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Cancer is caused by the destruction or mutation of cellular genetic materials induced by
environmental or genetic factors. It is defined by uncontrolled cell proliferation and
abnormality of the apoptotic pathways. The majority of human malignancies are
characterized by distant metastasis and dissemination. Currently, the most common
means of cancer treatment include surgery, radiotherapy, and chemotherapy, which
usually damage healthy cells and cause toxicity in patients. Targeted therapy is an
effective tumor treatment method with few side effects. At present, some targeted
therapeutic drugs have achieved encouraging results in clinical studies, but finding an
effective solution to improve the targeting and delivery efficiency of these drugs remains a
challenge. In recent years, oncolytic viruses (OVs) have been used to direct the tumor-
targeted therapy or immunotherapy. Newcastle disease virus (NDV) is a solid oncolytic
agent capable of directly killing tumor cells and increasing tumor antigen exposure.
Simultaneously, NDV can trigger the proliferation of tumor-specific immune cells and
thus improve the therapeutic efficacy of NDV in cancer. Based on NDV’s inherent oncolytic
activity and the stimulation of antitumor immune responses, the combination of NDV and
other tumor therapy approaches can improve the antitumor efficacy while reducing drug
toxicity, indicating a broad application potential. We discussed the biological properties of
NDV, the antitumor molecular mechanisms of oncolytic NDV, and its application in the field
of tumor therapy in this review. Furthermore, we presented new insights into the challenges
that NDV will confront and suggestions for increasing NDV’s therapeutic efficacy in cancer.
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INTRODUCTION

Cancer seriously threatens human health due to its high incidence and mortality and is the second
cause of death globally, exceeded only by cardiovascular diseases (Moliner et al., 2019; Xia et al.,
2022). In 2020, there were an estimated 19.3 million new cancer cases worldwide and nearly 10
million cancer-related deaths (Sung et al., 2021). Cancer’s high mortality rate is mainly because
patients with early cancer have no apparent symptoms and are already in the late stage or metastatic
stage when diagnosed (Huang et al., 2017; Regel et al., 2020). Tumor cells evade immune system
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surveillance and inhibit the immune response due to high
mutagenicity (Park et al., 2020). At the same time,
uncontrolled cancer cells invade the tissue, eventually leading
to organ failure and even death (Fares et al., 2020). Currently,
surgery, radiotherapy, and chemotherapy are the main methods
for cancer treatment (Moo et al., 2018; Yahya and Alqadhi, 2021).
Although surgery, radio-/chemotherapy, and targeted therapy
can help some patients with early tumors, most therapy methods
for individuals are terminated because of severe side effects
(Boshuizen and Peeper, 2020). Cancer prognosis is still not
optimistic; therefore, an essential question in cancer therapy as
to how to improve cancer patients’ survival rate effectively
remains unexplored.

In recent years, several approaches have been developed for
cancer therapy, such as immune checkpoint–based therapy
(Chen et al., 2021), targeting circular RNAs (Chen et al.,
2019), chimeric antigen receptor T (CAR-T) cell therapy
(Adachi et al., 2018), and CRISPR/Cas9-based therapy (Zhen
and Li, 2019). But all of these approaches have some limitations,
which include off-target effects for targeted therapy, inefficiency
of monotherapy, and unpredictable or predictable side effects
(Zugazagoitia et al., 2016). An oncolytic virus (OV) is a promising
cancer treatment strategy. OV is a useful therapeutic reagent that
identifies and destroys malignant cells after a recurring viral
infection (Martin and Bell, 2018; Raja et al., 2018; Leber et al.,
2020). The lytic products after tumor dissolution can reverse the
tumor microenvironment, promote the recruitment of immune
cells, and further activate the antitumor immune response
(Mahasa et al., 2017; Harrington et al., 2019). Several viruses,
including the Newcastle disease virus (NDV), vaccinia virus,
adenovirus, reovirus, herpes simplex virus, and measles virus,
are being widely studied to treat various types of advanced cancer
(Mondal et al., 2020; Goradel et al., 2021). Talimogene
laherparepvec (T-VEC), a genetically engineered herpes
simplex virus, is the first OV approved to treat advanced
melanoma by the US FDA (Liu et al., 2003; Andtbacka et al.,
2019). However, due to the heterogeneity of cancer tissue and the
complexity of cancer cells, a single type of OV is not enough to
destroy all cancer cells (Lawler et al., 2017; Martin and Bell, 2018).
Some cancer cells and non-transformed supporting cells may be
resistant to certain OVs (Alvarez-Breckenridge et al., 2013; Pol
et al., 2016). Based on these, a single type of viral therapy may not
be effective against all types of cancer (Kwan et al., 2021).
Therefore, we believe that the combination of OV therapy and
other cancer therapies will be significant for cancer patients (Dai
et al., 2022).

NDV is a natural avian–derived virus (Sinkovics and Horvath,
2000), and its infection is a highly contagious disease that causes
enormous economic losses to the poultry industry worldwide
(Ganar et al., 2014; Susta et al., 2018). NDV has been developed as
an oncolytic agent or a vaccination vector over the last 20 years
due to its intrinsic oncolytic ability (Molouki and Peeters, 2017;
Hu et al., 2020; Vannini et al., 2021). Compared with other OVs,
oncolytic NDV has inherent antitumor advantages (Meng et al.,
2021). Natural NDV strains exhibit an antitumor effect in human
cancer cells and cause oncolysis without harming the normal cells
(Yurchenko et al., 2019; Burman et al., 2020). In addition to

causing direct damage to host cells through viral infection and
replication, NDV activates multiple signaling pathways,
triggering autophagy, inflammation, and apoptosis (Cuadrado-
Castano et al., 2015; Li et al., 2019; Gong et al., 2021). It also
activates antitumor immune responses, thus assisting viral
replication (Wang et al., 2020; Zhan et al., 2020; Kan et al.,
2021).With the constant maturity of the reverse genetic operating
system of NDV (Peeters et al., 1999; Römer-Oberdörfer et al.,
1999; Nettelbeck et al., 2021), an increasing number of transgenic
NDVs are identified, which makes the application of NDV a new
stage in cancer therapy. A genetically engineered NDV strain
(NDV-F3aa) is effective in the experimental treatment of a gastric
tumor peritoneal model without significant toxicity, and in some
cases, it may completely cure gastric tumors (Song et al., 2010).
Combining NDV therapy with other cancer therapies also
provides new ideas for cancer treatment (Schirrmacher and
Fournier, 2014; Xu et al., 2021). Hence, the NDV represents
broad prospects for cancer treatment.

