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Abstract

Background: Suicide represents a major health concern, especially in developing countries. While many demographic risk 
factors have been proposed, the underlying molecular pathology of suicide remains poorly understood. A body of evidence 
suggests that aberrant DNA methylation and expression is involved. In this study, we examined DNA methylation profiles and 
concordant gene expression changes in the prefrontal cortex of Mexicans who died by suicide.
Methods: In collaboration with the coroner’s office in Mexico City, brain samples of males who died by suicide (n = 35) and 
age-matched sudden death controls (n = 13) were collected. DNA and RNA were extracted from prefrontal cortex tissue and 
analyzed with the Infinium Methylation480k and the HumanHT-12 v4 Expression Beadchips, respectively.
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Results: We report evidence of altered DNA methylation profiles at 4430 genomic regions together with 622 genes 
characterized by differential expression in cases vs controls. Seventy genes were found to have concordant methylation 
and expression changes. Metacore-enriched analysis identified 10 genes with biological relevance to psychiatric 
phenotypes and suicide (ADCY9, CRH, NFATC4, ABCC8, HMGA1, KAT2A, EPHA2, TRRAP, CD22, and CBLN1) and highlighted 
the association that ADCY9 has with various pathways, including signal transduction regulated by the cAMP-responsive 
element modulator, neurophysiological process regulated by the corticotrophin-releasing hormone, and synaptic 
plasticity. We therefore went on to validate the observed hypomethylation of ADCY9 in cases vs control through targeted 
bisulfite sequencing.
Conclusion: Our study represents the first, to our knowledge, analysis of DNA methylation and gene expression associated 
with suicide in a Mexican population using postmortem brain, providing novel insights for convergent molecular alterations 
associated with suicide.

Keywords:   Epigenomics/transcriptomics, Mexico, suicide, postmortem human brain

Introduction
Suicide represents a major public health concern that re-
sults in nearly 800 000 deaths per year, is one of the leading 
causes of death in young adults aged 15–29  years, and is the 
fifth leading cause of death in those aged 30–49  years (World 
Health Organization, 2018). Moreover, 79% of deaths by sui-
cide occur in low-income and middle-income countries (World 
Health Organization, 2018). In Mexico, suicide rates have been 
increasing over the past few decades, affecting mostly younger 
men and older adults (Alicandro et al., 2019).

The underlying etiology of suicide is multifactorial and in-
cludes complex interactions between biological predisposi-
tions, psychological, and socio-cultural risk factors (World 
Health Organization, 2014). The socio-cultural risk factors that 
stand out include financial stress, unemployment, lack of ac-
cess to health and education systems, poor living conditions, 
high levels of violence, and malnutrition, among others (World 
Health Organization, 2014). As Mexico has been placed among 
the countries with the highest levels of social inequality in the 
world, a large percentage of the inhabitants reside within the 
socio-cultural risk context described (Piacentini, 2014). Indeed, 
the association between poverty and suicide has been previously 
reported (Vijayakumar et al., 2005; Oyesanya et al., 2015; Iemmi 
et al., 2016; Lee et al., 2017; Choi et al., 2019). Exposure to impover-
ished and stressful environments is known to play an important 
role in perceived stress and can have an impact on stress response 
pathways and other signaling systems (Barnett Burns et al., 2018). 
Although the molecular processes underlying these changes are 
not fully understood, growing evidence has suggested that epi-
genetic mechanisms, which allow the environment to modulate 
gene expression, mediate the process by which stressful experi-
ences impact the brain (McEwen and Bulloch, 2019).

Epigenetic modifications alter gene expression without 
changing the underlying genetic code (Petronis, 2010). This 
adaptable feature allows an organism to prepare for various en-
vironmental conditions such as psychosocial factors and can, 

therefore, provide insights into the mechanisms underlying 
gene-environment interactions. DNA methylation is the most 
investigated and well-characterized epigenetic modification to 
date (BLUEPRINT Consortium, 2016), which is traditionally de-
fined as the addition of a methyl group to the fifth carbon of a 
cytosine base and predominantly at those directly followed by 
guanine (CpG dinucleotide sites). Methylation at promoter re-
gions is generally associated with repression of transcription, 
either by blocking transcription factor binding or by recruiting 
other repressive proteins with methyl-binding domains (Moore 
et al., 2013). However, positive correlations between methylation 
within gene bodies and expression have also been described 
(Jones, 2012).

Previous epigenetic studies have identified changes in 
various biological pathways related to suicide, including the 
GABAergic, poly-aminergic, neurotrophic, and immune systems 
as well as the hypothalamic-pituitary-adrenal axis (Poulter 
et al., 2008; Ernst et al., 2009; Keller et al., 2010; Fiori and Turecki, 
2011; Labonte et al., 2012a, 2012b, Maussion et al., 2014; Murphy 
et al., 2017; Roy and Dwivedi, 2017; Kouter et al., 2019, Policicchio 
et al., 2020). Importantly, epigenetic changes may be specific to 
brain regions involved in the pathophysiology of suicide (Keller 
et al., 2011). Despite these results, few studies have examined 
genome-wide methylation changes in postmortem brain sam-
ples, and none have explored these changes in a Latin American 
population. Here, we report evidence of altered DNA methyla-
tion in postmortem human brain samples from Mexicans who 
died by suicide and the effects of these alterations on gene 
expression.

