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Simple Summary: Sea turtles are susceptible to several herpesviruses that are linked to dermatologic
diseases, including fibropapillomatosis (FP) and lung-eye-trachea disease. Aside from obvious skin
lesions, a number of other sublethal impacts occur in response to these diseases, such as reduced
immune function. In this study, we found no relationship between disease presence or severity
and T-cell proliferation in green turtles from Florida, USA, at least until the moderate stages of FP;
however, natural killer cell activity, a measure of innate immune function, was significantly reduced
in turtles with FP compared to tumor-free individuals. This is the first study to examine natural killer
cell activity in relation to FP, improving upon our understanding of altered immune system function
associated with this disease.

Abstract: Chelonid alphaherpesviruses 5 and 6 (ChHV5 and ChHV6) are viruses that affect wild
sea turtle populations. ChHV5 is associated with the neoplastic disease fibropapillomatosis (FP),
which affects green turtles (Chelonia mydas) in panzootic proportions. ChHV6 infection is associated
with lung-eye-trachea disease (LETD), which has only been observed in maricultured sea turtles,
although antibodies to ChHV6 have been detected in free-ranging turtles. To better understand
herpesvirus prevalence and host immunity in various green turtle foraging aggregations in Florida,
USA, our objectives were to compare measures of innate and adaptive immune function in relation
to (1) FP tumor presence and severity, and (2) ChHV5 and ChHV6 infection status. Free-ranging,
juvenile green turtles (N = 45) were captured and examined for external FP tumors in Florida’s Big
Bend, Indian River Lagoon, and Lake Worth Lagoon. Blood samples were collected upon capture
and analyzed for ChHV5 and ChHV6 DNA, antibodies to ChHV5 and ChHV6, in vitro lymphocyte
proliferation using a T-cell mitogen (concanavalin A), and natural killer cell activity. Despite an
overall high FP prevalence (56%), ChHV5 DNA was only observed in one individual, whereas 20% of
turtles tested positive for antibodies to ChHV5. ChHV6 DNA was not observed in any animals and
only one turtle tested positive for ChHV6 antibodies. T-cell proliferation was not significantly related
to FP presence, tumor burden, or ChHV5 seroprevalence; however, lymphocyte proliferation in
response to concanavalin A was decreased in turtles with severe FP (N = 3). Lastly, green turtles with
FP (N = 9) had significantly lower natural killer cell activity compared to FP-free turtles (N = 5). These
results increase our understanding of immune system effects related to FP and provide evidence that
immunosuppression occurs after the onset of FP disease.
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1. Introduction

Green sea turtles (Chelonia mydas) are considered indicators of marine ecosystem
health [1–4]. They play important roles in seagrass bed resiliency by preventing over-
growth and reducing nutrient input into these areas [5]. Green turtle populations in the
northwestern Atlantic Ocean suffered substantial population declines prior to the 20th
century due to overexploitation of eggs and adults for human consumption, and are sub-
ject to modern threats including entanglement in fishing gear, habitat loss, beach-front
lighting, boat strikes, and pollution [3,6–8]. Despite their current threatened status, green
turtle populations in Florida, USA appear to be recovering due to conservation efforts,
evidenced by increasing nest counts, hatchling production, and captures of immature
individuals in foraging areas [3,7,9–12]. Although these population trends are encouraging,
immature green turtles in Florida have a high prevalence (>50%) of fibropapillomatosis
(FP) [13–18], a transmissible tumor disease associated with chelonid alphaherpesvirus 5
(ChHV5) infection [19]. Extensive research has been conducted in an attempt to better
understand FP, yet etiology, pathogenesis, and transmission are still not well understood.
Turtles inhabiting nearshore, shallow-water embayments tend to express the highest FP
prevalence. Environmental cofactors including agricultural runoff, exposure to biotoxins
and toxicants, habitat degradation, warm water temperatures, and UV radiation have
been suggested to play a role in FP pathogenesis and maintenance within green turtle
populations [17,19–27]. To date, however, no studies have identified confirmed causal
relationships between environmental cofactors and FP occurrence.

Since its discovery in the Florida Keys in 1937 [28] and in Hawaii in 1958 [29], FP has
become a panzootic in green turtles with observations in all seven sea turtle species in
numerous populations around the globe [30–37]. ChHV5 is likely horizontally trans-
mitted via shedding of infected epithelial cells, and possibly in urine and/or bodily
secretions [21,38–42]. When FP tumors are present, depending on tumor size, extent, and
anatomic location, they can cause physical alterations that lead to reductions in afflicted
turtles’ ability to see, breathe, swim, dive, forage, and avoid predators [43]. ChHV5 nucleic
acids can be detected in biological samples using polymerase chain reaction (PCR). Previ-
ous exposure to, and presumptive infection with ChHV5 can be identified via detection of
circulating antibodies in sea turtle blood samples using enzyme-linked immunosorbent
assays (ELISA) [4,44]. Changes in blood-based indicators of health have been observed
in turtles with FP, including anemia, hypoproteinemia, leukopenia/immunosuppression,
and other biochemical alterations [15,17,29,45–51]. More specific associations of FP with
afflicted turtles’ immune function include decreased T- and B-cell function, suggesting
impacts to cell-mediated and humoral immunity (i.e., adaptive immunity). It remains
unknown, however, whether these immunomodulatory alterations are a cause of or sequela
to the onset of FP disease [27,36,46,47].

Another disease-causing herpesvirus that affects sea turtles is chelonid alphaher-
pesvirus 6 (ChHV6) [52], formerly known as lung-eye-trachea virus (LETV), which was
first recognized in 1975 in 15–20-month-old, maricultured green turtles residing at the
Cayman Turtle Farm (Grand Cayman, British West Indies). Clinical signs included respi-
ratory and buoyancy abnormalities with caseous exudate surrounding the eyes, glottis,
and trachea, and a mortality rate of up to 38% [53]. Since its discovery, lesions associated
with ChHV6 infection have not been reported in free-ranging turtles; however, antibodies
to ChHV6 have been detected in juvenile green turtles from Florida with seroprevalence
rates of 10–22%, depending on location [54,55]. Nesting loggerheads (Caretta caretta; 75%
seroprevalence: 3/4 from Melbourne Beach, Florida) and green turtles (100% seropreva-
lence: 9/9 from Melbourne Beach, Florida; 15% seroprevalence: 6/41 from Juno Beach,
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Florida) have also tested positive for ChHV6 antibodies via ELISA [4,55], but negative for
circulating ChHV6 DNA via PCR [4]. Despite exposure to ChHV6, abnormalities in blood
health analytes have not been observed in turtles with ChHV6-specific antibodies [4]. To
build upon previous studies associating sea turtle host immunity to gross and molecular
diagnostic measures of ChHV5 and ChHV6 infection, the objectives of this study were to
compare innate and adaptive immune function in relation to (1) FP tumor presence and
severity, and (2) ChHV5 and ChHV6 infection status in free-ranging, juvenile green turtles
from three foraging aggregations across Florida.