This review will concentrate on the biology, process of
infection, and replication of NDV in cancer cells and the
primary molecular mechanism of NDV oncolysis, and its
preclinical and clinical applications in diverse cancers. In
addition, we will highlight the limitations of NDV in clinical
research and share our new insights into the use of NDV in cancer
therapy.

NEWCASTLE DISEASE VIRUS BIOLOGY

Twelve different serotypes of avian paramyxoviruses (APMVs)
have been reported up to date (Gogoi et al., 2017). NDV is the
most characterized member of the genus Avulavirus in the family
of Paramyxoviridae (APMV-1) (Kapczynski et al., 2013). It is an
RNA virus with diameters ranging from 100 to 500 nm, enclosed
by a viral lipid membrane (Kapczynski et al., 2013; Nagai et al.,
1989). NDV was first identified as a valuable virus for virulence

FIGURE 1 | Schematic representation of NDV morphology. NDV,
Newcastle disease virus; HN, hemagglutinin–neuraminidase; F, fusion protein;
M, matrix protein; N, nucleocapsid protein; P, phosphoprotein; L, RNA-
dependent large polymerase protein; ssRNA, single-stranded RNA.
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studies in the 1970s (Gogoi et al., 2017; Cassel and Garrett, 1965).
According to their pathogenicity and virulence in infected
chickens, NDV strains are classified as lentogenic (avirulent),
mesogenic, and velogenic (fully virulent) (Sinkovics and Horvath,
2000; Dimitrov et al., 2016). NDV contains a negative single-
stranded RNA (ssRNA) genome of approximately 15.2 kb that
consists of a leader (55 nucleotides) and trailer (114 nucleotides)
terminal sequences (Nagai et al., 1989; Bello et al., 2020), which
encode six different structural proteins:
hemagglutinin–neuraminidase (HN), nucleocapsid (N) protein,
fusion (F) protein, phosphoprotein (P) protein, matrix (M)
protein, and RNA-dependent large polymerase (L) protein
(Figure 1). V and W proteins are auxiliary and exist only in
virus-infected cells. The V protein is an IFN antagonist and plays
a vital role in the virulence of NDV (Alamares et al., 2010).
Notably, in the NDV genome, each gene encodes a single protein
and is characterized by a coding sequence flanked by highly
conserved gene start (GS) and gene end (GE) transcriptional
signals (Munir et al., 2012).

The viral N protein, P protein, and L protein bind to the viral
RNA genome to form a ribonucleoprotein complex (RNP),
essential for virus replication (Yusoff and Tan, 2001). The M
protein is located in the layer below the virus lipid membrane and
participates in virus assembly and budding (Nagai et al., 1989).
HN and F proteins are located on the virus membrane’s outer
surface, where they join with the host cell’s lipid bilayer
membrane to form a viral shell. In addition, HN and F
proteins jointly mediate viral attachment and fusion on the
cell surface (Fournier et al., 2004). The fusion of virus and
host cell must be completed through the F protein and HN
protein participation, and the cleavage site of virus F protein (Fcs)
is the critical factor (Peeters et al., 1999; Seal et al., 2000).
Simultaneously, antibodies F and HN are the significant
components that resulted in vaccine-inducing body protection,
following vaccination of avian or non-avian species (Xiao et al.,
2012; Dey et al., 2014), revealing the potential of NDV as a
vaccine vector resistant to the animal and human disease.
Currently, the LaSota and Hicher B1 vaccine strains have been
widely used as a live NDV vaccine throughout the world
(Carrasco et al., 2016; Dey et al., 2017). The strains are
naturally occurring lentogenic strains that are highly expressed
in embryonated chicken eggs and elicit a significant immune
response (Ginting et al., 2017). One of the advantages of NDV as
an oncolytic agent is that both lytic and non-lytic strains of NDV
can fast-replicate in all species of avian and multiple human
cancer cells (Lam et al., 2011; Zamarin and Palese, 2012),
resulting in effective cell lysis and offering substantial
protection from disease.

NEWCASTLE DISEASE VIRUS DISSOLVES
TUMOR AND ACTIVATES AN ANTITUMOR
IMMUNE RESPONSE
The NDV oncolytic properties originate from its capacity to
proliferate in cancer cells (Shobana et al., 2013). Further
research showed that it might be related to the deficiency of