Materials and Methods

Subjects and Samples

Human postmortem brain tissue samples were obtained during 
autopsy in collaboration with the Mexico City Coroner’s Office, 

Significance Statement
This is, to our knowledge, the first genome-wide study that integrates differential methylation and expression analysis in Latin 
American suicide cases using postmortem human brain tissue. Seventy genes were both differentially methylated and expressed 
in cases vs controls. Gene-based functional enrichment analysis, using these 70 genes, identified 10 that were overrepresented 
in pathways related to synaptic plasticity, signal transduction regulated by the cAMP-responsive element modulator, and 
neurophysiological processes regulated by the corticotrophin-releasing hormone. ADCY9, which was hypomethylated and 
overexpressed by suicide, was overrepresented in many of these pathways. In sum, this study reveals novel genomic regions that 
may be associated with suicide and should be followed-up with functional experiments in future investigations.
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from the Forensic Sciences Institute. All subjects were Mexicans 
who lived in Mexico City at the time of death, and to reduce 
ethnic variation and stratification effects, we selected subjects 
that descended from 2 Mexican generations. This study in-
cluded male subjects: (1) who died by suicide (cases, n = 35); or 
(2) who died suddenly without prolonged agonal state (controls, 
n = 13). The cause and manner of death were determined by 
the coroner’s office, in accordance with the National Code of 
Criminal Procedures (2016), after evaluating autopsy results, cir-
cumstances of death, data from extensive toxicological testing, 
police reports, family interviews, and medical records. Groups 
were matched for age and postmortem interval. The exclusion 
criteria for both groups included age >65  years old, comorbid 
medical illness, undetermined cause of death, incomplete fo-
rensic records, and poor DNA and RNA quality. Sample charac-
teristics are presented in supplementary Table 1. Information on 
socio-demographic data (age, years of education, marital status, 
occupational status), circumstances of the death (method, toxi-
cology reports, suicide note), and clinical information (medical 
and psychiatric reports from the hospital as well as death cer-
tificates) for each donor was obtained through the complete 
coroner’s records. To ensure comparability of the 2 groups, all 
individuals were subject to a consensus diagnosis between a 
pathologist, a psychologist, a criminologist, and a psychiatrist 
based on the DSM-5 criteria and using proxy-based testi-
monies as described elsewhere (Romero-Pimentel et al., 2018). 
Demographic and clinical data were compared between groups 
and considered for final analyses (supplementary Table 1).

For identification and dissection of Brodmann area 9, which 
corresponds to the dorsolateral prefrontal cortex, we used well-
characterized neuroanatomical maps (Haines, 2000; Nolte, 2002). 
Briefly, the second prefrontal gyrus and precentral gyrus were 
identified to landmark the area of interest. In all cases, 3  cm3 
of left hemisphere gray matter tissue was carefully dissected 
and immediately snap-frozen, whereas 1.5  cm3 of the tissue 
was stored in RNAlater (Qiagen, Singapore) at −80°C until fur-
ther processing. This study was conducted in accordance with 
the ethical principles of the last Declaration of Helsinki and was 
approved by the Bio-Ethical Committee for Human Research at 
National Institute of Genomic Medicine.

Genome-Wide DNA Methylation Analysis on the 
Infinium HumanMethylation450 BeadChip

Genomic DNA was isolated from 25  mg of tissue using the 
manufacturer’s instructions of the QIAamp DNA Mini Kit 
(Qiagen, Valencia, CA, USA) and tested for purity and degrad-
ation using the NanoDrop 2000 spectrometer (Thermo Fisher, 
Wilmington, DE, USA) and agarose gel electrophoresis, respect-
ively. Genomic DNA (200  ng) from each sample was treated 
with sodium bisulfite using the EZ DNA methylation Kit (Zymo 
Research, CA, USA) following the manufacture’s standard 
protocol. DNA methylation was quantified using the Infinium 
HumanMethylation450 BeadChip Array (Illumina, Inc., San 
Diego, CA, USA), as previously described (Pidsley et  al., 2013). 
Bisulfite conversion and initial methylation signal detection 
quality control were performed at the Microarray Core Facility 
in the National Institute of Genomic Medicine (UMI) located in 
Mexico City.

Cases and controls were randomized among the BeadChip to 
avoid batch effects. Pre-processing and analysis of raw micro-
array data were conducted within R (ver 3.4) using the Chip 
Analysis Methylation Pipeline Bioconductor package (Morris 
et  al., 2014). Sample methylation quality control (QC) was as-
sessed by plotting log median methylated and unmethylated 

signals. Only samples that passed QC measures (>1% of sites 
P > .05) were included. Probes were excluded if they showed 
intensities indistinguishable from the background (detec-
tion P > .05) in at least 1% of samples and bead count <3 in 5% 
of the samples as well as if they were non-specific, showed 
cross-reactivity, and if they hybridized to single nucleotide 
polymorphisms.

Sex chromosomes with CpG probes were used to confirm 
sample sex. Single value decomposition analysis was used to 
detect technical batches and covariates. For the annotation of 
probes, the University of California, Santa Cruz (UCSC) RefGene 
name from Illumina’s annotation file and enhanced annota-
tion to the UCSC Known Gene were used. All annotations used 
the human February 2009 (GRCh37/hg19) assembly. Beta (β) 
values were calculated as the ratio of methylated signal to the 
sum of unmethylated and methylated signals at each CpG site, 
and log2 transformed β values were used for the remainder of 
pre-processing steps (Du et  al., 2010). Technical batches and 
covariates were detected and corrected for using single value 
decomposition analysis via the ComBat method before differen-
tial methylation analysis (Johnson et al., 2007).