2. Materials and Methods
2.1. Sampling Sites
2.1.1. Big Bend Region, Florida

The coastal waters of Florida’s Big Bend region (Figure 1; hereafter referred to as Big
Bend) extend from the eastern boundary of the Apalachicola–Chattahoochee–Flint River
Watershed to Anclote Key in Pinellas County. This area serves as an important foraging
habitat for juvenile green and Kemp’s ridley (Lepidochelys kempii) sea turtles as it contains
the second largest expanse of seagrass habitat in the eastern Gulf of Mexico [18,56,57], with
primarily natural land coverage, conservation protection of much of the coastal and inland
areas, low human population density, and minimal anthropogenic threats (e.g., boating,
eutrophication, and pollution) [58,59]. Despite this seemingly pristine environment, loss of
oyster beds and seagrasses and a high FP prevalence rate (60–70%) in green turtles occur in
this area [18,57,59].
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Figure 1. Locations of green turtle (Chelonia mydas) sampling sites across Florida, USA: Big Bend
Region, Jennings Cove in the Indian River Lagoon, and the Jupiter Inlet in the northern portion of
the Lake Worth Lagoon.

2.1.2. Jennings Cove, Indian River Lagoon, Florida

The Indian River Lagoon (IRL) spans 250 km of Florida’s east coast, was described
as one of the most biodiverse estuaries in North America, and has been designated as
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an Estuary of National Significance [60,61]. This system has been impacted by human
population growth, species loss, nutrient runoff, pollutants, and harmful algal blooms.
Poor water quality and declines in ecological and biological integrity have occurred in the
area due primarily to nutrient-rich runoff and habitat loss [62–64]. More than 50 point-
source waste sites are permitted to discharge pollutants into the IRL including emissions
from power plants, brine discharges, septic tanks, and water treatment plants [61]. The
prevalence of FP in green turtles captured at Jennings Cove in the southern portion of the
IRL (Figure 1) has varied with no detectable trend over the last 10–15 years, with annual
prevalence rates ranging from 33 to 90% (mean ± standard error of 68 ± 6%) [65].

2.1.3. Jupiter Inlet, Lake Worth Lagoon, Florida

The Jupiter Inlet (Figure 1) serves as the northernmost boundary of the Lake Worth
Lagoon, which is a heavily urbanized waterway spanning ~32 km in Palm Beach County,
Florida. Research on the Jupiter Inlet is lacking; however, the primary environmental
issues in the Lake Worth Lagoon system are related to untreated stormwater runoff and
septic tank overflow, which can drain into the lagoon, subsequently leading to reductions
in water clarity, salinity fluctuations, and excess nutrient deposition [66,67]. Over the
last 10–15 years, underground storm water treatment areas have been installed to filter
water before it reaches Lake Worth Lagoon. This is part of an overall restoration plan that
includes mitigation measures to enhance seagrass, oyster beds, and mangrove habitats in
the lagoon. Juvenile green turtles are abundant in the more southern areas of Lake Worth
Lagoon and exhibit a high prevalence (~50%) and severity of FP [16], but little is known
about FP rates in turtles from the more northern areas of the lagoon (i.e., Jupiter Inlet).

2.2. Animal Capture and Sample Collection and Processing

Green turtles were captured using dip nets, tangle nets, and/or the rodeo method,
depending on habitat and environmental conditions [68]. Turtles from Big Bend, Jennings
Cove, and Jupiter Inlet were sampled from 27 to 30 August 2020, 20 September 2018 to
8 October 2020, and 17 to 18 September 2020, respectively. Captured turtles were brought
onboard the vessel for data collection. Prior to sample collection, turtles were externally
examined [69,70], weighed and measured (standard straight carapace length, SCL), as-
sessed for subjective body condition (i.e., emaciated, thin, good, and robust), and Fulton’s
body condition index (BCI) was calculated [6]. A complete external visual exam was
conducted on all turtles. This included observations for the presence or absence of leeches
(Ozobranchus spp.), leech cocoons, barnacles, flipper and carapace damage, and visual
assessment and enumeration of FP tumors (i.e., total tumor number). Flipper and carapace
damage were defined as missing >5% of the flipper or carapace and/or an injury caused
by predation, anthropogenic impact, or abnormal development. Tumors were measured
and recorded on a standardized tumor score sheet. Each turtle was assigned a tumor
severity category based on tumor burden (0: no tumors; 1: mildly afflicted; 2: moderately
afflicted; 3: severely afflicted) [29]. Blood (~10–20 mL; <1% of body weight) was sampled
from the external jugular vein using sodium heparin and serum separator Vacutainer®

(Becton, Dickson, and Co., Franklin Lakes, NJ, USA) blood collection systems fitted with
21–25-gauge, 1 inch needles, as appropriate based on turtle size. The venipuncture site
was swabbed with alternating applications of povidone iodine and 70% isopropyl alcohol
prior to and after blood collection. Blood samples were immediately chilled on ice in
the field until return to the laboratory (<8 h). An aliquot (~100 µL) of well-mixed whole
blood was placed into a separate cryovial and stored in an ultralow freezer (−80 ◦C) for up
to six months prior to DNA extraction for PCR analysis. The remaining whole blood in
the sodium heparin vacutainers was shipped overnight on ice packs to the University of
Connecticut. Serum from the serum separator tubes was harvested after centrifugation at
1318× g (3400 rpm) for 10 min and stored in an ultralow freezer for up to 6 months prior to
serological analysis.
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All turtles were tagged with metal flipper (Inconel®) and passive integrated transpon-
der (PIT) tags for identification. Tagging sites were swabbed with povidone iodine and
70% isopropyl alcohol prior to and after tag application. After completion of sampling and
tagging, turtles were released back into the water at or near the site of capture.

