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Continuous monitoring and treatment of patients in intensive care units generates vast amounts of data. 
Critical Care Medicine clinicians incorporate this continuously evolving data to make split-second, life 
or death decisions for management of these patients. Despite the abundance of data, it can be challenging 
to consider every accessible data point when making the quick decisions necessary at the point of care. 
Consequently, Clinical Informatics offers a natural partnership to improve the care for critically ill patients. 
The last two decades have seen a significant evolution in the role of Clinical Informatics in Critical Care 
Medicine. In this review, we will discuss how Clinical Informatics improves the care of critically ill patients 
by enhancing not only data collection and visualization but also bedside medical decision making. We will 
further discuss the evolving role of machine learning algorithms in Clinical Informatics as it pertains to 
Critical Care Medicine.
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INTRODUCTION

Critical Care Medicine clinicians must make 
split-second judgments that could mean the difference 
between life and death when caring for patients with 
life-threatening illnesses. These patients have pathophys-
iology that is not only complex but is also dynamic such 
that it evolves with time and each treatment decision. 
The clinicians must make life-saving treatment decisions 
while synthesizing this evolving clinical picture and ac-
counting for the high level of uncertainty that is inherent 
to critical illness. Additionally, they must do it well with-
in the time constraints required to ensure appropriate and 

safe care to not only that patient, but other critically ill 
patients under their care at that same time. The evolving 
clinical picture of each critically ill patient is constructed 
of numerous data points that the clinicians must review 
and understand to deduce the patient’s clinical trajecto-
ry and potential treatment options in that moment. The 
clinicians are however unable to utilize all this available 
data for decision making [1]. This can lead to errors of 
omission from failure to include pertinent information in 
decision making [2,3].

The Institute of Medicine’s influential report, “To 
Err is Human” [4], brought the issue of medical errors 
in healthcare to the forefront and identified system errors 
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as the primary culprit. This, along with the Institute of 
Medicine’s second report, “Crossing the Quality Chasm: 
A New Health System for the 21st Century” [5], were 
instrumental in increasing focus on minimizing system 
errors and improving patient safety through optimal use 
of health information technology. The widespread adop-
tion of electronic health records and their meaningful 
use as aided by the Health Information Technology for 
Economic and Clinical Health (HITECH) Act [6] has 
greatly facilitated development of processes and tools 
to better utilize available healthcare data at point of care 
to help with diagnosis and management of patients. This 
task is achieved by Clinical Informatics, a specialty that 
focuses on the development of processes and tools for not 
only acquisition, processing, and interpretation of patient 
data but also the design, implementation, and evaluation 
of information and communication systems to improve 
patient care. Over the past two decades, a natural alliance 
between Critical Care Medicine and Clinical Informatics 
has developed due to the abundance of available data in 
the intensive care units (ICUs) [7-10]. In this review we 
will discuss the evolving role of Clinical Informatics in 
Critical Care Medicine.

MEDICAL DECISION MAKING

The goal of Clinical Informatics is to provide relevant 
data and information to clinicians to enhance their clini-
cal decision making such that it leads to improved patient 
outcomes and minimizes medical errors. It is therefore 
important to understand how clinicians make decisions 
during a clinical encounter. In the words of the American 
physician and philosopher Edmund Pellegrino, a clinical 
encounter can be summed up in three questions – 1) What 
is the problem? 2) What are possible solutions? and 3) 
What is the best solution for this patient [11]? This is true 
even today. The first step in this quest is gathering data 
points which can be in the form of a patient’s vital signs, 
medical history, medications, laboratory values, etc. It is 
important to remember though that these are just raw data 
points, such as a temperature of 38.6°C or a heart rate 
of 120 beats per minute. In isolation they may not mean 
much. The next step is to compare these data points with 
known normal values or baseline values for that patient. 
This provides meaningful information that this patient has 
fever and tachycardia. This allows clinicians to develop 
a list of differential diagnoses and/or treatment options. 
In this example, the list of differentials could include a 
common cold, new or worsening pneumonia, pericarditis, 
etc. This is done through a combination of both pattern 
recognition and Casablanca strategy. Pattern recognition 
is a crucial step which improves with clinical experience. 
Casablanca strategy on the other hand involves ruling out 
the ‘usual suspects’ for a particular problem or constella-

