 2C, Additional file 1: Table S4).

Four vision-related genes were more expressed in the 
Cqui group and four more expressed in the Cmls group. 
Typically, retinoic acid receptor (RAR​) RXR-gamma in 
Cmls group was more expressed at 214.08 fold. Ver-
tebrate ancient (VA) opsin in Cqui group was more 
expressed with 12.43 fold change (Fig.  2D, Additional 
file 1: Table S5).

Table 1  Transcriptome sequencing data mapping summary

Cmls = antennae of Cx. p. molestus; Cqui = antennae of Cx. quinquefasciatu. 
Alignment rate indicated the ratio of sequencing results to reference genome. 
Q20 = proportion of base mass values  ≥ 20. GC = proportion of GC bases in the 
sequencing result

Sample Reads number Alignment rate 
(%)

Q20 (%) GC (%)

Cmls_1 25985588 58.55 97.22 53.16

Cmls_2 24538832 57.97 96.82 52.32

Cmls_3 30471828 60.04 96.1 53.74

Cmls_4 31754347 59.27 95.55 53.86

Cqui_1 23234291 57.02 96.58 53.9

Cqui_2 23513630 57.20 95.1 52.61

Cqui_3 23857360 59.69 95.41 53.01

Cqui_4 22876221 59.47 96.63 54.44

(See figure on next page.)
Fig. 1  A Principal component analysis of the antennal RNA-Seq data of Cqui and Cmls. B Venn diagram for two sibling species transcrips. C Volcano 
plot analysis of DEGs between antennal transcriptomes. Green dots indicate DEGs with higher expression in Cqui group, and red dots indicate DEGs 
with higher expression in Cmls group. D GO enrichment analysis of DEGs more expressed in Cqui group. E GO enrichment analysis of DEGs more 
expressed in Cmls group
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Fig. 1  (See legend on previous page.)
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PPI network for specific functional hub genes
Hub genes were the nodes with higher degree, i.e. nodes 
with more connections in related pathways. With the 
cytoHubba plug-in and the Degree algorithm, we cal-
culated the hub gene and drew the PPI Networks, PPI 
(Fig.  3A). PPI was mainly divided into four parts: CYP 
family, olfactory-related genes (OR, OBP, and GR) and 
AchE family and vision-related genes (RBP and Rdh). 
The highest scores for specific functional hub genes were 
CYP4C21 (6044704), OBP lush (6041148), and Rdh12 
(6043932), respectively. Hub genes were closely related 
internally in each specific function. The hub gene score 
and function are presented in Additional file 1: Table S6. 
Among the 30 hub genes, there were ten olfactory-
related DEGs, 16 resistance-related DEGs, and four 
vision-related DEGs (Fig. 3B).

RT‑qPCR validation
To validate the reliability of the DEG results, the expres-
sion levels of ten selected transcripts were determined 
by RT-qPCR with the 18S as an internal reference gene. 
These genes included OBP, Vg, CYP, and so on. All of 
these genes were significantly different between Cqui 
and Cmls group on expression of RNA-seq and RT-
qPCR (Fig.  4A). The RT-qPCR results were consistent 
with the transcriptomic data. The correlation coefficient 

was R = 0.78, the significance coefficient P = 0.0083 < 0.05 
(Fig. 4B).

Discussion
Most previous studies focused on olfactory genes when 
conducting transcriptome sequencing on mosquito 
antennae. For example, 77 OBPs, 82 ORs, 60 IRs, and 30 
GRs were found in the transcriptome sequencing results 
of different organs of A. albopictus [15]. In the sequenc-
ing of the antenna transcriptomes between sibling spe-
cies An. coluzzii and An. quadriannulatus [35], Cx. 
quinquefasciatus and Cx. p. molestus [12], much olfac-
tory gene expression was significantly regulated to affect 
host seeking and oviposition.

In this study, 15 odor-related genes were found among 
the DEGs between Cx. quinquefasciatus and Cx. p. 
molestus. Among the olfactory-related DEGs mentioned 
above, GR22 specifically bound to CO2 [36], and OBP66, 
general OBP83a, OBP6, general OBP72, OBP12, OBP5, 
and OBP10 were present specifically in the antennae 
[37, 38]. Culex pipiens molestus was more interested in 
mammals and sometimes birds [39, 40]. The blood-suck-
ing host of Cx. quinquefasciatus was more widespread, 
including birds and other vertebrates [41]. These 15 odor-
related genes might reflect the different feeding patterns 
of the two mosquito species.

Fig.2  Expression level for specific functional DEGs. Light color-filled columns represent the gene expression of Cqui group; dark color-filled 
columns represent the gene expression of Cmls group. A Expression level of olfactory-related DEGs. B Expression level of resistance-related DEGs. C 
Expression level of reproduction-related DEGs. D Expression level of visual-related DEGs
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There were 16 resistance-related DEGs in the hub 
gene PPI network, including genes from CYP family 
and AchE. CYP superfamily catalyzed various modifica-
tion reactions, such as oxidation, epoxidation, dehydro-
genation, hydrolysis, and reduction [42]. Members of 
CYP played critical roles in the detoxification of xeno-
biotics such drugs, pesticides, and toxins [43]. AchE was 
an effective insecticide target for mosquito vector con-
trol [44]. CYP4AC1 did not overexpress in Cx. quinque-
fasciatus larvae treated with pyrethroids [45]. AchE1 
had been confirmed to be associated with pyrethroid 
resistance [46]. Higher expression level of CYP6AA9 
was found responsible for deltamethrin-resistant Cx. 
pipiens. [47]. Our study agreed with previous studies 
confirming the expression levels of resistance-related 
genes of Cx. quinquefasciatus and Cx. pipiens pal-
lens were different [48]. The relationship between 16 

resistance-related DEGs and resistance needs further 
verification.