2.3. Molecular Diagnostics for ChHV5 and ChHV6 DNA

Quantitative PCR (qPCR) for ChHV5 DNA was performed at Florida Atlantic Uni-
versity’s Harbor Branch Oceanographic Institute in Fort Pierce, Florida. First, genomic
DNA (gDNA) was extracted from thawed whole blood samples using the DNeasy Blood
and Tissue kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany).
Concentrations of extracted gDNA samples were quantified using a NanoDrop 2000c
(Thermo Fisher Scientific, Waltham, MA, USA) (units: µg/µL) spectrophotometer, and
the ratio of absorbance at 260 and 280 nm was used to assess gDNA purity. Extracted
gDNA samples were assessed for the presence of a ChHV5 UL30 gene segment using a
singleplex, hydrolysis probe-based qPCR and the methodologies described in detail by
Page-Karjian et al. [40]. Quantitative PCR reactions were conducted using an AriaMx
Real-Time PCR System (Agilent, Santa Clara, CA, USA), and qPCR data were analyzed
with AriaMx software (Agilent, Version 1.3). All ChHV5-positive qPCR products were
purified using the QIAquick PCR Purification Kit (Qiagen) and subjected to Sanger se-
quencing (Genewiz) using 5 µM of ChHV5 UL30 forward primer. Sequences obtained
were compared to those deposited in the National Center for Biotechnology Information
GenBank database using BLAST software [71]. Aligned sequences with ≥97% identity to
the sample sequence were considered a match.

Aliquots of frozen whole blood were shipped overnight on dry ice to University of
Georgia’s Infectious Diseases Laboratory (UGA IDL; Athens, GA, USA). Genomic DNA
was extracted from these samples using the methodology outlined above. Extracted gDNA
samples were analyzed using a singleplex, hydrolysis probe-based qPCR assay that targets
a unique 112 bp ChHV6 DNA amplicon, using standard operating procedures and controls
for the assay. Detailed methodology is provided in Page-Karjian et al. [4].

2.4. ELISA Detection of Antibodies to ChHV5 and ChHV6 Peptides

Separated serum samples were analyzed for antibodies to ChHV5 and ChHV6 pep-
tides at the UGA IDL. To evaluate for infection by ChHV5 and ChHV6 in a turtle’s immuno-
logically detectable past, samples were analyzed in triplicate using ELISAs that test for
antibodies to ChHV5 and ChHV6 purified synthetic peptide antigens. Both ELISA assays
were developed and validated based on modifications of previously published protocols
for ChHV5 and ChHV6 assays [54,72] and were performed using the laboratory’s standard
operating procedures with negative and positive control sera. Detailed methodology is
provided in Page-Karjian et al. [4].

2.5. Isolation of Peripheral Blood Mononuclear Cells

At the University of Connecticut (Storrs, CT, USA), whole blood from the sodium
heparin tubes was mixed 1:1 with an equal volume of Hank’s Balanced Salt Solution
(HBSS; Thermo Fisher Scientific). Peripheral blood mononuclear cells (PBMCs) were
isolated by density gradient centrifugation using Ficoll-Paque plus (Amersham Biosciences,
Uppsala, Sweden; 1.077 g/mL) for 30 min at 600× g. The interface containing the PBMCs
was re-suspended in complete RPMI and washed twice in complete RPMI. PBMCs were
enumerated and their viability was assessed using the exclusion dye trypan blue and light
microscopy. Complete RPMI consisted of RPMI 1640 (with 2 mM L-glutamine; Thermo
Fisher Scientific) supplemented with 1 mM sodium pyruvate, 100 mM nonessential amino
acids, 10 mM HEPES, 50 U/mL penicillin, 50 µg/mL streptomycin, 0.25 µg/mL fungizone,
and 10% fetal bovine serum (all from Thermo Fisher Scientific).
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2.6. Lymphocyte Proliferation

Mitogen-induced lymphocyte proliferation was evaluated in vitro as previously de-
scribed [73], with some modifications. Briefly, PBMCs in complete RPMI were plated
(2 × 105 cells/well) in a 96-well flat-bottom plate (Falcon; Becton, Dickinson, and Co.) in
triplicate for each mitogen concentration. Cells were maintained for 96 h in an incubator at
28 ◦C and humidified atmosphere with 5% CO2. The T-cell mitogen concanavalin A (ConA,
C5275, Millipore Sigma, St. Louis, MO, USA) at 1 (suboptimal) and 10 µg/mL (optimal)
was used. Lymphocyte proliferation was evaluated as the incorporation of 5-bromo-20-
deoxyuridine (BrdU), a thymidine analogue, added for the last 18 h of incubation, and
further detected with a monoclonal antibody and a colorimetric enzymatic reaction (Cell
Proliferation colorimetric ELISA BrdU, RocheDiagnostics GmbH, Mannheim, Germany)
as per manufacturer’s instructions using an ELISA plate reader (Multiskan EX v.1.0) at
450 nm with a reference wavelength of 690 nm. Data are reported as:

Stimulation index =

(
Mitogen optical density

Unstimulated optical density

)
× 100 (1)

Results with cell viability percentages <80% were excluded from statistical analyses.

2.7. Natural Killer Cell Activity

For green turtles captured in Big Bend, natural killer cell activity was evaluated
in vitro as previously described [73,74] with some modifications. Briefly, 1 mL of YAC-1
(TIB-160™, ATCC, Manassas, VA, USA) target cells was incubated with 10 µL of 3 mM
3,3′-dioctadecyloxabocyanine perchlorate (DiO, Molecular Probes, Grand Island, NY, USA)
dissolved in DMSO, and incubated for 20 min at 37 ◦C in 5% CO2, followed by two
washes in complete RPMI. The target cells were then re-suspended in complete RPMI.
PBMCs (effector cells) were adjusted to 1 × 106 cells/mL and target cells were added to
achieve effector:target (E:T) ratio of 50:1 [74]. The E:T mixtures were centrifuged for 30 s at
220× g and further incubated for 150 min at 28 ◦C in 5% CO2. All tests were performed
in duplicate.

Following centrifugation at 220× g for 10 min at 4 ◦C, the supernatant was discarded
and the cells were re-suspended in 200 µL of phosphate buffered saline (PBS, Thermo
Fisher Scientific) and placed on wet ice before immediate analysis. Cells were re-suspended
in a solution of 50 µg/mL of propidium iodide (PI; Thermo Fisher Scientific) to evaluate
mortality of the target cells immediately prior to acquisition using two-color (DiO vs. PI)
flow cytometry. The fluorescence of at least 1000 target cells was read using a FACScan flow
cytometer (Becton, Dickinson, and Co.) and the automated CellQuest software (Becton
Dickinson Immunocytometry System, San Jose, CA, USA). Effector cells were identified by
their relative size (forward-scattered light) and their complexity (side-scattered light) and
distinguished from DiO-labeled target cells, which show higher fluorescence at 530 nm
(FL-1). Dead or dying cells incorporate PI due to membrane instability and show higher
fluorescence at 630 nm (FL-3). Results were calculated as:

Percent target cell mortality =

(
# dead target cells

# dead target cells + # live target cells

)
× 100 (2)

The percent of spontaneous target cell mortality was then subtracted from the percent
target cell mortality to calculate specific target cell mortality.