After these procedures, 474 958 CpG sites were extracted. 
Differentially methylated regions (DMRs) were identified be-
tween cases and controls using the DMRcate method (Peters 
et al., 2015). DMRcate fits a limma linear model with empirical 
Bayes adjustment for each individual CpG site. We implemented 
the default smoothing parameters with bandwidth λ = 1000 bp 
and scaling factor C = 2. Nominal P < .05 was used to denote sig-
nificant DMRs between controls and cases and corrected for 
genome-wide multiple testing using the Benjamini-Hochberg 
procedure with false discovery rates (FDR) of 0.1. Also, a mean 
β fold change of ± 0.01 was set as a cutoff value to decrease the 
number of significant DMRs and to identify sites with more bio-
logically relevant methylation differences.

Genome-Wide mRNA Gene Expression Analysis on 
the HumanHT-12 v4 Expression BeadChip

Total RNA was extracted from 25 mg of tissue using the RNeasy 
Kit (Qiagen), according to the manufacturer’s instructions. 
NanoDrop 2000 spectrometer (Thermo Fisher) and Agilent 
Bioanalyzer 2100 were used to assess RNA quality across sam-
ples, with an RNA integrity number cutoff of 6.  RNA samples 
were then sent to UMI, where an additional RNA QC was con-
ducted. Complementary RNA was prepared using standard 
Illumina Whole-Genome protocols and was hybridized to Human 
HT-12 v4 Expression BeadChips (Illumina, USA). Differential 
gene expression analysis was conducted on the Human HT-12 
v4 Expression BeadChip (Illumina), which provides accurate 
genome-wide expression coverage on up to 47 000 well-known 
genes, gene candidates, and splice variants. Initial QC of raw 
probe signals was conducted in GenomeStudio by UMI.

Pre-processing steps and differential gene expression ana-
lysis were performed in R using the limma Bioconductor package 
(Ritchie et al., 2015). Only the subset of samples that appeared in 
our DNA methylation analysis were included for whole-genome 
expression analysis (25 cases and 6 controls). Probe signals were 
detected with the propexp function and normalized with the 
normalize Between Arrays function. Probe filtering was con-
ducted using a detection P < .05 in at least 20% of samples cut 
off to denote retained probes, where 27 453 gene probes were 
preserved for downstream analysis. Differentially expressed 
genes were identified through linear regression analyses. All 
analyses were conducted with log2-transformed values. Only 
probes with a log fold change (LFC) of at least > ±0.3, between 

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
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cases and controls, were included for further investigation. LFC 
is the log-ratio of a gene expression value in 2 different condi-
tions, and it is calculated as the ratio of the difference between 
the final value and the initial value over the initial value. Finally, 
genes that contained DMRs with ± 0.01 mean β fold change and 
that appeared in our differential expression analysis were iden-
tified using GeneOverlap package within R.

Sensitivity Analyses

We performed sensitivity analyses to determine the effects of 
toxicology and psychiatric condition on our methylation and ex-
pression findings. For each sensitivity analysis, we adjusted the 
original models to include each additional covariate and then 
ran linear regressions to compare the original and adjusted 
LFCs. Altogether, 4 sensitivity analyses were run.

Investigating the Effects of Brain Cell and Genetic 
Heterogeneity

To address the possibility of confounding effects of brain cell 
composition, Cell EpigenoType Specific mapper was used to es-
timate brain cellular heterogeneity in all samples. The mapper 
was designed for quantification and normalization of differing 
neuronal proportions in genome-wide DNA methylation data 
sets (Guintivano et al., 2013). To check for potential genetic het-
erogeneity, we extracted CpG sites that were population-specific 
SNPs using the MetyltoSNP R package (LaBarre et al., 2019). The 
R package extracts CpG sites that are present in 3 discrete levels 
of methylation: fully methylated, fully unmethylated, and 50% 
methylation, which correspond to genotypes CC, TT, and CT. 
Then a principal component analysis was performed in the 
population-specific SNPs data to identify sample outliers.

Pathway Analysis

The overlapping differentially expressed and methylated gene 
set was input into pathway analysis package MetaCore version 
6.27 (GenoGo, Thomson Reuters, New York, NY, USA) to build top 
biological networks and list the associated biological processes. 
P =  .05 was used as a cutoff to determine significant pathway 
enrichment. MetaCore analysis is based on MetaBase (http://
metadatabase.org), a 100% manually curated integrated data-
base of mammalian biology that contains over 6 million experi-
mental findings on protein-protein, protein-DNA, protein-RNA, 
and protein-compound interactions, metabolic, signaling path-
ways, and others (Bolser et al., 2012).

Targeted Bisulfite Sequencing for Technical 
Validation

In our selection of the region that we chose to validate, through 
targeted bisulfite sequencing, we looked at a DMR that was the 
most overrepresented in our Metacore enrichment analysis. The 
DMR in ADYC9 not only fit this criterion but was also the most 
hypomethylated region. Therefore, DNA methylation across the 
ADYC9-associated DMR (spanning chromosome 16:4102293-
4103533) was selected. The region encompasses 3 CpG sites 
(cg00701890, cg16774375, cg02910037), which overlap with those 
measured by the 450k array. A single amplicon (222 bp) was amp-
lified with primers designed using the Methyl Primer Express 
software (ThermoFisher Scientific) and using genome assembly 
GRCh37/hg19. Specific details for primer design and amplicon 
library preparation are included in the supplementary Methods. 