the interferon (IFN) system in tumors (Stojdl et al., 2000). H.
Song et al. discovered that NDV enters the cell through a pH-
independent direct fusion of its envelope to the host
membrane via receptor-mediated endocytosis (Sánchez-
Felipe et al., 2014). The process of NDV infection and
replication in tumor cells is described as follows (Moliner
et al., 2019). NDV binds to the sialic acid receptor on the
surface of tumor cells through the HN protein, and then,
protein F initiates the fusion of the viral and host cell
membranes (Song et al., 2019; Xia et al., 2022). Viral RNA
polymerase transcribes the viral negative single-stranded RNA
into positive single-stranded RNA as a template for mRNA and
protein synthesis (Burman et al., 2020; Sung et al., 2021). The
rough endoplasmic reticulum processes surface proteins F and
HN, assembled on the host cell membrane and mature to
produce new virions that start a new round of tumor cell
infection (Cuadrado-Castano et al., 2015). Importantly, virus-
mediated direct oncolysis causes the release of tumor-
associated antigens (TAAs), pathogen-associated molecular
patterns (PAMPs), and danger-associated molecular
patterns (DAMPs). These can activate antigen-presenting
cells (APCs), including antigen-cross-presenting dendritic
cells (DCs). Activated APCs then activate the immune cells,
resulting in the generation of CD4+ T cells, CD8+ T cells, and
NK cells directed toward tumor and viral antigens (Burman
et al., 2020; Schirrmacher and Fournier, 2014) (Figure 2). It is
worth mentioning that NDV does not replicate in the normal
cells of non-avian hosts (Fiola et al., 2006).

NDV is an effective oncolytic agent. The oncolytic
properties of NDVs are also correlated with the pathogenic
classification of NDV strains (lytic or non-lytic) (Dey et al.,
2014). It has been found that mesogenic and velogenic NDVs
are lytic while lentogenic NDV is non-lytic (Fournier et al.,
2012; Ganar et al., 2014). Velogenic NDV kills cancer cells
rapidly because they destroy the cytoplasmic membrane of
infected cells (Wu et al., 2014). Lytic NDV exhibits multi-loop
replication, whereas the non-lytic virus exhibits only single-
loop replication (Fournier et al., 2012). In addition, the
replication process of NDV takes place in the cytoplasm.
This replication mode prevents the virus from integrating
with the host genome or recombining with the human virus
itself (Ganar et al., 2014). Therefore, NDV is non-pathogenic
to humans and thus relatively safe with no side effects, which is
a significant advantage of NDV as an oncolytic agent.

MULTIPLE ANTITUMOR MOLECULAR
MECHANISMS OF NEWCASTLE DISEASE
VIRUS
The induction of apoptosis, autophagy, necroptosis, and
immunogenic death (ICD), as well as the stimulation of the
immune system, are among NDV’s oncolytic processes
(Cuadrado-Castano et al., 2015; Zhang et al., 2018; Shao
et al., 2019; Kan et al., 2021). The antitumor mechanism of
NDV is briefly described in the following section.
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Newcastle Disease Virus Activates the
Immune Response
As mentioned earlier, NDV selectively infects tumor cells and
rapidly replicates in tumor cells to directly dissolve tumors (Fiola
et al., 2006). Significantly, NDV oncolysis reshapes the tumor
microenvironment (TME), transforming cold tumors into hot
tumors (Burman et al., 2020). This process is beneficial for
immune cells to infiltrate tumors. On the one hand, NDV
induces the release of the risk-related molecular model of
strong antitumor immunity after oncolysis, such as TAAs,
PAMPs, and DAMPs (Figure 2). These key risk–related
molecular models can activate not only some innate immune
cells (NK cells) but also tumor-specific T cells (CD4+ and CD8+

T cells) and recruit APCs into the tumor to initiate an immune
response (Schild et al., 1989; Ricca et al., 2018). Remarkably,
upregulation of many immune checkpoint molecules (CTLA-4
and PD-1) has been observed on CD4+ and CD8+ T cells in recent
years (Zamarin et al., 2014; Nakao et al., 2020). This suggests the
possibility of combining NDV and immune checkpoint inhibitors
to break immune resistance. On the other hand, the activated
non-specific immune cells kill and devour infected tumor cells
that are not lysed or resistant to viral oncolysis (Fuertes et al.,
2011); when the inflammatory response to NDV infection helps
the immune system clear tumors, it also causes immune cells to

clear NDV, limiting antitumor effects (Buijs et al., 2014). As a
result, developing NDV-based cancer regimens necessitates
striking a balance between appropriate viral replication, tumor
lysis, and immune response activation.

Newcastle Disease Virus Mediates the
Apoptosis Pathway
Apoptosis usually occurs as a defense mechanism, such as in the
immune response or when cells are damaged by harmful
substances (Norbury and Hickson, 2001); while NDV can
induce apoptosis to dissolve tumors (Figure 3). The oncolytic
selectivity of NDV on tumor cells depends on tumor cell
resistance to apoptosis (Mansour et al., 2011). NDV infection
induces the apoptosis of tumor cells mainly through the
exogenous and the endogenous pathways (mitochondrial-
related pathways) (Liao et al., 2017; Song et al., 2019). Tumor
cells infected with NDV can cause the release of cytokines such as
IFN-α, IFN-β, and TNF-α, which activates the NF-kB signaling
pathway, which in turn stimulates the exogenous apoptotic
pathway (Wilden et al., 2009; Elankumaran et al., 2010).
Furthermore, compared with normal cells that can secrete
both IFN-α and IFN-β, tumor cells infected with NDV strain
AF2240 only release IFN-β (Ch’ng et al., 2013). A study by Ghrici
et al. (2013)revealed that the mitochondrial-related pathway may