2.8. Statistical Analyses

Statistical analyses were conducted using SPSS (v27, SPSS Inc., Chicago, IL, USA). One-
way analysis of variance (ANOVA) was used to compare turtle body mass, SCL, and BCI by
sampling site and tumor score using transformations as necessary to meet test assumptions,
followed by Tukey’s post hoc tests with Bonferroni correction. The relationship between
log-transformed SCL and body mass was assessed using linear regression. For binary
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data (e.g., presence/absence of FP, leeches, barnacles, injuries, and presence/absence of
ChHV5 DNA or antibodies), chi-square analysis or Fisher’s exact tests (when N ≤ 5) were
employed using Bonferroni correction for multiple comparisons. Independent samples
t-tests were used to compare (1) calculated BCI between two subjective body condition
scores (good versus robust) and (2) natural killer cell activity between turtles with and
without FP. Cohen’s Kappa (κ) coefficient was calculated to determine the qualitative level
of agreement between FP presence/absence and qPCR and ELISA results for ChHV5,
and to compare qPCR to ELISA results for ChHV5 [75]. Logistic regression was used to
determine if turtle size (i.e., SCL) was related to seroprevalence (i.e., positive and negative).
Due to a lack of normality in lymphocyte proliferation assay data, Kruskal–Wallis tests
with post hoc Dunn’s tests were used to calculate differences in lymphocyte proliferation
by sampling location. Because there were no differences in lymphocyte proliferation by
study site for non-tumored turtles and for all turtles combined, all sites were combined for
comparisons of lymphocyte proliferation activity with regards to the presence/absence of
FP, FP tumor severity, and ChHV5 seroprevalence.

3. Results
3.1. Physical Examination and Morphometrics

A total of 45 green turtles were captured from three study sites including Big Bend
(N = 16), Jennings Cove (N = 18), and Jupiter Inlet (N = 11). All turtles were considered to
be immature based on SCL measurements (range: 26.0–70.1 cm) [7,76]. Straight carapace
length (F(2, 42) = 13.840; p < 0.001) and body mass (F(2,40) = 13.623; p < 0.001) differed by
capture site, as turtles captured at Jennings Cove were significantly larger and heavier than
turtles captured at Big Bend (p < 0.001) and the Jupiter Inlet (p < 0.001). Log-transformed
body mass and SCL were very strongly correlated (y = 3.07x − 3.99; r2 = 0.99; p < 0.001).
Neither SCL nor body mass differed by tumor score category (p > 0.05 in both cases).
Calculated BCI did not differ by capture site (p > 0.05), but BCI was significantly higher
(t(42) = 2.243; p = 0.030) in turtles assigned a subjective body condition score of “robust”
(mean ± standard deviation (SD) = 1.34 ± 0.11) compared to those given a score of “good”
(mean ± SD = 1.27 ± 0.10). All captured turtles were considered to be of “good” (N = 30)
or “robust” (N = 15) body condition, with no significant differences by site after Bonferroni
correction. No sampled animals were score as “thin” or “emaciated” based on subjective
observation.

Ozobranchus leeches, leech cocoons, and barnacles (Chelonibia spp.) were present on the
skin and/or carapace of 22% (10/45), 20% (9/45), and 64% (29/45) of turtles, respectively.
Leech (X2(2) = 13.705; p = 0.001) and leech cocoon (X2(2) = 11.540; p = 0.003) prevalence
differed by site, wherein Jennings Cove turtles had a higher prevalence of leeches (p = 0.001)
and leech cocoons (p = 0.003) in comparison to turtles from Big Bend. No differences in
leech prevalence were observed between turtles from Jupiter Inlet and turtles from Big
Bend or Jennings Cove (p > 0.05 in both cases).

Flipper damage was observed on 16% (7/45) of turtles, including small and large
notches of unidentified cause (N = 4), as well as partial (N = 2) and complete amputations
(N = 1) of at least one limb. Carapace damage was observed on 11% (5/45) of turtles
and included a small notch of unknown origin to the left posterior carapace (N = 1), a
possible healed shark predation injury (N = 1), and healed caudal vessel strikes (N = 3).
Prevalence of flipper and carapace damage did not differ by site or between turtles with
and without FP (p > 0.05 in both cases). A complete description of morphometrics, BCI,
epibiota prevalence, and flipper and carapace damage prevalence is reported in Table 1.
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Table 1. Morphometrics and results of external physical exam for green turtles (Chelonia mydas) from three locations in
Florida, USA. For standard straight carapace length (SCL), body mass, body condition index (BCI), tumor score, and tumor
number, mean ± standard deviation are given with the median and range in parentheses. Sample sizes differed in some
categories as not all analyses were conducted on every sample; this is indicated parenthetically where relevant. Different
superscript letters next to each category represent significant differences between sites, when present. Abbreviations:
ChHV5, chelonid alphaherpesvirus 5; ChHV6, chelonid alphaherpesvirus 6; qPCR, quantitative polymerase chain reaction.

Physical Examination Big Bend Jennings Cove Jupiter Inlet Total

N 16 18 11 45
Sampling dates Aug 2020 Sep 2018–Oct 2020 Sep 2020 Sep 2019–Oct 2020

SCL (cm)
34.4 ± 4.6 A

(33.8)
(27.9–43.4)

48.2 ± 10.3 B

(49.8)
(32.5–70.6)

35.4 ± 9.1 A

(32.1)
(27.2–53.0)

40.2 ± 10.6
(36.9)

(27.2–70.6)

Body mass (kg)
5.6 ± 2.7 A

(5.2)
(2.8–12.3)

16.8 ± 11.6 B

(14.4)
(4.5–46.8)

6.7 ± 6.4 A

(3.8)
(2.8–19.5)

10.2 ± 9.4
(6.6)

(2.8–46.8)

Body condition index
1.29 ± 0.11

(1.31)
(1.10–1.50)

1.32 ± 0.12
(1.31)

(1.07–1.52)

1.26 ± 0.09
(1.27)

(1.10–1.39)