DNA samples of controls (n = 13) and cases (n = 35) were bisulfite-
converted using the Epitect 96 Bisulfite kit (Qiagen) as per the 
manufacturer’s guidelines. All samples were ensured to have 
optimal molarity of 2 nM before being loaded onto the MiSeq 
platform with the V3 600 cycle kit (Illumina). On retrieving raw 
sequencing data, Trimmomatic (v.0.35) was used to trim adaptor 
sequences (Bolger et  al., 2014). Reads with Phred scores <20 
were removed and aligned with Bowtie 2 (v 2.1.0) (Langmead 
et al., 2009). Methylated and non-methylated CpG signals were 
extracted to calculate the level of methylation at our sites of 
interest. The average methylation level for the CpG sites was cal-
culated for all CpGs. Results were analyzed using 1-tailed t tests. 
Correlation of microarray and sequencing methylation values 
was assessed with Pearson correlation coefficients.

Results

Sample Characterization

As described in Figure 1, 35 cases and 13 controls were col-
lected for the DNA methylation component of this study. For 
the transcriptomic analysis, 10 cases and 7 controls had to be 
excluded because of the poor quality of RNA samples (RNA in-
tegrity number <6). There were no significant differences in 
postmortem interval, age, years of education, and occupational 
status between cases and controls. However, as expected, a sig-
nificant difference was noted in the presence of a psychiatric 
disorder (X2  = 18, df = 4, P = .0001) and toxicology (X2 = 6.10, df = 2, 
P = .04) (Table 1).

Differential Methylation Analysis

We used DMRcate a limma-based linear regression methods 
to identify DMRs in suicide cases compared with controls. The 
regional analysis identified 13 223 significantly methylated re-
gions (P < .05, FDR = 0.10); however, these included DMRs with 
very low differences in methylation, that is, mean β fold change 
below ±0.001. Therefore, we applied a mean β fold change cutoff 
of > ±0.01 to identify 4430 DMRs with methylation changes 
that are more likely to be biologically relevant (Figure 2A). The 
top-ranked DMR was found within the Zinc Finger Protein 57 
Homolog gene known as ZFP57 located near the transcription 
start site (chromosome 6:29648161-29649807, in the GRCh37/
hg19 assembly, UCSC genome browser, and was consistently 
hypermethylated across 17 of 22 CpG sites in suicide cases 

Figure 1.  Brief overview of the methodological approach used in this study. Ab-

breviations: BA, Broadmann area; GW, genome wide; DMRs, differentially methy-

lated regions; Mean β FC, beta fold change; LFC, log fold change.

http://metadatabase.org
http://metadatabase.org
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
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relative to controls (mean β fold change = 0.20, P = 1.22–122). The 
100 most significant DMRs (P < 3.16–301) are provided in supple-
mentary Table 2.

Effects of Altered DNA Methylation on Gene 
Expression

To understand the possible biological effects of altered methy-
lation, we analyzed gene expression using HumanHT-12 v4 
Expression BeadChips. Comparison between cases and con-
trols revealed 621 differentially expressed genes (LFC ≥ ±0.3; 
Figure 2B). To determine whether DNA methylation differ-
ences, between cases and controls, led to a functional impact 
on transcription, we investigated the overlap of DNA methy-
lation and gene expression data using GeneOverlap package 
within R. Statistical overlap significance was calculated with 
the exact hypergeometric test (P < .05) (Shen, 2020). The Venn 
diagram in Figure 2C shows 70 regions that show altered DNA 
methylation and altered gene expression, and all overlapped 
with unique genes (exact hypergeometric test P < 2.58 × 10−24; 
supplementary Table 3). From the list of differentially methy-
lated regions, 38 (54%) probes indicated hypermethylation 
and 32 (46%) probes indicated hypomethylation in suicide 
cases. Noteworthy, B-Cell Receptor CD22 (CD22) located in 

chromosome 19:35818807-35820181 (GRCh37/hg19) and NLR 
Family Pyrin Domain Containing 3 (NLRP3) located in chromo-
some 1: 247578552-247580106 (GRCh37/hg19) were the most 
significantly hypermethylated regions between suicide cases 
and controls (P = 5.89E-36, mean β fold change = .056, FDR = 0.1, 
and P = 8.21E-15, mean β fold change = .045, FDR = 0.1, respect-
ively). Solute Carrier Family 25 Member 34 (SLC25A34) lo-
cated in chromosome 1:16062361-16063471 (GRCh37/hg19) 
and Adenylate Cyclase 9 (ADCY9) located in chromosome 16: 
4102293-4103533 were, on the other hand, genes with altered 
expression and the highest hypomethylation after correcting 
for multiple testing (P = 5.47E-20, mean β fold change = −.034 
and P = −8.85E-14, mean β fold change = −.032, q = 0.10, 
respectively).

Next, to determine the effect of toxicology and psychiatric 
condition and our methylation and expression findings, we per-
formed a series of sensitivity analyses. Overall, adjusting our 
models for these variables had minimal effects on our results 
(supplementary Figure 1).