tion of symptoms [12]. When taken into the right context 
this step provides valuable knowledge to clinicians. For 
example, if this patient with fever and tachycardia was 
also coughing and had a pulmonary infiltrate on a chest 
X-ray, it may indicate the presence of an underlying 
pneumonia. In a different context where this patient with 
pneumonia was already on antibiotics, this new fever and 
tachycardia might indicate a worsening clinical picture 
on current therapy. This knowledge then helps clinicians 
gain wisdom about what actions they can take – should 
they start new antibiotics for a patient with new pneumo-
nia or maybe switch antibiotics for the one who is getting 
worse on current treatment so may have resistant organ-
isms. The clinicians thus use this “knowledge pyramid” 
to guide their decision-making process. Each decision 
then generates more data points (eg, is the patient getting 
better, does the patient have a new infection) which are 
then reconsidered for the next decision point (Figure 1).

HOW CLINICAL INFORMATICS CAN HELP

With increased digitization of medical records there 
is more and more information available in the electron-
ic health records. In fact, as shown by Manor-Shulman 
and colleagues, there were a median 1,348 documented 
clinical data points for each critically ill patient in a 24-
hour time period [13]. This number was much higher 
for patients requiring more specialized therapies such as 
dialysis or extracorporeal membrane oxygenation. One 
would think that clinicians would incorporate all or a 
majority of this wealth of available information in their 
decision-making process. However, as it turns out, clini-
cians are able to utilize only a fraction of this available 
information. A study at a tertiary care center found that of 
the 51 data elements identified as being important during 
an ICU admission, a median of only 11 were used by 
clinicians. These included elements from history, phys-
ical examination, vital signs, and laboratory studies – all 
data that one would consider relevant for management of 
critically ill patients [1]. When we put this into context 
with the amount of data generated during the care of each 
patient and the time constraints that clinicians work in, 
it becomes easy to see how these increasing volumes of 
data can be a double-edged sword. On one hand they can 
provide valuable clinical information and on the other 
they can contribute to noise that drowns out that very 
valuable information. This is where Clinical Informatics 
can be very helpful. It can help with acquisition and dis-
play of relevant data to clinicians in a timely fashion to 
help with both prediction and identification of patients at 
risk for worse outcomes. Additionally, Clinical Informat-
ics can help augment medical decision making for both 
diagnosis and treatment at point of care. Clinical Infor-
matics can thus help clinicians scale the knowledge pyra-
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mid for medical decision making, much more efficiently 
and effectively.

APPLICATIONS OF CLINICAL 
INFORMATICS IN CRITICAL CARE 
MEDICINE

With increasing adoption of electronic health re-
cords, the last decade has seen an explosion in utilization 
of Clinical Informatics in Critical Care Medicine. This 
has been facilitated by Centers for Medicare and Medic-
aid incentive programs aimed at increasing the meaning-
ful use of electronic health records in the United States as 
part of the HITECH Act. There are two major ways that 
Clinical Informatics can enhance the care of critically ill 
patients – i) Enhancement of Data Acquisition and Dis-
play; ii) Augmentation of Medical Decision Making.