1.29 ± 0.11
(1.31)

(1.07–1.52)

Subjective body condition Good: 44% (7/16)
Robust: 56% (9/16)

Good: 72% (13/18)
Robust: 28% (5/18)

Good: 91% (10/11)
Robust: 9% (1/11)

Good: 67% (30/45)
Robust: 33% (15/45)

Leech prevalence 0% (0/16) A 50% (9/18) B 9% (1/11) AB 22% (10/45)
Leech cocoon prevalence 0% (0/16) A 44% (8/18) B 9% (1/11) AB 20% (9/45)

Barnacle prevalence 63% (10/16) 61% (11/18) 73% (8/11) 64% (29/45)
Flipper damage 6% (1/16) 22% (4/18) 18% (2/11) 16% (7/45)

Carapace damage 19% (3/16) 11% (2/18) 0% (0/11) 11% (5/45)
FP and diagnostic assays Big Bend Jennings Cove Jupiter Inlet Total

FP prevalence 69% (11/16) 56% (10/18) 36% (4/11) 56% (25/45)

Balazs–Work tumor score
1.0 ± 0.8

(1)
(0–2)

1.3 ± 1.2
(2)

(0–3)

0.5 ± 0.8
(0)

(0–2)

1.0 ± 1.0
(1)

(0–3)

Tumor number
10 ± 15

(3)
(0–44)

21 ± 25
(13)

(0–79)

4 ± 8
(0)

(0–26)

13 ± 20
(2)

(0–79)
ChHV5 qPCR+ 6% (1/16) 0% (0/13) 0% (0/11) 3% (1/40)

ChHV5 seropositive 13% (2/15) 46% (6/16) 0% (0/9) 20% (8/40)
ChHV6 qPCR+ 0% (0/16) 0% (0/13) 0% (0/11) 0% (0/40)

ChHV6 seropositive 0% (0/15) 8% (1/13) 0% (0/9) 3% (1/37)

3.2. Fibropapilloma Tumor Score and Severity

The overall prevalence of FP tumors across all three study sites was 56% (25/45),
with the highest prevalence observed in turtles from Big Bend (69%; 11/16), followed by
Jennings Cove (56%, 10/18), and then Jupiter Inlet (36%, 4/11); however, these differences
were not statistically significant (p > 0.05). Balazs–Work tumor scores ranged from 0 to
3 across all sites; median tumor scores were 0 (Jupiter Inlet), 1 (Big Bend), and 2 (Jennings
Cove). These results failed to achieve statistical significance, but it is worth noting that only
Jennings Cove had turtles in the tumor score 3 category (N = 3) and also had no turtles
of tumor score 1. Lastly, total tumor number per turtle ranged from 0 to 70; turtles from
Jennings Cove had the most tumors (median = 13), followed by Big Bend (median = 3),
and then Jupiter Inlet (median = 0). Again, these results did not significantly differ by site
(p > 0.05).

Tumor score, severity, and total tumor number did not differ among turtles of different
body sizes (p > 0.05), likely due to low sample sizes. Turtles in the 20–29.9 cm size range
(N = 7) had the lowest FP prevalence, severity, and tumor number, which increased in
turtles of 30–39.9 cm (N = 21) and 40–49.9 cm (N = 6), then decreased in turtles in the
50–59.9 cm size range (N = 8). Turtles in the >60 cm size range (N = 3) showed no external
evidence of tumors. A complete description of FP prevalence, severity, and tumor number
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is reported in Table 1. Neither BCI nor subjective body condition significantly differed
between turtles with and without FP (p > 0.05 in both cases). More specifically, BCI did
not differ by Balazs–Work tumor score category (N = 19 for tumor score 0; N = 8 for tumor
score 1; N = 14 for tumor score 2; N = 3 for tumor score 3; p > 0.05) (Figure 2). Prevalence
of leeches, cocoons, and barnacles did not differ between turtles with and without FP
(p > 0.05).
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Figure 2. Body condition index by tumor score category in green turtles (Chelonia mydas) from Florida,
USA. The central boxes represent the lower to upper quartiles, with the middle line representing
the median. The vertical lines extend from the minimum to maximum values. Circles indicate
“outside” values that are smaller or larger than the lower or upper quartile, minus or plus 1.5-fold
the interquartile range, respectively. No significant differences were observed between the different
tumor score groups at p < 0.05.

3.3. Molecular Detection of ChHV5 and ChHV6 DNA and Antibodies

Blood samples from 1/40 (3%) and 0/40 (0%) turtles tested positive for ChHV5 and
ChHV6 DNA via qPCR, respectively. The amplified DNA sequence from the single sample
(a turtle from Big Bend with a tumor score of 2) that tested positive for ChHV5 DNA was
subjected to Sanger sequencing, and the resulting trace file matched to the ChHV5 partial
genome (GenBank accession number HQ878327.2) with ≥99% identity. This sample had
130 viral copies/µg DNA.

In total, 8/40 (20%) of turtles tested positive for antibodies to ChHV5, with sero-
prevalence highest in turtles from Jennings Cove (46%, 6/16), followed by Big Bend (13%,
2/15), and Jupiter Inlet (0%, 0/9). These results were not statistically significant after
Bonferroni correction. The single turtle that tested positive for ChHV5 DNA by qPCR
tested negative for antibodies to the ChHV5 peptide. One turtle from Jennings Cove (3%;
1/37) tested positive for antibodies to ChHV6; this individual had no external tumors, but
also tested positive for antibodies to ChHV5. Fibropapilloma status (i.e., tumored or non-
tumored) and FP tumor score were not significantly related to ChHV5 antibody prevalence
(p > 0.05); however, the seroprevalence rate was 43% (6/14) in turtles with tumor scores
2 and 3, compared to 13% (3/21) seroprevalence in turtles with tumor scores 0 and 1. Using
logistic regression, we observed a significantly positive association (p = 0.034) between
ChHV5 seropositivity and turtle size (i.e., SCL). For each 1 cm increase in SCL, turtles were
1.098-fold (95% CI = 1.007–1.197) more likely to test positive for antibodies to ChHV5.

Cohen’s κ coefficient revealed poor agreement between: (1) FP status and ChHV5 qPCR
results (κ = 0.041; 95% CI = −0.039–0.121; p > 0.05); (2) FP status and ChHV5 ELISA re-
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sults (κ = 0.070; 95% CI = −0.180–0.320; p > 0.05); and (3) ChHV5 PCR and ELISA results
(κ = −0.050; 95% CI = −0.141–0.040; p > 0.05). Cohen’s κ coefficient was not calculated for
ChHV6 qPCR and ELISA results, as all qPCR results were negative for ChHV6.