Brain Cell and Genetic Heterogeneity

The individual proportion of neuronal and non-neuronal cells 
did not have any specific, significant effects on our primary 

Table 1.  Demographics and Clinical Data of Samples Considered in the Epigenomic and Transcriptomic Overlap Analysis 

Control (n = 6) Cases (n = 25) Statistical analysis

Age 29.50 (18,40) 30 (16,61) U = 72.00, P = .89
PMI (h) 16 (11,19) 12 (3,16) U = 36.50, P = .53
RIN 6.9 (5.2, 7.2) 5.8 (4.4, 8.1) U = 62.50, P = .54
Cause of death Accidental death 100% (n = 6) Hanging: 92% (n = 32)  

Jumping: 4% (n = 1)
Cutting: 4% (n = 1)

Years of education 10.5 (9, 16) 9 (6, 16) U = 43, P = .10
Occupational status
Student 0% (n = 0) 8% (n = 2) X2 = 1.4, df = 2, P = .48
Employed 100% (n = 6) 80% (n = 20)
Unemployed 0% (n = 0) 12% (n = 3)
Marital status
Single 0% (n = 0) 52% (n = 13) X2 = 5.4, df = 1, P = .02
Married 100% (n = 6) 48% (n = 12)
Psych. family history
Yes 0% (n = 0) 0% (n = 0)  
No 100% (n = 6) 96% (n = 24)
Unknown 0% (n = 0) 4% (n = 1)
Previous episodes of suicide attempt
Yes 0% (n = 0) 12% (n = 3) X2 = 0.80, df = 1, P = .89
No 100% (n = 6) 88% (n = 24)
Toxicology 
Alcohol 0% (n = 0) 52% (n = 13) X2 = 6.10, df = 2, P = .04
Cocaine 0% (n = 0) 4% (n = 1)
Negative 100% (n = 6) 44% (n = 11)
Psych. disorder (DSM-5)
Depressive disorder 35.29% (n = 12) 0% (n = 0) X2 = 18, df = 4, P = .001
Substance-related disorder 52.94% (n = 18) 28.57% (n = 2)
Psychotic disorder 2.94% (n = 1) 0% (n = 0)
Personality disorder 5.88% (n = 2) 14.29% (n = 1)
None 2.94% (n = 1) 57.14% (n = 3)
Postmortem note
Yes n/a 8% (n = 2)  
No n/a 92% (n = 23)  

Abbreviations: df, degrees of freedom; PMI, postmortem interval; RIN, RNA integrity number; U, Mann–Whitney U test; X2, chi-squared test.

Median (maximum, minimum) are shown.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
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findings (supplementary Table 4). Our genetic heterogeneity 
analysis also showed that population-specific SNPs for each 
sample formed 1 cluster with no outliers (supplementary 
Figure 2).

Pathway Analysis

To shed light on the potential biological effects of the 70 genes 
where expression and methylation was significantly altered in 
suicide cases vs controls (supplementary Table 3), a pathway 
analysis was performed based on the Metacore database. The 
most enriched gene ontology processes, after FDR adjustment 
(<0.05), included regulation of synaptic plasticity (P = 1.02 × 10−05), 
notochord cell differentiation (P = 1.06  × 10−05), and the nega-
tive regulation of permeability maintenance of brain blood-
barrier (P = 1.06–05) (Figure 3A). In addition, Metacore biological 
processes analysis indicated that these differentially methy-
lated and expressed genes were also highly correlated with 
(1) inflammation regulated by the macrophage migration in-
hibitory factor (P = 9.20 × 10−03), (2) signal transduction regu-
lated by the cAMP-responsive element modulator also known 
as cAMP responsive element modulator (CREM) pathway 
(P = 1.97 × 10−02), and (3) neurophysiological process regulated by 

the corticotrophin-releasing hormone (P = 3.35 × 10−02) (Figure 3B). 
However, these pathways did not survive the FDR adjustment. 
The main pathways are shown in Table 2.

Technical Validation

We next sought to technically validate our Illumina 450K 
data using targeted bisulfite sequencing. For this, we over-
lapped the list of genes identified as network objects from 
active Metacore data to select a DMR for validation. Ten 
genes were identified as actively enriched Metacore terms. 
What was most notable, ADCY9 was enriched in 4 terms and 
showed the highest negative LFC after correcting for multiple 
testing (P = −8.85E-14, mean β fold change = −0.032, q = 0.10) 
(Table 3). Therefore, differential methylation of the ADYC9 re-
gion (chromosome 16:4102293-4103533 [GRCh37/hg19]), in our 
genome-wide analysis was selected for validation. Consistent 
with the microarray analysis, targeted bisulfite sequencing re-
vealed ADYC9 to be significantly hypomethylated in suicide 
cases vs controls (P < .001, Student’s t test). Also, we obtained 
a significant Pearson’s correlation coefficient of r = 0.40 with a 
P < .009 among the level of CpGs methylation assessed by tar-
geted bisulfite sequencing and microarray methods (Figure 4).