FIGURE 2 | Process of NDV through which it infects tumor cells and activates the host immune system. NDV exerts its antitumor effect mainly in two stages. In the
first stage, the NDV binds to the sialic acid receptor on the surface of tumor cells through the HN protein, and then protein F initiates the fusion of the viral and host cell
membranes. Then, the viral RNA polymerase transcribes the viral negative single-stranded RNA into positive single-stranded RNA as a template for mRNA and protein
synthesis. The rough endoplasmic reticulum processes surface proteins F and HN, assembled on the host cell membrane and germinated to produce new virions
that begin a new round of tumor cell infection. In the second stage, the virus-mediated direct oncolysis leads to the release of TAAs, PAMPs, and DAMPs that activate
APCs, including dendritic cells capable of antigen cross-presentation. Activated APCs activate immune cells, resulting in the generation of CD4+ T cells, CD8+ T cells, and
NK cells directed toward tumor and viral antigens. NDV, Newcastle disease virus; HN, hemagglutinin–neuraminidase; F, fusion protein; dsRNA, double-stranded RNA;
ssRNA, single-stranded RNA; TAAs, tumor-associated antigens, PAMPs, pathogen-associated molecular patterns, DAMPs, danger-associated molecular patterns;
APCs, antigen-presenting cells.
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be the central activator in NDV-induced apoptosis. They found
that AF2240 infected cells activated the opening of mitochondrial
transition pores, resulting in the activation of caspase-8 and then
the viral NP gene expression. Therefore, the apoptosis-inducing
effect of NDV may be independent of virus replication and
protein synthesis. In 2015, the p38/MAPK pathway was fully
elucidated in NDV-mediated apoptosis (Ch’ng et al., 2015). In
NDV-infected tumor cells, phosphorylation of p38
mitogen–activated protein kinase (MAPK) was increased by
proinflammatory cytokines during infection. This cytoplasmic
stimulation degrades the inhibitor of NF-κB, thus releasing NF-
κB (Lawrence, 2009). Furthermore, NDV stimulates the immune
system to produce cytokines such as IFN-λ (Bu et al., 2016a),
which targets phosphor-STAT1 degradation to block IFN-I
signaling (Qiu et al., 2016) and exerts an antitumor effect.
Thus, the IFN responsiveness may provide a detection
indicator for virotherapy (Pease and Kratzke, 2017). ER stress
contributes to the antiviral response to NDV by inducing and
increasing apoptosis (Bu et al., 2016b; Shokeen et al., 2021). ER
stress reduces viral replication due to eIF2α phosphorylation and
induces an alternative caspase 12-dependent programmed cell
death response (Bu et al., 2016b; Yan et al., 2018).

Newcastle Disease Virus Regulates
Autophagy
Autophagy is an evolutionarily conserved intracellular process
that influences cellular immune responses (Su et al., 2015). At the
same time, autophagy is associated with various diseases such as
cancer (Smith and Macleod, 2019). The NDV infection also
induces tumor-specific autophagy (Figure 3). Many recent
studies have focused on the critical role of autophagy in the
viral treatment of cancers (Huang et al., 2018; Mattoscio et al.,
2018). In addition, NDV exploits the autophagic processes to
facilitate their replication, enhancing oncolysis against tumor
cells, often leading to tumor necroptosis (Cheng et al., 2016).
Furthermore, NDV promotes viral replication via autophagy by

inhibiting caspase-dependent apoptosis in cancer cells. Because
NDV-induced apoptosis, host immune response, and autophagy
affect NDV replication in cancers, it is reasonable to conclude
that apoptosis and autophagy are mutually regulated (Pei et al.,
2016; Ravegnini et al., 2017; Zhang et al., 2017). Previous research
study has revealed that the oncolytic NDV strain NDV/FMW
promotes apoptosis in lung cancer cells and facilitates oncolysis in
resistant tumor cells suggesting a link between apoptosis and
autophagy. Its effect is amplified by the pharmacological
regulation of autophagy (Hu et al., 2015). Thus, NDV induces
autophagy in apoptotic pathways through the regulation of
autophagic activity (Figure 3). Then autophagy inhibits
apoptosis and contributes to NDV infection in cancer cells,
activating immunity responses in vivo and eventually killing
the tumor cells.

PRECLINICAL APPLICATION OF
NEWCASTLE DISEASE VIRUS IN VARIOUS
CANCERS
NDV has been widely used in preclinical research as a novel
anticancer drug for numerous solid tumors and resistant cancers
(Table 1). Combining NDV therapy with various cancer
medications may fully activate the innate and adaptive
antitumor immunity based on the inherent oncolytic
capabilities of NDV and its interaction with the immune
system. This part summarizes NDV’s use in the preclinical
treatment of various cancers.

Gastric Cancer
Gastric cancer is one of the most common malignancies in the
digestive system and the second leading cause of cancer-
related deaths worldwide, with an approximately overall 5-
year survival rate of 30% (Ma et al., 2019; Zhao et al., 2019).
Although significant development has been achieved in the
treatment of gastric cancer, the prognosis of most patients with

FIGURE 3 | NDV-induced cell death in tumor cells. NDV regulates cell death through multiple mechanisms after infection with tumor cells, including the p38/MAPK
pathway, ER stress, apoptosis pathway, and autophagy pathway. STAT1, signal transducer and activator of transcription 1; ER, endoplasmic reticulum.
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gastric cancer remains poor (Liu et al., 2020). Fortunately, the
established NDV strains can effectively target and kill gastric
cancer cells and activate immune responses (Ma et al., 2019;
Liu et al., 2020; Wang et al., 2020), improving tumor treatment
efficacy. To detect the oncolytic effect of NDV in gastric
cancer, NDV–GFP was constructed by Wong et al. (2010)by

inserting the enhanced green fluorescent protein (EGFP) gene,
which is a reporter gene. Their study revealed that the GFP-
expressing cells counterstained positive for the
carcinoembryonic antigen expression in peritoneal lavage
samples from gastric adenocarcinoma patients undergoing
staging laparoscopy.

TABLE 1 | NDV strains in the treatment of different cancers in preclinical trials.