Enhancement of Data Acquisition and Display
Electronic health records serve as the main hub 

for accessing all medical information for patients. This 
information is used to develop medical decisions and 
provide care to patients. It is therefore important to have 
data from various monitoring and laboratory devices be 
transmitted into the electronic health records in real-time. 
The laboratory information systems and picture ar-
chiving and communication systems were among the first 
systems to be integrated with electronic health records. 
They allowed real-time access to laboratory test results 

and radiology images to aid in patient care. Since then, 
advances in technology have allowed for integration of 
electronic health records with many other devices such 
as bedside monitors, ventilators, dialysis machines, ex-
tracorporeal membrane oxygenation machines, etc. This 
has allowed for easy access to this data for both immedi-
ate patient care and research. This has been instrumental 
in optimizing management of critically ill patients by 
allowing clinicians to have access to this information in 
real time. For example, real-time access to vital signs al-
lows clinicians to monitor disease evolution of critically 
ill patients much more effectively. Similarly, real-time 
monitoring of transmembrane pressures in continuous 
renal replacement therapy machines allows clinicians to 
monitor and avoid filter clotting. Central patient monitor-
ing systems and remote patient monitoring systems have 
further enhanced the ability to better monitor patients 
and have allowed expansion of tele-ICUs which were 
critical during the coronavirus disease 2019 (COVID-19) 
pandemic [14]. All these technologies rely on robust 
Informatics infrastructure to ensure seamless interoper-
ability so that the data can be available in real time for 
immediate patient care decisions. Clinical Informatics 
tools have also allowed this available data to be displayed 
in different formats, such as charts, graphs, and maps at 
point of care, which make it easier to understand the data 
and gain valuable information from them. Additionally, 
Clinical Informatics plays an instrumental role in ensur-
ing that this data can be extracted into data warehouses to 
be used for quality improvement, research, and business 

Figure 1. The Knowledge Pyramid. Data are raw, unprocessed observations that by themselves lack any meaning. 
These Data when organized and processed represent Information that can be interpreted. The next level of knowledge 
pyramid is Knowledge which involves application of this information in recognizing patterns and identifying connections. 
The final level is Wisdom which encompasses the ability to make sound judgements based on the Knowledge.
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ICU (3.4% vs 27.0%; p<0.001) [25]. It also identified less 
adverse drug events in the CPOE-based ICU (2 vs 12; 
p<0.01). Additionally, there were fewer dosing errors in 
patients with renal failure in the CPOE-based ICU (12 vs 
35; p<0.001). A meta-analysis of 16 studies that evaluat-
ed the effectiveness of CPOE in decreasing preventable 
medication errors showed a significant association be-
tween decrease in medication errors with implementation 
of CPOE (pooled risk ratio 0.47; 95% CI: 0.35-0.60) [22]. 
It also found a that CPOE implementation was associated 
with a significant decrease in preventable adverse drug 
events (pooled risk ratio 0.47; 95% CI: 0.31-0.71). An-
other meta-analysis of nine studies found an 85% reduc-
tion in the rate of medication errors on implementation of 
CPOE in ICUs [26]. This meta-analysis also found a 12% 
reduction in ICU mortality on implementation of CPOE. 
It is thus fair to say that implementation of CPOE has had 
a significant positive impact on processes and outcomes 
in Critical Care Medicine.

CDSS have also been widely utilized to help with 
diagnosis and management of critically ill patients out-
side of CPOE [27]. This is predominantly in the form of 
electronic alerts to clinicians regarding specific aspects 
of patient care. A systematic review of 36 randomized 
controlled trials showed that CDSS improved processes 
of care in 63% studies [28]. Furthermore 38% of includ-
ed studies reported increased compliance with guidelines 
and 67% reported improvement in diagnoses with use of 
CDSS. CDSS have also been widely employed to aid cli-
nicians in taking care of critically ill patients. CDSS have 
been utilized in many studies to aid with both identifica-
tion and prediction of sepsis and its complications. The 
results on improvement in processes of care, such as time 
to antibiotics, and outcomes measures, such as hospital 
mortality have, however, been mixed [29-33]. Similarly, 
CDSS for acute kidney injury (AKI) have been used ex-
tensively to aid in both diagnosis and management but 
with mixed results. Al-Jaghbeer and colleagues showed 
that non-interruptive alerts for AKI were associated with 
a small but significant decrease in mortality among hos-
pitalized patients (9.4% vs 10.2%; p=0.001) [34]. In the 
ICU setting, Colpaert and colleagues found that there 
were significant improvements in processes of care by 
giving AKI alerts to critical care medicine physicians on 
the development or progression of AKI [35]. Wilson and 
colleagues however found no benefit of AKI alerts in a 
randomized controlled trial that included both ICU and 
non-ICU patients [36]. The reasons for these mixed re-
sults are complex and likely include heterogenous patient 
populations, varying positive predictive values of alerts, 
variability in alert displays and development of alert fa-
tigue.