Figure 2.  Epigenomic and transcriptomic overlap differences from prefrontal cortex of Mexican individuals who died by suicide. (A) Plot showing suicide-associated 

methylated regions in human prefrontal cortex. The red line indicated mean β fold change cut-off applied (> ±0.01), 4430 regions were identified as methylated between 

cases and controls (P < .05, FDR = 0.10). (B) Volcano plot showing raw P values vs fold change values for differential gene expression between cases and controls. The most 

significant genes with differential transcription are shown in green and red (P < .01, LFC ≥ ±0.3 y FDR = 0.10). (C) Venn diagram showing overlap in the number of DMRs 

and mRNA expression differences (Exact Hypergeometric Test P < 2.58 × 10−24). Abbreviations: DMR, Differentially methylated regions; Mean β FC, mean beta fold change.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab042#supplementary-data
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Discussion

To our knowledge, this represents the first genome-wide study 
that integrates differential methylation and expression analyses 
in postmortem human brain tissue from Latin American indi-
viduals who died by suicide. In this study, we identified several 
differentially methylated regions, with fold changes > ±0.01 be-
tween cases and controls. While a cutoff of > ±0.01 may appear 

relatively low, subtle methylation differences in multiple func-
tional gene networks are often reported in studies of psychi-
atric disorders. Together, these subtle differences in many 
genes are thought to reflect the complex etiology of suicidal 
behavior (Labonte et al., 2013; Haghighi et al., 2014; Nagy et al., 
2015; Schneider et al., 2015; Ju et al., 2019; Kouter et al., 2019; 
Policicchio et al., 2020).

We next combined these DMRs with differential expression 
analysis and focused only on genes that were also differentially 
expressed between cases and controls. This allowed for the iden-
tification of 70 DMRs that did not share any gene level overlap. 
Gene set enrichment analysis with these 70 genes revealed that 
10 were overrepresented in, and therefore biologically relevant 
to, processes related to suicide (ADCY9, CRH, NFATC4, ABCC8, 
HMGA1, KAT2A, EPHA2, TRRAP, CD22, CBLN1). Of these 10 genes, 
ADCY9 appeared in the greatest number of pathways. We there-
fore chose to validate the differential methylation we observed 
in ADCY9 by using a targeted bisulfite sequencing approach.

The product of the ADCY9 gene belongs to a family of 
transmembrane-bound enzymes that catalyzes the formation of 
cyclic AMP from ATP and is implicated in intracellular signaling 
cascades and secondary messenger systems (Dessauer et  al., 
2017). The dysregulation of ADCY9 has been previously iden-
tified in the context of major depressive disorder (Fan et  al., 
2020). Early studies have shown that adenylate cyclase activity 
is altered in postmortem human brain samples from individuals 
with a history of mood disorders as well as those who died by 
suicide (Cowburn et al., 1994; Reiach et al., 1999). In our investi-
gation, we observed hypomethylation at the second intron of the 
ADCY9 gene between cases and controls. This hypomethylation 
corresponded to a decrease in mRNA expression (Table 3). While 
methylation at a promoter region is typically anticorrelated with 
expression, our findings of a positive correlation between gene 
body methylation and expression are consistent with other 
studies (Ball et al., 2009; Lutz et al., 2018).

As revealed by gene enrichment analysis, genes that were 
both differentially methylated and expressed by suicide were 
found to be involved in the regulation of synaptic plasticity 

Figure 3.  Enrichment analysis of epigenomic and transcriptomic overlap differ-

ences from prefrontal cortex of Mexican individuals who died by suicide. (A) Top 

5 significant process networks from Metacore as sorted by –log P values. (B) Top 5 

significant biological processes from GO ontology as sorted by –log P values. Bar 

length reflects significance and equals to the negative logarithm of enrichment 

P value. Abbreviations: BCR = B cell receptor; CREM, cAMP-responsive element 

modulator; GO, Gene Ontology; MIF, macrophage migration inhibitory factor.

Table 2.  Enrichment Analysis of Epigenomic and Transcriptomic Overlap Differences From Prefrontal Cortex of Mexican Individuals Who Died 
by Suicide 

Term Counts P value FDR Network objects from active data

Gene ontology process
Regulation of synaptic plasticity 8 1.00–05 4.41–03 Adenylate cyclase, CRH, Ephrin-A receptors, S100, 

NFATC4, CBLN1, KAT2A, NF-AT
Notochord cell differentiation 2 1.10–05 4.41–03 Ephrin-A receptors, EPHA2
Negative regulation of maintenance of 

permeability of blood-brain barrier
2 1.10–05 4.41–03 SUR, ABCC8

Negative regulation of neuroblast migration 2 1.10–05 4.41–03 SUR, ABCC8
Regulation of maintenance of permeability of 

blood-brain barrier
2 1.10–05 4.41–03 SUR, ABCC8

Cell process networks
Inflammation_MIF signaling 4 .009 6.53–01 Adenylate cyclase, CRH, Adenylate cyclase type IX, 

HMGA1
Signal transduction_CREM pathway 3 .019 6.58–01 Adenylate cyclase, CRH, NFATC4
Neurophysiological process_Corticotrophin 

signaling
2 .033 6.58–01 Adenylate cyclase, CRH

Transcription_Chromatin modification 3 .037 6.58–01 TRRAP, HMGA1, KAT2A
Immune response_BCR pathway 3 .046 6.58–01 CD22, NFATC4, NF-AT

Abbreviations: BCR, B cell receptor; CREM, cAMP-responsive element modulator; FDR, False Discovery Rate; MIF, macrophage migration inhibitory factor.

Top 5 significant pathways from Metacore as sorted by P values.
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Figure 4.  Differential methylation between cases and controls at DMR_10219, assessed through 480 k Illumina BeadChip analysis, correlated with values assessed 

through targeted bisulfite sequencing. (A) Bar graphs show percentage of methylation of cases and controls detected through targeting bisulfite sequencing. (B) Bar 

graphs show log fold change of gene expression of cases and controls detected through HumanHT-12 v4 Expression BeadChip. (C) Scatterplots show correlation of 

methylation levels assessed by microarray and targeted bisulfite sequencing platforms. Abbreviations: BS, bisulfite sequencing; R, Pearson correlation coefficient.