Cancer type NDV strain Combination Outcome Reference

Gastric cancer NDV (F3aa) — There was no gross tumor in six (40%) NDV-treated mice, and the nodules
were significantly smaller than untreated mice

Song et al. (2010)

rL-hIFN-λ1 — rL-hIFN-λ1 inhibited the growth of gastric cancer cell lines which contained
the IFNλ-R1 receptors and accelerated cancer cell apoptosis

Bu et al. (2016a)

NDV-D90 — NDV-D90 induced gastric cancer cell apoptosis and reduced cell invasion in a
dose-dependent manner in the highly differentiated gastric cancer cell line

Sui et al. (2017)

Liver cancer rNDV-18HL — rNDV-18HL selectively replicated in orthotopic HCC xenografts, which
induced tumor necrosis, reduced intrahepatic metastasis, and prolonged the
survival in mice

Wei et al. (2015)

NDV/Anh-IL-2 — NDV/Anh-IL-2-treated animals exhibited significantly increased numbers of
tumor-infiltrating lymphocytes

Wu et al. (2016)

LaSota Fludarabine The combination of fludarabine with NDV significantly improved NDV-
mediated antitumor immunity and prolonged survival in a mouse model
of HCC

Meng et al. (2019)

AF2240 and
V4-UPM

5-Fluorouracil The combination of NDV and 5-fluorouracil had greater antitumor efficacy
than NDV or 5-FU alone

Assayaghi et al.
(2019)

Lung cancer rL-RVG — The growth of A549 cells in the rL-RVG group was inhibited more effectively
than those infected with the wild-type NDV strain

Yan et al. (2015)

NDV/FMW Chloroquine Treatment of spheroids with the autophagy inhibitor chloroquine increased
NDV/FMW-induced cytotoxicity

Hu et al. (2015)

Breast cancer AMHA1 — NDV is replicated efficiently in cancer cells and spares normal cells and
induces morphological changes and apoptosis in breast cancer cells

Al-Ziaydi et al. (2020a)

AF2240 — Breast cancer cells in allotransplanted mice treated with AF2240 showed a
noticeable inhibition of tumor growth and induced apoptotic-related
cytokines

Raihan et al. (2019)

AMHA1 2-Deoxyglucose The combination therapy group induced the highest rate of tumor growth
inhibition (100%), followed by the NDV group (96.8%)

Zhao et al. (2008)

Cervical cancer LaSota — NDV treatment significantly reduced the viability of cervical cancer cells and
inhibited tumor growth by inducing ROS-mediated apoptosis

Keshavarz et al.
(2020a)

NDV HB1 — Peritumoral injection of NDV oncolysate induces robust antitumor immune
responses in the mouse model

Mozaffari Nejad et al.
(2021)

Colorectal cancer R2B Mukteshwar — Significant tumor lytic activity was evident when R2B Mukteshwar was
injected via the intratumoral route

Sharma et al. (2017)

rAF-IL12 — rAF-IL12 regulated the immune system and increased the expression levels
of apoptosis-related genes in HT29 tumor-bearing nude mice

Syed Najmuddin et al.
(2020)

Prostate cancer NDV/FMW — In nude mice bearing prostate tumors, the tumors injected with the
supernatants of NDV/FMW-infected cells grew smaller than mock-treated
tumors

Wang et al. (2020)

Glioblastoma LaSota Temozolomide The combination of NDV-LaSota and temozolomide (TMZ) was effective in
inducing apoptosis of glioma cells in vitro and in vivo

Bai et al. (2018)

MTH-68/H Mesenchymal stem
cells

NDV induces dose-dependent cell death in glioma cells and a low level of
apoptosis and inhibition of self-renewal in glioma stem cells

Kazimirsky et al.
(2016)

Melanoma NDV-NS1 Vanadyl sulfate NDV, in combination with vanadyl sulfate, significantly increased the number
of immune cells and resulted in rapid tumor regression in the B16-F10 mouse
model

McAusland et al.
(2021)

Clear cell renal cell
carcinoma

AF2240 — AF2240 induced the activation of the p38 MAPK/NF-κB/IκBα pathway in
clear cell renal cell carcinoma, which resulted in cell death due to apoptosis

Ch’ng et al. (2015)

Orthotopic glioma NDV HB1 — NDV HB1 treatment significantly prolonged median survival (50%) and
induced a long-term, tumor-specific immunological memory response

Koks et al. (2015)

aNDV(F3aa): the mutant NDV strain with the F cleavage site is modified with three amino acids; rL-hIFN-λ1: the recombinant NDV strain LaSota containing human IFN-λ1 gene; NDV-D90:
the NDV strain that was isolated from natural sources in China; rNDV-18HL: the recombinant NDV Italien expressing the chimeric HAb18 antibody; rNDV/Anh-IL-2: the recombinant NDV
Anhinga strain expressing IL-2 cytokine; NDV/FMW: the oncolytic NDV strain FMW; NDV AMHA1: the attenuated strain AMHA1 of NDV; AF2240: the NDV strain AF2240 that was isolated
by the Malaysian Veterinary Research Institute in 1960; NDV HB1: the avirulent, non-lytic Hitchner B1 strain of NDV; R2B Mukteshwar: the R2B Mukteshwar strain of NDV; rAF-IL12: the
recombinant NDV-AF2240 strain expressing IL-12 cytokine; MTH-68/H: the live attenuated oncolytic viral strain of the NDV; NDV-NS1: the recombinant fusogenic NDV expressing the
influenza virus NS1 protein.
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Furthermore, NDV–GFP may provide a more sensitive
method than conventional cytology for detecting gastric
cancer. Bu et al., 2019a and Bu et al., 2019breported that the
recombinant LaSota strain expressing rL-RVG (rabies virus
glycoprotein) suppressed nAChRs (nicotinic acetylcholine
receptors) to reduce cell migration and EMT (epithelial to
mesenchymal transition) in gastric cells. Moreover, rL-RVG
suppressed the growth of gastric cancer subcutaneous tumor
cells in vivo (Bu et al., 2019a).