Recent years have seen a significant increase in use 
of machine learning algorithms for prediction of diseases 

intelligence [15-18].

Augmentation of Medical Decision Making
Clinical Informatics plays an instrumental role in 

providing Critical Care Medicine clinicians the relevant 
information and knowledge deduced from clinical data 
points, to enhance medical decision making. This is pri-
marily achieved by use of clinical decision support sys-
tems (CDSS). CDSS have a wide scope and include vari-
ous tools such as ordersets, medication dosage/interaction 
guidances, electronic alerts, documentation templates. 
and other clinical workflow tools such as checklists. The 
inception of CDSS can be traced to 1959 when Ledley 
and colleagues described medical decision making by use 
of logic, probability, and value theory [19]. They were 
introduced into clinical practice in the 1970s [20,21]. It 
was, however, not until the 2000s that the adoption of 
CDSS started to gain traction and acceptance in clinical 
practice. This was at least in part driven in response to 
the two Institute of Medicine reports, “To Err is Human” 
and “Crossing the Quality Chasm” [4,5] which brought 
attention to the medical errors and potential role of health 
information technology in reducing them. Their use was 
further facilitated by the incentives given as part of the 
HITECH Act for meaningful use of electronic health re-
cords.

One of the key ways that CDSS have influenced 
Critical Care Medicine is by its integration with comput-
erized provider order entry (CPOE) systems. CPOE are 
computer-based systems for entering orders. Almost all 
CPOEs have at least some level of CDSS built-in to as-
sist with ordering while minimizing errors, for example, 
guidance for drug dosing, drug-drug interactions, drug 
allergies, and ordersets specific to different conditions. 
The importance of CPOE can be understood by the fact 
that it was one of the three initial “leaps” emphasized by 
the Leapfrog group to enhance safe and effective care in 
hospitals [22]. Utilization of CPOE was also a core re-
quirement to achieve meaningful use of electronic health 
records. The use of CPOE has had the greatest impact on 
reducing medication errors. A systematic review of litera-
ture identified that use of CPOE was associated with 48% 
decrease in medication errors [23]. Impact of CPOE on 
medication errors has also been evaluated in the context 
of Critical Care Medicine. A study that assessed the im-
pact of implementation of CPOE, using a before and after 
study design in a 22 bed ICU, found that the incidence of 
medication errors was decreased to 4.8% with implemen-
tation of CPOE in comparison to 6.7% before (p<0.04) 
[24]. Similar results were seen in another study that com-
pared over 2,500 medication prescriptions between ICUs 
with CPOE-based medication orders vs paper-based 
medication orders. This study found that medication 
prescription errors were much lower in the CPOE-based 
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p<0.01) within 3 hours of the alert.
CDSS can be classified based on their analytical ca-

pabilities into three categories – predictive, descriptive, 
and prescriptive (Figure 2). Predictive CDSS is based on 
predictive analytics and provides a reasonable prediction 
about the risk for desired diseases or outcomes. For ex-
ample, a CDSS based on a predictive model for sepsis 
can identify and alert the clinicians regarding patients at 
high risk for developing sepsis. This can give clinicians 
a head-start to manage these patients which can result in 
improved outcomes [41]. A descriptive CDSS in compar-
ison notifies clinicians about what has already happened. 
In this example it would notify clinicians that the patient 
has developed sepsis. Finally, a prescriptive alert provides 
clinicians with guidance regarding management of these 
patients as guided by practice guidelines. In this case it 
would include recommendations for guideline directed 
therapy for sepsis. Thus, CDSS can serve as very power-
ful tools for clinicians at point of care in both diagnosis 
and management of patients.