3.4. Relationships of Fibropapillomatosis and ChHV5 Seroprevalence to Lymphocyte
Proliferation Assays

Lymphocyte proliferative responses by capture location were compared in two ways:
(1) in turtles with no external tumors (i.e., tumor score 0) and (2) in all turtles (i.e., tumor
scores 0–3). In non-tumored turtles, no differences between sites were observed for the
T-cell mitogen ConA (p > 0.05). No differences between sites were observed for ConA
when all turtles, regardless of tumor score, were included (p > 0.05 in all cases). All
sites were therefore combined for statistical analysis of lymphocyte proliferation assays in
relation to tumor score (tumor score 0, N = 17; tumor score 1, N = 8; tumor score 2, N = 11;
tumor score 3, N = 3). Proliferation results for both suboptimal and optimal stimulation
concentrations of ConA showed no differences between turtles with or without FP, by
tumor score category (Figure 3a), or between ChHV5 seronegative (N = 24) and seropositive
turtles (N = 8; Figure 3b) (p > 0.05 in all cases).
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Figure 3. In vitro mitogen-induced lymphocyte proliferation in green turtles (Chelonia mydas) from
Florida, USA. T-cell mitogen concanavalin A (ConA) results are shown for suboptimal (ConA:
1 µg/mL) and optimal (ConA: 10 µg/mL) stimulation concentrations (mean ± standard error) for
comparisons to (a) fibropapilloma tumor score and (b) ChHV5 serology. No significant differences
were observed between the different tumor score groups or between seronegative and seropositive
turtles at p < 0.05.
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3.5. Relationship of Fibropapillomatosis to Natural Killer Cell Activity

Comparisons of natural killer cell activity were compared in two ways in turtles from
Big Bend: (1) between tumored (N = 9) and non-tumored (N = 5) turtles and (2) by tumor
score (N = 5 for tumor score 0; N = 6 for tumor score 1; N = 3 for tumor score 2). Natural
killer cell activity was significantly lower in turtles with FP compared to turtles without
FP at an effector to target cell ratio of 50:1 (no FP mean ± SD: 11.2 ± 4.2%; FP mean ± SD:
5.6 ± 3.8%; t(12) = −2.557; p = 0.025) (Figure 4a). No significant differences by tumor score
were observed for natural killer cell activity (H(2) = 4.467; p = 0.107) at an effector to target
cell ratio of 50:1 (Figure 4b).
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Figure 4. In vitro natural killer cell activity in green turtles (Chelonia mydas) with and without
fibropapillomatosis (FP) from Florida’s Big Bend, USA measured as a percentage of specific mortality
(mean ± standard error). A ratio of effector cells (i.e., natural killer cells) to target cells (i.e., YAC-
1 tumor cell lines) of 50:1 was chosen. (a) Natural killer cell activity was significantly higher in turtles
(at p < 0.05) without fibropapilloma (FP) tumors, designated by the asterisk. (b) No statistically
significant differences in natural killer cell activity by tumor score were observed.

4. Discussion
4.1. Fibropapillomatosis in Green Turtles from Florida

Fibropapillomatosis is considered a panzootic in green turtles [77] that is likely trans-
mitted horizontally once juvenile turtles recruit back to neritic habitats [19,36,78]. Overall
prevalence of FP in green turtles in this study was 56% (25/45) and was highest in turtles
from Big Bend (69%; 11/16), followed by Jennings Cove (56%; 10/18), and Jupiter Inlet
(36%; 4/11). Although not statistically significant, results of FP prevalence and severity
based on 10 cm size-class distributions follow what is previously known for green tur-
tles, wherein FP prevalence, severity, and total tumor number are highest in green turtles
ranging from 30 to 59.9 cm SCL [13]. Despite the low sample sizes of turtles captured in
each foraging aggregation, our results are similar to prior studies. High prevalence of
FP in Florida’s green turtles has been previously reported in Big Bend (66%), within the
IRL near Sebastian Inlet (up to 72%) and Jennings Cove (up to 90%), and in Lake Worth
Lagoon (up to 79%) [14,16,18,65,79,80]. Despite this high occurrence in certain areas of
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Florida, several locations in the state host green turtle aggregations with few to no tumors
including the Trident Submarine Basin (0–18%), the Key West National Wildlife Refuge
(6%), turtles entrained in the St. Lucie Power Plant (up to 2–13%), and nearshore reef
sites in central Florida (8–34%) [14,65,79–81]. Typically, high prevalence of FP is reported
in poorly circulated lagoon systems that occur near heavily urbanized areas with a num-
ber of point- and nonpoint-sources of agricultural and urban effluent [13,14,16,18,19,36].
Therefore, it is expected that FP prevalence rates would be high in certain areas of Florida
(e.g., IRL and Lake Worth Lagoon); however, Florida’s Big Bend has one of the highest
documented FP prevalence in the state, with some studies reporting rates >80% (albeit with
low sample sizes) [17,26]. This finding is unexpected as this area has natural land coverage,
numerous conservation protections of its coastal and inland areas, a low human popula-
tion density, and infrequent occurrences of harmful algal blooms that generate potential
tumor-promoting biotoxins [17,22,23,26,58,59]. Four rivers empty into the Big Bend study
site both locally (Crystal, Homosassa River, and Chassahowitzka Rivers) and regionally
(Fenholloway River), and may carry contaminants from anthropogenic sources that act as
FP cofactors [18,82]. Green turtles in Puerto Rico have also shown a higher prevalence of
FP in more pristine sites in comparison to areas with increased human development [83];
however, reasons for this remain unknown. Turtles from more pristine sites are therefore
not necessarily at a decreased risk of developing FP, and other cofactors besides habitat
quality may play a role in FP transmission and pathogenesis. Lastly, presence of leeches
or cocoons was not significantly related to FP prevalence, which does not support the
hypothesis that Ozobranchus leeches are vectors of ChHV5 [84,85].

Despite a high prevalence of FP in turtles captured in Big Bend, tumor severity and
number were highest in turtles captured in Jennings Cove (although not significantly so,
likely due to small sample sizes). These findings are similar to other studies in Florida,
whereby tumor severity was highest in the IRL compared to a nearshore Sabellariid worm
reef and the Trident Submarine Basin. More severe FP in the IRL may be explained by
size, environmental, dietary, or genetic differences between individuals in these areas [86].
Another potential explanation related to dissimilarities in FP severity may be due to
ChHV5 viral variants that are present in these areas, as multiple studies have shown that
different variants can lead to different presentations/severity of disease [35,36,78,87–90];
however, viral variants were not assessed in this study.