As previously stated, NDV infection results in the release of
multiple cytokines, including type I interferon (IFN), interleukin
1 (IL-1), and tumor necrosis factor-alpha (TNF-α) in vitro and in
vivo (Shobana et al., 2013). Meanwhile, it has been confirmed that
NDV strains armed with IFN or IL gene result in higher oncolytic
efficacy in tumor cells (Mohamed Amin et al., 2019). For gastric
cancer, the presence of various polymorphisms for genes coding
IL-2, which is associated with poor prognosis in gastric cancer
patients, might provide a therapeutic target to inhibit gastric
cancer progression (Bai et al., 2014; Andersen et al., 2017). Thus,
NDV has an excellent application prospect in immunotherapy for
gastric cancer. In addition, it is reported that immune cells with
improved survival and prognosis induce immunological memory
in the gastric cancer cells and enhance tumor regression (Wong
et al., 2010; Lam et al., 2011). In humans, the progression of
gastric cancer is associated with the immune function of specific
lymphocytes, such as NK cells (Liu et al., 2015; Subhash et al.,
2015; Zhao et al., 2018). Cytokines are secreted after the NDV
infection of tumor cells, which causes NK cells to become
activated. The activated NK cells promote the cytokine release
and the activation of other immune cell functions (Bie et al.,
2016). To summarize, NDV has a severe toxic effect on gastric
cancer cells. NDV-activated cytokines and immune cells, on the
other hand, increase antitumor cytotoxic activity against gastric
cancer cells and are subsequently predicted to cure gastric cancer.

Liver Cancer
Liver cancer is the fifth most frequent cancer worldwide and the
fourth contributor to cancer-related death globally (Mokrane
et al., 2020; Ioannou, 2021). Curative resection or liver
transplantation is the primary treatment for individuals with
liver cancer, but therapeutic success is still poor (Huge et al.,
2020). Therefore, novel treatment strategies are urgently needed
to eliminate cancer cells effectively. Chen et al. (2016)
demonstrated that a recombinant DNA vaccine containing the
NDV HN gene inhibits hepatocellular carcinoma cell
proliferation (HCC). Furthermore, it induces autophagy via
the mitochondrial pathway in vitro and in vivo. This indicates
that NDV-based cancer therapy is a promising candidate for liver
cancer treatment.

In addition, modified NDV can significantly improve the
therapeutic efficacy of NDV in the liver cancer model (Song
et al., 2007; An et al., 2016). For some examples, NDV/Anh-
TRAIL promotes the mouse liver cancer model to produce
immune memory and protect mice from further malignant
tumor challenges (Wu et al., 2017). IFN-stimulated gene
(ISG)-12a mediates this process, but high basal ISG-12a may
inhibit the replication and infection of NDV (Liu et al., 2014). An

NDV vector with an L289A mutation inside the NDV F gene can
improve NDV’s oncolytic action on HCC cells in vitro and in
vivo, indicating promising potential (Altomonte et al., 2010).
NDV expressing the chimeric antibody (cHAb18) against tumor-
associated antigen CD147 inhibits HCC cell migration and
invasion, induces tumor necrosis, and prolongs the survival
time of mice (Wei et al., 2015).

Combination therapy, which offers more significant
advantages than single-drug therapy, is becoming an
increasingly essential aspect of anticancer therapies (Nastiuk
and Krolewski, 2016; Martin and Bell, 2018). The combination
of NDV therapy and traditional/non-traditional therapies may
become a novel choice for HCC treatment. A recent study
confirms that fludarabine as an adjuvant enhances the
antitumor immunity of NDV-mediated HCC treatment (Meng
et al., 2019). Also, the combination treatment of NDV with 5-FU
has greater antitumor efficacy than treatment with NDV or 5-FU
alone (Assayaghi et al., 2019). Although OVs can strongly trigger
immune activation, a negative feedback is usually upregulated in
TME (Reale et al., 2019). Meng et al. (2020)indicated that
dichloroacetate improved NDV-mediated viral immunotherapy
for HCC by reducing the negative immunological feedback and
boosting viral replication. These data suggest that more research
into the clinical transformation of NDV in immunotherapy for
liver cancer is essential.

Lung Cancer
Non–small cell lung cancers (NSCLCs) account for 85% of lung
cancer cases and are the leading cause of cancer death (Tan et al.,
2021). Increasing evidence suggests that NDV, in addition to
direct oncolysis, mediates lung cancer cell proliferation by
controlling the cell immune response (Ye et al., 2018; Shao
et al., 2019). NDV-D90, an NDV strain isolated from natural
sources, exerts an antiproliferative effect in A549 cells (human
lung cancer cell lines) (Fu et al., 2011). Another NDV strain, RL-
RVG, decreased tumor growth, subcutaneous tumor necrosis,
tumor apoptosis, and increased clusters of differentiation (CD)3-/
CD49 + NK cells in the tumor-bearing mice group (Yan et al.,
2014). These findings emphasize the significance of NDV eliciting
an antitumor immune response in lung cancer treatment.
Furthermore, multiple studies have found that the occurrence
and progression of cancer are linked to the deregulation of a range
of microRNAs (miRNAs) (Hao et al., 2011; Che et al., 2020). The
overexpression or suppression of miR-204 was substantially
associated with NDV-induced oncolysis in A549 cells (Liang
et al., 2021). Therefore, targeting some key miRNAs may
provide a new direction for cancer therapy.

Autophagy is a defensive reaction to the cellular stress, such as
viral infection. NDV inhibits mitophagy to increase viral
replication by inhibiting intrinsic apoptosis (Meng et al.,
2014). The induction of ICD determinants by NDV was
significantly reduced when autophagy-related genes were
knocked out in lung cancer cells (Ye et al., 2018). Moreover,
the treatment of lung cancer spheroids with the autophagy
inhibitor chloroquine increases NDV/FMW-induced
cytotoxicity (Hu et al., 2015), indicating NDV may be a
potential strategy for targeting lung cancer stem cells. These
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findings imply that NDV combined with autophagy modulators
helps improve NDV’s cancer therapeutic activity.