Table 3.  List of Genes that Showed Epigenomic and Transcriptomic Overlap Differences and Enriched Metacore Terms

Position (build GRCh37/
hg19)

Gene anno-
tated to DMRs Transcript

DNA methylation Gene expression

Number 
metacore termP value LFC

P 
value LFC

chr16: 4102293-4103533 ADCY9 Adenylate Cyclase 9 8.85–14 −0.032 .0059 −0.42 4
chr8:67088895-67091580 CRH Corticotrophin releasing 

hormone
3.59–28 0.026 .0006 1.13 4

chr14:24834695-24839226 NFATC4 Nuclear factor of activated T 
cells 4

6.80–21 0.017 .0007 1.12 3

chr11:17497693-17498952 ABCC8 ATP binding cassette 
subfamily C member 8

9.23–22 0.011 .0057 −0.55 3

chr6:34202568-34204646 HMGA1 High mobility group AT-Hook 1 2.47–20 0.023 .0088 0.33 2
chr17:4027290140275359 KAT2A Lysine acetyltransferase 2A 3.80–18 −0.011 .0012 −0.55 2
chr1:16481715-16483658 EPHA2 EPH receptor 2 1.99–27 0.016 .0092 −0.36 2
chr7:98475615-98477438 TRRAP Transformation/transcription 

Domain associated protein
3.37–47 −0.013 .0082 −0.39 1

chr19:35818807-35820181 CD22 CD22 molecule 5.89–36 0.056 .0047 −0.62 1
chr16:49311483-49314257 CBLN1 Cerebellin 1 precursor 9.80–19 0.029 .0058 0.33 1

Abbreviations: Chr, chromosome; DMRs, differentially methylated regions; LFC, log fold change.
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(ADCY9, CRH, EPHA2, S100, NFATC4, CBLN1, KAT2A, NF-AT), signal 
transduction through CREM (ADCY9, CRH, NFATC4), and mo-
lecular pathways involved in neurophysiological processes 
regulated by corticotrophin-releasing hormone (ADCY9, CRH).

We were especially interested in the regulation of synaptic 
plasticity, since it was found as the most enriched pathway in 
our list of 70 genes dysregulated by suicide (Table 2). Synaptic 
plasticity is one of the most fundamental and important func-
tions of the brain. The efficacy of transmission at a synapse 
depends on modulation of the connectivity between neurons 
and neuronal circuits during adaptation to the environment 
(Marsden et  al., 2013). Previous reports have highlighted key 
roles of synaptic plasticity in suicide (Liu et al., 2017). For in-
stance, Nagy et  al. (2020) identified cell-type specific differ-
entially expressed genes associated with the regulation of 
synaptic plasticity in the dorsolateral prefrontal cortex of 
male suicide cases. Our findings showed that ADCY9 and CRH 
were both members of the synaptic plasticity pathway and 
dysregulated in suicide. Accumulating evidence indicates that 
adenylate cyclase is an essential regulator of synaptic plasti-
city. For example, it regulates pathways related to long-term po-
tentiation, such as, Ca2+/calmodulin sensitive adenylate cyclase 
signaling (Wang and Storm, 2003; Abel and Nguyen, 2008; Kim 
et al., 2011), cAMP-PKA signaling (Wang and Storm, 2003; Banko 
et al., 2004; Mockett et al., 2004; Valera et al., 2008), and cAMP 
response element-binding protein (CREB) activity (Benito et al., 
2011; Bengtson and Bading, 2012). In addition, dysregulation of 
both ADCY9 and CREB has been previously observed in the pre-
frontal cortex of individuals who died by suicide (Dwivedi et al., 
2003; Yamada et  al., 2003; Pandey et  al., 2007). Interestingly, 
signal transduction through CREM was also enriched in suicide 
cases. Taken together, the downregulation of ADCY9 may alter 
CREB signaling and therefore impact the regulation of synaptic 
plasticity in the prefrontal cortex of individuals who died by 
suicide. Given that functional studies of adenylate cyclase in 
the context of suicide are scarce, future investigations are ne-
cessary to explain the function of ADCY9 and its role in syn-
aptic plasticity.

Corticotrophin Releasing Hormone or CRH was also identi-
fied as belonging to the synaptic plasticity pathway. Previous 
investigations have consistently found an association between 
CRH and suicide (Nemeroff et al., 1988; Arato et al., 1989; Hiroi 
et al., 2001; Austin et al., 2003; Mann et al., 2009; Zhao et al., 
2015; Jokinen et al., 2018; Pandey et al., 2019). Stress and pain 
have been reported to have profound effects on synaptic struc-
ture and function (Christoffel et  al., 2011; Sandi, 2011; Popoli 
et  al., 2012). Here, we identify increased CRH expression in 
cases vs controls. This result is consistent with other studies 
that reported elevated CRH levels in several frontal regions of 
individuals who died by suicide (Merali et al., 2004; Zhao et al., 
2015) as well as with studies in animal models that have shown 
that stress increases CRH expression in the prefrontal cortex 
(Meng et  al., 2011). Specifically, we identified DNA methyla-
tion changes in the promoter region of CRH in suicide cases. 
Similarly, Jokinen et  al. (2018) also reported altered levels of 
methylation at 2 CpG sites in the same gene region in suicide 
attempters with a high risk/severe phenotype. Adverse child-
hood experiences including sexual, physical, and emotional 
abuse or neglect are also associated with alterations in CRH 
signaling (Lee et al., 2005; Heim et al., 2008a, 2008b) and sui-
cidal behavior (Read et al., 2001; Bruffaerts et al., 2010; Miller 
et al., 2013). Several studies have shown how child abuse might 
epigenetically influence the HPA in subjects who died by sui-
cide (McGowan et  al., 2009). Due to the design of our study, 