CDSS alerts can also be classified according to how 
they are displayed to the end user. One of the frequent 
display formats is interruptive alerts that pop-up into the 
chart and require immediate attention from the end-us-
er. This is in the form of an action listed in the alert or 
acknowledgement of the alert. This, however, interrupts 
the clinician’s workflow which can be detrimental as was 
shown in a study that evaluated the impact of interruptions 
on physician workflow in the emergency department of 
a 400-bed teaching hospital [42]. The study showed that 
interruptions were not only associated with significant in-
creases in time to task completion, but physicians failed 

and outcomes. Using data from 49 urban community hos-
pital emergency departments, Delahanty and colleagues 
developed a machine learning-based sepsis screening 
tool, Risk of Sepsis score, to predict the risk of develop-
ing sepsis during that encounter [37]. This risk score was 
a better discriminant screening tool than SOFA score in 
predicting the risk of sepsis just 1 hour after the first vital 
sign or laboratory result was recorded in the electronic 
health record (Area under the receiver operating char-
acteristic curve, AUROC, for the Risk of Sepsis score 
was 0.93, with sensitivity 67.7% in comparison to AU-
ROC of 0.90 and sensitivity of 49.2% for that of SOFA 
score). Similarly using data from over 121,000 patients 
at a tertiary care medical center, Koyner and colleagues 
developed a machine learning model to predict the risk 
of developing AKI [38]. Their model had an AUROC of 
0.87 to predict the risk of developing stage II AKI and an 
AUROC of 0.96 to predict the risk for needing dialysis 
in 48 hours. At a probability threshold of 0.022 or more, 
their algorithm had a sensitivity of 84% and a specificity 
of 85% to predict stage II AKI. More recently, Peine and 
colleagues have used reinforcement learning to develop 
an individualized strategy for management of mechanical 
ventilators for critically ill patients [39]. These machine 
learning algorithms provide excellent foundations for de-
veloping machine learning guided CDSS. For example, 
Giannini and colleagues developed and implemented a 
machine learning based alert for severe sepsis and septic 
shock at a tertiary care hospital [40]. The implementation 
of this alert was associated with an increase in the testing 
of serum lactate (11.7% vs 8.0%; p<0.01) and adminis-
tration of intravenous fluid boluses (25.5% vs 21.7%; 

Figure 2. Types of Clinical Decision Support Systems (CDSS) Based on their Analytical Capabilities. Different 
CDSS can offer recommendations based on the patient’s changing clinical picture for a patient who has been admitted 
to the hospital. The patient was reported to be at risk of acquiring sepsis on hospital day 2 due to worsening clinical 
condition, for which the Predictive CDSS can alert the clinical team. When the patient truly develops sepsis on day 3, 
Descriptive CDSS would alert the team to that fact, and Prescriptive CDSS would provide management advice specific 
to this patient.
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Informatics.
4.	 Security and Privacy Concerns: The inher-

ent digital nature of Clinical Informatics raises 
obvious security and privacy concerns. Safe-
guarding patient data from unauthorized access 
and ensuring compliance with data protection 
regulations is critical. This is one of the key 
challenges in Clinical Informatics and before 
healthcare organizations in general.

5.	 High Implementation Costs: Implementing 
and maintaining Clinical Informatics systems 
can be expensive, especially for smaller health-
care organizations with limited resources. The 
initial investment, ongoing maintenance, and 
training costs can be significant barriers to its 
effective implementation.