Breast Cancer
According to the most recent cancer statistics, breast cancer is
currently the most frequent malignancy in women and one of the
significant causes of death worldwide (Sung et al., 2021). Breast
cancer can be classified based on immunohistochemical markers
such as estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (HER2) (Xupeng
et al., 2021). Despite considerable advancements in breast
cancer treatment, patients with triple-negative breast cancer
(TNBC) have restricted treatment options due to a lack of
recognizable specific markers (Kalscheuer et al., 2019). NDV
represents a great potential candidate in the treatment of
breast cancer. According to the Kalantari et al. (2020)study,
NDV killed breast cancer cells by triggering the intrinsic
apoptotic pathway, characterized by elevated Bax, caspase-9,
and caspase-3. NDV-D90 induced apoptosis by differentially
modulating the expression of ERα and GPER in ER-positive/
negative breast cancer cells exposed to estrogen, respectively
(Shan et al., 2021).

Furthermore, NDV-AF2240, as an ideal inducer of apoptosis,
induces the apoptosis of breast cancer cells and is more cytotoxic to
breast cancer than other NDV strains (Raihan et al., 2019). These
results suggest that NDV promotes breast tumor regression via
apoptotic-dependent pathways. In addition, the breast cancer cells
infected with NDV showed a significant decrease in glycolysis
activity (Al-Ziaydi et al., 2020a). NDV also plays an essential role
in the combined treatment of breast cancer. The 2-DG (2-
deoxyglucose), a kind of glucose analog in combination with
NDV, showed more significant tumor growth inhibition than in
a single treatment (Al-Shammari et al., 2019). D-Mannoheptulose, a
particular hexokinase inhibitor, was employed by Ahmed et al. to
prevent glycolysis and increase the antitumor activity of NDV (Al-
Ziaydi et al., 2020b). The hemagglutinin–neuraminidase (HN)
protein of NDV enables NDV to target breast cancer cells (Al-
Ziaydi et al., 2020b) effectively. Therefore, NDV has a promising
future in the treatment of breast cancer.

Other Cancers
As an oncolytic agent, NDV has been reported in other types of
cancers (Table 1), including cervical cancer (Keshavarz et al.,
2020a), prostate cancer (Wang et al., 2020), colorectal cancer
(Song et al., 2019), and glioblastoma (Abdullah et al., 2014).
Cancer is a dynamic disease (Dagogo-Jack and Shaw, 2018), so
there are significant differences in cancer cells from different
tissue sources, even if there is phenotypic and functional
heterogeneity among cancer cells in the same tumor
(Meacham and Morrison, 2013). In addition, NDV has other
killing mechanisms in different cell lines (Ginting et al., 2019; Li
et al., 2019), suggesting that we should carry out the targeted
treatment when developing NDV therapy. MSCs (mesenchymal
stem cells) represent a potential delivery method (Uder et al.,
2018). For instance, Mohsen K et al. found that an MSC-
engineered system significantly reduced tumor growth,
enhancing CD8+ T-cell cytolysis responses and splenic

cytokine responses. This finding demonstrates that MSCs
expressing oncolytic NDV may be a viable method for cancer
immunotherapy (Keshavarz et al., 2020b).

CLINICAL APPLICATION OF NEWCASTLE
DISEASE VIRUS

Increasing clinical evidence indicates that oncolytic NDV as a
therapeutic agent (a type of immunotherapy) can eliminate
glioma, metastatic cancer, and advanced solid tumor cells
while stimulating patients’ immune systems as well (Table 2).

The major NDV strains evaluated for direct human injection are
PV-701 (Pecora et al., 2002), 73-T (Cassel and Garrett, 1965), MTH-
68/H (Csatary et al., 1999), and ATV-NDV (Schirrmacher and
Fournier, 2009), which are lytic andHUJ (Yaacov et al., 2008), which
is non-lytic. In 1964, Wheelock and Dingle (1964) first reported the
use of NDV in the treatment of human cancer. After a patient with
acute myeloid leukemia was continuously inoculated with the NDV
Hickman strain, the number of leukemia cells decreased rapidly, and
the symptoms improved, which lasted for nearly 2 weeks (Wheelock
and Dingle, 1964). In the following year, a study by William Cassel
and his colleagues showed that patients with stage II and III
melanoma resected with NDV-73T strain oncolysis were
vaccinated with improved overall survival (Cassel et al., 1977;
Murray et al., 1977; Cassel et al., 1983). Long-term follow-up of
these patients showed a 10-year survival rate ofmore than 60% and a
15-year survival rate of 55% compared with historical controls
(Cassel and Murray, 1992; Batliwalla et al., 1998). This is the
early use of NDV-based tumor vaccines for active tumor–specific
immunity. Liang et al. later confirmed using an autologous
NDV–modified tumor cell vaccination to treat gastrointestinal
cancers. They compared 310 patients with stage I–IV colorectal
cancer who received resection and immunotherapy with 257
patients who received chemotherapy with resection alone. The
median overall survival of the vaccine group was more than
7 years, while that of the resection group was 4.46 years (Liang
et al., 2003; Burman et al., 2020). In non-controlled experiments,
adjuvant immunizationwith autologousNDV–modified cancer cells
was safe and advantageous.