The two Vg-A1 genes (6043252,6043250) were highly 
expressed in Cx. p. molestus, which may be related to the 
autogenous habit [49]. In the absence of a blood meal, 
the ovaries of Cx. p. molestus developed normally, which 
might have led to higher expression of the Vg gene.

Of the eight differentially expressed vision-related 
genes, RBP1, RXP Rax, eye-specific DGK, and VA opsin 
were more highly expressed in the Cqui group. Retinal 
oxide-binding protein was abundantly expressed in locust 
antenna and associated with olfactory-related behaviors 
in solitary locusts [50]. Eye-specific DGK was essential 
for the photoreceptor function of the Drosophila retina 
[51, 52]. Vertebrate ancient opsin was a green-sensitive 
photoreceptor that showed high sequence similarity to 
vertebrate ancient opsin, which might also have affected 

Fig. 3  A PPI network of top 30 hub genes related to olfaction, resistance, and vision. Green filling represents the resistance-related gene; red filling 
represents the vision-related gene; blue filling represents the vision-related gene. B The upset plot shows the number of each functional gene in 
the hub gene
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sexual maturation [53]. Rdh12 functioned as part of the 
visual cycle, which was a series of enzymatic reactions 
required for the regeneration of the visual pigment and 
detoxification of lipid peroxidation products [54, 55]. 
Retinol-binding protein transported vitamin A in the 
hydrophilic environment of the cytoplasm and regener-
ated visual pigments [56, 57]. RAR​ was involved in the 
retinoic acid signaling pathway, which was crucial for 
the control of embryonic development [58]. The differ-
ent living environments (Cx. p. molestus mated mainly 
in enclosed spaces, while Cx. quinquefasciatus mated 
mainly in open areas) might interact with the differential 
expression of their vision-related genes.

GO enrichment results showed that genes with higher 
expression in Cx. quinquefasciatus were mainly enriched 
in cell communication, G protein-coupled receptor 
signaling pathway, ion channel complex, cell junction, 
signaling receptor activity, and other pathways. Previ-
ous studies have found that G protein-coupled receptor 
signaling pathway was closely related to insect feeding 
behavior [59], which affected insecticide resistance in Cx. 
quinquefasciatus by regulating P450-mediated detoxifi-
cation [60].

Genes with higher expression in Cx. p. molestus were 
mainly enriched in microtubule-based movement, innate 
immune response, integral and intrinsic component of 
endoplasmic reticulum membrane synthesis, and cell 
division-related pathways. Due to the autogenous habit 
of Cx. p. molestus, the body of Cx. p. molestus was richer 
in carbohydrates, lipids, proteins, and other nutrients 

[49, 61, 62], with vigorous cell proliferation and stronger 
immune response.

The screened high scored hub genes would be the key 
to explore mechanisms behind the two sibling species 
biological differences. OBP lush (6041148) had the high-
est score for olfactory-related hub gene and consisted 
of a large family of low-molecular-weight, highly diver-
gent proteins expressed exclusively in the chemosensory 
sensilla of insects. It was required for normal olfactory 
behavior in Drosophila [63]. OBP lush mutant flies were 
abnormally attracted to high concentrations of ethanol, 
propanol, and butanol but had normal chemosensory 
responses to other odorants [64].

The resistance-related hub gene CYP4C21 (6044704) 
had the highest score, which was 5.4 times higher in the 
resistant strain compared with the wild Ae. aegypti strain 
in Vietnam [65]. The hub visual correlation gene with the 
highest score was Rdh12 (6043932), an NADPH-depend-
ent retinal reductase, which is expressed in the inner 
segments of the photoreceptors [54]. Rdh12 could enzy-
matically reduce toxic lipid 4-hydroxynonenal in  vitro 
[66], protecting cellular macromolecules against oxida-
tive modification and protecting photoreceptors from 
light-induced apoptosis [67].

Our transcriptome sequencing on antennae of Cx. 
quinquefasciatus and Cx. p. molestus, not only focused 
on olfactory-related genes in common view, but also 
expanded the orientation of resistance-, reproduction-, 
and vision-related genes of two sibling species of mos-
quitoes. Even though the RT-qPCR results confirmed the 

Fig. 4  A Verification of DEGs in Cqui group and Cmls group using RT-qPCR. Black-filled columns represent the fold change of gene expression 
based on comparative transcriptome analysis. Gray-filled columns represent data from RT-qPCR analysis. B Correlation between RNA-Seq and 
RT-qPCR results for the tested DEGs using Pearson correlation coefficient (P < 0.05)
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RNA-Seq prediction to some extent, further molecular 
and behavioral investigations are needed. This study  pro-
vides hints about the potential molecular mechanisms 
behind the two sibling species’ biological differences, like 
blood-feeding, detoxication, mating, host-locating, and 
other physiological behaviors, which could facilitate the 
design and development of more targeted repellents or 
insecticides. By interfering with or silencing the specific 
genes with RNAi or CRISPR techniques, mosquito host 
localization ability and resistance to insecticides were 
affected, leading to the decrease of vector competence. 
The screened key genes can help to control mosquito-
borne diseases effectively and efficiently.
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