FUTURE DIRECTIONS

As we can see, Clinical Informatics plays a ubiqui-
tous role in Critical Care Medicine. With rapid technolog-
ical advancements, the role of Clinical Informatics will 
continue to increase to further optimize data gathering, 
data display, and augment real-time clinical decision 
making at point of care. Majority of current ICUs are 
already equipped with devices that are readily intercon-
nected. From bedside monitors to ventilator and dialysis 
machines, they all have some degree of interconnectivity 
built in where they communicate with and export their 
data into the electronic health record. However, one of 
the limitations of the majority of current electronic health 
records is their inability to capture high resolution phys-
iological waveform data. The waveform data provides 
valuable information, such as pulse pressure variation, 
ventilator dys-synchrony, etc., that is used by Critical 
Care Medicine clinicians to provide care at the bedside. In 
recent years, machine learning algorithms have identified 
novel uses for these waveform data, such as predicting 
hyperkalemia from electrocardiogram waveforms [55], 
hypotension from arterial waveforms 15 minutes before it 
happens [56], and automated screening for acute respira-
tory distress syndrome using ventilator waveforms [22]. 
These techniques have great potential to be deployed for 
real-time clinical decision support in ICUs. Additionally, 
so far the majority of focus in Clinical Informatics has 
been on effective utilization of structured data to augment 
clinical decision making. Recent advancements in natu-
ral language processing have unlocked new horizons for 
growth by capturing the vastly underutilized unstructured 
data to develop clinical decision support systems.

Another area of where the role of Clinical Informat-
ics will continue to grow is in providing CDSS, not just 
for diagnosis but also for management of critically ill pa-
tients. Machine learning algorithms can develop predic-

to return to over 18% of interrupted tasks. Interruptions 
have also been associated with errors in medication dis-
pensation by pharmacists and administration by nurses 
[43,44]. Additionally, interruptive alerts have also been 
associated with development of alert fatigue [45]. Alert 
fatigue is thought to be a result of cognitive overload 
due to uninformative alerts and desensitization to alerts 
over time [46]. It is an increasingly recognized issue 
with electronic alerts and is a major contributor to their 
inappropriate dismissal and ineffectiveness [47-52]. The 
magnitude of its impact can be realized from the fact that 
among drug safety alerts, over 90% are ignored or over-
ridden [47]. This area is thus gaining increasing attention 
in Clinical Informatics. Non-interruptive alerts, that stay 
at a strategically visible location in a patient’s chart and 
alert clinicians without disrupting their workflow are a 
potential alternative to this shortcoming of interruptive 
alerts [10], but require further research.

CURRENT CHALLENGES IN CRITICAL 
CARE INFORMATICS

While Clinical Informatics has made significant 
strides in improving healthcare delivery in Critical Care 
Medicine, there are still important challenges in its imple-
mentation, particularly concerning how it interfaces with 
Critical Care Medicine team-members--

1.	 Usability and User Experience: One of the 
primary challenges in Clinical Informatics is en-
suring that systems are user-friendly for health 
care professionals. Majority of electronic health 
records suffer from complex interfaces and cum-
bersome workflows [53] leading to frustration 
and burnout among end-users.

2.	 Interoperability: The lack of seamless interop-
erability among various electronic health records 
is another major obstacle in Clinical Informatics 
[54]. This translates into clinicians having to 
navigate multiple platforms and interfaces to 
access patient data which can be both cumber-
some and error prone. Improving interoperabil-
ity between different electronic health records 
systems is thus an important challenge to further 
enhance the role of Clinical Informatics in Crit-
ical Care Medicine.

3.	 Alert Fatigue: As we have discussed above, 
alert fatigue is an important challenge. Though 
electronic alerts can be helpful for clinicians 
and improve the delivery of care, they can also 
overburden Critical Care team-members with 
notifications leading them to overlook critical 
warnings. Development and implementation 
of electronic alerts that improve workflow of 
clinicians is an important challenge in Clinical 
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care decisions. Finally, the advancements in machine 
learning and their careful integration with CDSS hold 
promise to transform the field of Critical Care Medicine 
and Clinical Informatics.
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