child abuse and other exposures to stress were not measured. 
Therefore, future studies should take into account this im-
portant confounder. It has also been shown that glucocorticoid 
receptor signaling may play a role in synaptic plasticity by 
increasing glutamate release in prefrontal cortex (Musazzi 
et al., 2011, Sandi, 2011) and then initializing several adenylate 
cyclase–related transduction pathways (Wang and Storm, 2003; 
Banko et al., 2004; Mockett et al., 2004; Abel and Nguyen, 2008; 
Valera et  al., 2008; Kim et  al., 2011). The downregulation of 
AMPAR and NMDAR subunits observed in postmortem brain 
of suicide cases may, therefore, be explained by the aforemen-
tioned mechanism (Cohen et  al., 2011; Duric, 2013). We hy-
pothesize that our findings of increased CRH expression in the 
prefrontal cortex of individuals who died by suicide may re-
late, at least in part, to the reduced expression of ADCY9 that 
we observed. We also provide evidence that epigenetic mech-
anism may be involved in the regulation of CRH expression by 
identifying hypermethylation in the promoter region of CRH 
gene (Table 3). Methylation of CpG island promoters is gener-
ally associated with the repression of gene expression (Delcuve 
et  al., 2009; Novakovic et  al., 2011). Nevertheless, non-typical 
gene expression and promoter methylation relationships have 
been described in genes with CpG-poor promoters, of which 
the CRH promoter falls into (Weber et al., 2007).

According to our Metacore gene enrichment analysis, ADCY9 
is also enriched in a pathway related to corticotrophin-releasing 
hormone signaling. The mechanism regulating increased CRH 
expression remains unclear, although methylation of CpG sites 
within cyclic-AMP response element (CRE) sensitive regions may 
be 1 explanation (Rishi et  al., 2010; Pan et  al., 2015). Molecular 
studies using CRH promoter-reporter constructs showed that 
transcription factor complexes bound a CRE located at CRH 200 bp 
upstream of the major transcription start site mediated the cAMP 
stimulation (Adler et  al., 1990). It has been shown that methy-
lation of the CRH CRE can increase transcription factor binding 
affinity and enhance CRH gene expression (Pan et al., 2015). Also, 
the CRH receptor is a G-protein coupled protein receptor and sig-
nals through a cAMP-dependent mechanism. Interestingly, as 
mentioned before, one of the most enriched pathways associated 
with suicide is CREM. Our observation of CRH and ADCY9 differ-
ential methylation and increased expression suggest a positive 
feedback among these genes in the prefrontal cortex of individ-
uals who died by suicide. However, additional functional studies 
are needed for a better understanding of the role of ADCY9 in the 
CRH process in the context of suicide.

The present study represents an important step in 
identifying differentially methylated regions associated with 
suicide in postmortem brain of Mexicans who died by sui-
cide. However, our results must be interpreted with caution, as 
there are limitations to this study. To begin with, the sample 
size is relatively small; however, we have fully characterized 
each sample with additional data, such as demographic infor-
mation and detailed clinical data that were considered in our 
analyses. Second, a methodological limitation inherent to the 
methylation microarray platforms is the inability to distinguish 
hydroxymethylated cytosines from methylated cytosines, and it 
is reasonable that the differences detected are confounded by 
other modifications.

Another important point to consider in this study is that the 
robustness of our findings is limited by several factors. Firstly, due 
to the lack of independent data set replication, it would be desir-
able to replicate our results in a different cohort of Mexicans who 
die by suicide. Additional explanatory data such as genotype were 
not assessed in our study. Integrative approaches have shown that 
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DNA methylation is best predicted in the combination of genotype 
information with environmental factors (Czamara et  al., 2019). 
Another relevant limitation for this study is the lack of technical 
validation in other top candidate gene regions identified as en-
riched in our pathways analysis; however, we have demonstrated 
that our findings fit with previously reported pathways, such as 
synaptic plasticity, which in turn supports the reliability of our re-
sults. Still, future studies are needed to replicate our findings in 
large independent cohorts. Nevertheless, this study represents the 
first, to our knowledge, to investigate a Mexican population in the 
context of suicide. As part of an ongoing project, which started 
in 2018, we expect to collect more samples and to overcome the 
aforementioned limitations.

In conclusion, we present new evidence that altered DNA 
methylation is a mechanism that affects these processes in 
postmortem brain of suicide cases. Overall, the available data 
suggest that altered methylation and expression of genes in-
volved in synaptic plasticity, signal transduction regulated by 
the cAMP-responsive element modulator, and neurophysio-
logical processes regulated by the corticotrophin-releasing 
hormone may serve an important role in the molecular path-
ology of suicide. In this study, ADCY9 gene was identified to be 
involved in several pathways and is, therefore, a strong candi-
date for future functional studies.
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Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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