Body condition index of green turtles did not differ by tumor score category, and all
animals sampled for this study were given subjective body condition scores of “good”
or “robust.” In green turtles from Hawaii, Brazil, and Taiwan, no differences in BCI
were observed between FP tumor score categories [24,49,91–93]. Interestingly, BCI in
Brazilian green turtles was significantly higher in those with FP (all tumor scores combined)
compared to FP-free turtles. This was attributed to tumors’ mass contributing to increased
body mass, and therefore higher BCI [92]; however, a more likely explanation for our results
is that adequate forage items are available in the locations examined here, allowing for the
maintenance of good body condition [24]. This finding is corroborated by observations
of food present during esophageal lavage (conducted for a separate study) in all turtles
sampled during this study. It is also possible that Fulton’s BCI is not an adequate method
for detecting differences in turtles with and without FP [47,91] and that subjective estimates
(e.g., emaciated, thin, good, and robust) may be better for assessing body condition declines
with increasing tumor score [49]. It is noteworthy that only three turtles of tumor score
3 were captured during this study, which prevented rigorous comparisons of BCI to the
other tumor score groups.

4.2. Diagnostic Assays for ChHV5 and ChHV6

Detection of ChHV5 DNA in blood (i.e., DNAemia) indicates the presence of circu-
lating ChHV5 DNA, suggesting active or recrudescent infection [40]. Despite an overall
FP prevalence of 56% in green turtles captured during this study, only one individual
from Florida’s Big Bend tested positive for ChHV5 DNA in whole blood using qPCR. Low
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prevalence of ChHV5 in blood samples of turtles with FP is not uncommon as has been
observed in previous studies of wild green turtles from the IRL (17%; 33/196) [93] and
rehabilitating green turtles at three sea turtle hospitals across the southeastern United
States (33%; 7/21) [40]. Low ChHV5 DNA prevalence values were also reported in sea
turtles without external evidence of FP, including wild (0%, 0/20), and rehabilitating (14%,
7/52) green turtles from North Carolina, nesting green turtles from Juno Beach, Florida
(8%, 5/60), and wild-caught green turtles from Grenada (0%, 0/55) [4,44,94]. Therefore, we
expected only a few turtles to test positive for ChHV5 via qPCR, as many herpesviruses
become latent within healthy hosts and therefore do not necessarily show relationships
with herpesviral DNAemia [4,40]. It is also possible that FP tumors represent niduses for
the virus, resulting in low circulating numbers of ChHV5 in the blood [40].

An additional and likely more sensitive method to determine past infection with
ChHV5 is through serology, as this method allows for the detection of circulating antibod-
ies to ChHV5 [95]. Once turtles recruit back to neritic habitats, they are more likely to be
exposed to ChHV5 [78]. Previous studies of juvenile and subadult green turtles with and
without FP captured in three locations across Florida’s east coast demonstrated a seropreva-
lence for antibodies to ChHV5 of 84% (143/171) [72]. In the present study, seroprevalence
was 20% (8/40) for all green turtles, which did not significantly differ by capture location;
however, green turtles captured at Jennings Cove had the highest seroprevalence rate
(46%; 6/16). This supports our findings of both higher tumor numbers and increased
seroprevalence with turtle size, as turtles from Jennings Cove were significantly larger
than turtles from Big Bend and Jupiter Inlet (Table 1). Green turtles with experimentally
transmitted FP developed antibodies to ChHV5 one year after inoculation; thus, turtles ex-
posed to ChHV5 in near-shore habitats may not immediately test positive for antibodies to
ChHV5 [21]. Seronegativity in turtles with external FP tumors could occur if (1) the tumor
is antigenically restricted, (2) the virus is “trapped” in but not replicating in tumors (i.e.,
no immunologic stimulation), (3) immunosuppression is preventing a detectable antibody
response, and/or (4) FP-positive, serologically negative turtles are infected with a different
serotype of ChHV5 that is not detected with the ELISA used in this study [96,97]. A lower
seroprevalence rate of 29% (12/41) was observed in nesting green turtles from Juno Beach,
Florida, suggesting that antibody titers may decrease over time post-infection as turtles
grow and age, and the virus goes into latency [4]. Virus–tumor interactions may also vary
geographically, as green turtles from Florida will often show seropositivity independent
of tumor status, whereas most seropositive turtles from Hawaii have tumors. This was
attributed to dissimilar behaviors between the two populations, which may have led to the
formation of different viral strains with differing pathogenicities [98].

Prevalence of antibodies to ChHV5 was higher in turtles with tumor scores 2 and 3
(43%) compared to 13% in turtles with tumor scores 0 and 1, although this finding was not
significant. Increased sample sizes would have likely revealed a significant trend, since
turtles in more advanced stages of FP have had adequate time to develop antibodies to
ChHV5 [21,55,98]. We also observed low diagnostic agreement between turtles that tested
positive for ChHV5 DNA using qPCR and those that tested positive for antibodies to
ChHV5, similar to that previously shown in nesting green turtles from Juno Beach, Florida,
indicating that these individuals were in different stages of infection (i.e., viral DNAemia
as determined by PCR and previous infection as determined by ELISA) [4]. Therefore,
we recommend that PCR and serology be utilized simultaneously to best understand
ChHV5 infection and exposure [4].

No turtles in this study tested positive for ChHV6 DNA, and just one individual from
Jennings Cove tested positive for antibodies to ChHV6. This individual was larger than
average compared to other turtles captured for this study (SCL = 49.0 cm), had no external
evidence of FP, and also tested positive for antibodies to ChHV5, indicating exposure to
both viruses at some point in the turtle’s life [4,54,72]. Lung-eye-trachea disease associated
with ChHV6 infection has never been identified in free-ranging green turtles since it was
first identified in maricultured green turtles from the Cayman Turtle Farm in 1975 [53]. Indi-
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viduals can be exposed and develop antibodies to viruses independently of clinical disease,
however, and previous studies have shown that wild green and loggerhead turtles from
Florida carry antibodies to ChHV6 at prevalence rates of 10–22% [4,55,95]. No differences
in population-level ChHV6 seroprevalence rates were observed over a three-year period
in green turtles from Florida, suggesting that ChHV6 exposure was not increasing over
time [55]. Our results corroborate these findings. Viral seroconversion and seroreversion
within individual turtles have also been observed over relatively short time periods of
5–42 days [44,55]; therefore, some turtles in this study that were previously exposed to
ChHV6 (and also ChHV5) may have gone undetected. The suggested transmission mode of
ChHV6 is horizontally through seawater, as the virus has been shown to remain infectious
for up to five days in this medium with an inverse relationship with water temperature.
Horizontal viral transmission via direct contact between turtles and with sediments is
also probable [95,99]. Further studies on seroprevalence of ChHV5 and ChHV6 in other
sea turtle species from Florida are warranted, as 100% (7/7) of loggerheads in Big Bend
tested positive for antibodies to both viruses [100] and foraging grounds serve as areas that
facilitate viral transmission [20].

4.3. Lymphocyte Proliferation

Lymphocyte proliferation assays have been utilized in previous studies in an ef-
fort to better understand immune function in relation to FP prevalence and/or severity.
These studies found reduced T-cell (i.e., cell-mediated immunity) and B-cell (i.e., humoral
immunity) proliferative responses in turtles with FP [46], with significant declines in
moderately (i.e., tumor score 2) and severely afflicted (i.e., tumor score 3) turtles [47].
Additional changes in hematologic and biochemical parameters include anemia, increased
corticosterone, higher heterophil:lymphocyte ratios, heterophilia, hypoproteinemia, and
bacteremia, suggesting chronic antigenic stimulation, immunosuppression, and/or chronic
stress in relation to FP [47,48,101,102]. No differences were observed, however, between
turtles with and without FP in regards to phagocytosis and oxidative burst, which are
indicators of innate immune function and antimicrobial defense, respectively [103]. Here,
we found no differences in T-cell proliferation between turtles with or without FP, by tumor
score (Figure 3a), or between ChHV5 seropositive and seronegative turtles (Figure 3b); yet,
severely-afflicted turtles (N = 3) did show reduced T-cell proliferation by 159%, on average,
in comparison to the other three groups. Larger sample sizes of turtles in this group could
have likely revealed a significant trend. In a recent study, high concentrations of CD3+
lymphocytes and upregulation of leukocyte and lymphatic processes were observed in
early-stage tumors, indicating a measurable immune response during earlier stages of
tumor growth. Conversely, in turtles that did not survive rehabilitation with late-stage
tumors, CD3+ lymphocytes were less concentrated with an observed downregulation of
immune- and apoptotic-related genes [104]. Taken together, the evidence suggests that
turtles with FP mount an immune response to infection at least until the moderate stages
of the disease, followed by a decrease in immune function. Because moderately-afflicted
turtles (i.e., tumor score 2) in this study showed the highest proliferative responses for
the optimal concentration of the T-cell mitogen (ConA) and all were in good or robust
body condition, it is likely that immunosuppression as a result of advanced stages of the
disease occurs after late-stage disease as tumor burdens become severe [47]. This argument
is especially convincing as immunosuppression is not a prerequisite for the formation of
viral-related diseases [20,95] and sufficient and appropriate nutritional input diminishes
the immunosuppressive effects of FP [105,106]. Lastly, these results can lend insight into
treatment options for turtles with FP/ChHV5 infection through preventative or therapeutic
cancer vaccines using tumor antigen specific T-cells [27].

4.4. Natural Killer Cell Activity

Natural killer cells are innate, cytotoxic lymphocytes that function to recognize and
clear tumor and virus-infected cells, including a well-characterized response against her-
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pesviruses [73,107–109]. Their protective mechanisms lie within the production of cy-
tokines that work towards eliminating pathogens and generating antigen-specific immune
responses [110]. Many herpesviruses have developed mechanisms to evade natural killer
cell elimination and are known to suppress natural killer cell activity [111]. Only a handful
of studies to date have examined natural killer cell activities in turtles, which suggest
differences by sex and season, and that activity can decrease upon exposure to certain
contaminants [74,112,113]; however, no studies have examined natural killer cell activity
in response to disease in sea turtles. Interestingly, several natural killer cell-related cy-
totoxicity genes were found to be upregulated in FP tumors from juvenile green turtles
undergoing rehabilitative care [114]. Additionally, several putative proteins observed in
FP tumors that are considered atypical of alphaherpesviruses (e.g., F-lec1 and F-lec2) are
associated with activation or inhibition of natural killer cells [115]. Lastly, lymphocytic
inflammatory infiltrate, including CD3+ T-cells, is associated with FP tumor tissues [104].
These findings suggests that active inflammatory processes occur within and around FP
tumors in response to the high viral load found in tumor tissues compared to healthy,
non-tumored tissue [40]. In this study, natural killer cell activity was significantly lower
in green turtles with FP compared to turtles without FP (Figure 4a). Collectively, these
results indicate that FP tumor development is associated with first an increase, then a sub-
sequent exhaustion of innate immune responses including natural killer cell activity. This
depletion of innate immunity may lead to susceptible and/or infected cells becoming more
permissive to ChHV5 infection and neoplasia development, respectively. More specifically,
ChHV5 infection and FP development may lead to suppression of natural killer cell activ-
ity, as has been described with human cancers and infectious and autoimmune diseases.
Additionally, depletion of natural killer cells led to enhanced tumor formation in in vivo
mouse tumor models [116]. More research is needed to better understand how natural
killer cells and other immune responses influence FP disease pathogenesis and prognosis.

5. Conclusions

Although there is no clear trend in the occurrence or severity of fibropapillomato-
sis in Florida, and there is no evidence that the disease is a major cause of mortality
for afflicted animals in this area, >20% of green turtles stranding in southern Florida
have FP [13,14,98]. Therefore, advancing our understanding of FP and its impacts on
sea turtle health and survival remains an important research priority for sea turtle con-
servation [36,117]. Lymphocyte proliferative responses of green turtles from this study
suggest that turtles in Florida are able to mount sufficient immune responses after the
development of tumors, at least until the disease becomes severe. These results support
the hypothesis of Work et al. [47] that immunosuppression occurs after disease onset. We
propose that adequate forage availability and good-to-robust nutritional status may help
prevent severe immunosuppression, at least until the moderate stages of the disease, as
the results of our lymphocyte proliferation assays differed from previous studies showing
immunosuppression in the more advanced stages of disease [46,47]. Lastly, we observed
that natural killer cell activity was significantly reduced in turtles with FP in comparison to
tumor-free turtles, lending further insight on immune system function in relation to FP. It
is likely that FP tumor development involves factors related to host and viral biology and
physiology, in addition to environmental cofactors [20,21,48].
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