Immune checkpoint inhibitors are one of the most promising
agents in tumor therapy in recent years (Nettelbeck et al., 2021).
Durvalumab is a selective, high-affinity, human IgG1 monoclonal
antibody that blocks programmed death-ligand 1 (PD-L1) binding
to programmed death 1 (PD-1) (Stewart et al., 2015). Recombinant
NDV (MEDI5395) expressing granulocyte-macrophage colony-
stimulating factor (GMCSF), based on the strain NDV-73T, is
being evaluated with intravenous administration (NCT03889275)
in conjunction with durvalumab in patients with various advanced
malignant tumors (Burke et al., 2020). Other recombinant NDVs are
at different stages of development and are expected to enter clinical
practice in the next few years. Meanwhile, NDV can be armed with
foreign genes via the reverse genetic technology to achieve more
effective and diverse antitumor effects. The combination of genetic
engineering NDVwith computational approaches may be beneficial
to enhance the efficacy of clinical cancer treatment (Lathwal et al.,
2020).
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CONCLUSION

The tumor is a recalcitrant disease that poses a severe threat to
human life and health. NDV acts as a potent oncolytic agent by
causing apoptosis, autophagy and necrosis in tumor cells, limiting
cell metabolism, and generating a series of immunological
responses. At the same time, it has essentially no effect on
human normal cells. NDV is also one of the few viruses that
have been found to produce partial or even complete responses
when treated with a single medication. The persistence of these
responses suggests that the virus’s therapeutic effect may depend
not only on direct oncolysis but also on the virus’s potential to
promote long-term immunity. With the development of
virotherapy, the activation of the immune responses through
cancer virotherapy may eradicate tumors. NDV currently shows
great promise in preclinical and clinical trials.

NDV replication occurs in the cytoplasm and does not
integrate into the genome of the host, maintaining the safety
of the parental virus. The oncolytic property of NDV is either lytic
or non-lytic that only infect cells with a disturbed interferon
system, which improves the safety of NDV as a vaccine. NDV
does not need to be armed with foreign genes to have a strong
antitumor effect and stable expression of foreign genes. The
combination of NDV virus therapy and traditional/new tumor
treatment techniques has been reported and has broad
application prospects. However, many questions about NDV
therapy, such as those about other OVs, remain unresolved,
including the practical techniques of administration, the best
genetic engineering strategies, the therapeutic sequence of
immune checkpoint inhibitors, and the best combination
partners. There is currently no conventional optimum method
for how and when patients should use the virus. The tumor
microenvironmental barrier and the cytoplasmic matrix of solid
tumors may interfere with and inhibit virus invasion and
replication, reducing its oncolytic action. Excessive foreign

genes will affect the replication of NDV. Moreover, the
preparation of NDV needs deep purification to obtain clinical-
grade virus preparation.

Cancer patients are usually immunocompromised, while
immunocompromised patients may benefit more from OV
therapy. For example, cancer patients infected with COVID-19
have low levels of antibodies against the spike protein. An
oncolytic vaccine based on the spike protein not only has a
strong antitumor effect but also may be beneficial to the
prevention of COVID-19. Further understanding of the
immunological system may help develop more effective
oncolytic NDV and the elimination of the NDV treatment
barrier in solid tumors. The combination of NDV therapy and
traditional/non-traditional therapies may become a novel choice
for cancer treatment. Combining NDV viral therapy with existing
immunotherapy, which uses NDV’s effect on the immune
response, may result in a higher antitumor effect. As a result,
NDV is likely to be an ideal tumor therapeutic agent in the future.

AUTHOR CONTRIBUTIONS

Conceptualization, FH, YW, and GR; writing—original draft
preparation, FH, CD, YZ, and YZ; writing—review and
editing, FH, YW, and GR; supervision, YW and GR; project
administration and funding acquisition, FH and YW.

FUNDING

This study was supported by the Public Welfare Technology
Project of Zhejiang Province (LGF21H160033), the Zhejiang
Medical Technology Plan Project (2021KY047), the National
Natural Science Foundation of China (No. 81803069), and the
Grant for 521 talent project of ZSTU.

TABLE 2 | NDV strains for different cancer treatments in clinical trials.

NDV strain Reference Cancer Phase Patient Outcome

ATV-NDV-
αHN-αCD28

Schirrmacher
et al. (2015)

Colorectal cancer Phase I Fourteen patients whom all suffered from
stage IV colorectal cancer (with distant
metastases)

The decrease in CEA in four patients and the partial
response of metastases in four patients were
observed. Seven patients were still alive in 2009

ATV-NDV Steiner et al.
(2004)

Glioblastoma Phase
III

Twenty-three patients with a pathologically
confirmed glioblastoma

91% of vaccinated patients survived 1 year, 39%
survived 2 years, and 4% were long-term survivors

ATV-NDV Karcher et al.
(2004)

Head and neck
squamous cell
carcinoma

Phase
III

Twenty patients with pathologically
confirmed head and neck squamous cell
carcinoma

Percentages of survival of vaccinated patients with
stage III and stage IV tumors (n = 18) were 61% at
5 years

MTH-68/H Csatary et al.
(2004)

Glioblastoma
multiforme

Phase I Four patients with advanced high-grade
glioma

All patients (n = 4) with advanced high-grade glioma
were treated with MTH-68/H, resulting in survival
rates of 5–9 years

NDV-73T Batliwalla et al.
(1998)

Melanoma Phase II Fifty-one patients with AJCC stage III
melanoma

The 10-year survival of the NDV-73T group of
patients was more than 60%, and the overall 15-
year survival was 55%, with no adverse reactions

NDV-HUJ Freeman et al.
(2006)

Glioblastoma
multiforme

Phase
I/II

Eleven patients with glioblastoma
multiform based on histology

Toxicity was minimal, with grade I/II constitutional
fever seen in five patients. One patient achieved a
complete response (1/11)

aATV-NDV: the NDV-modified autologous tumor vaccine; ATV-NDV-αHN-αCD28: the ATV-NDV strain expressing the anti-CD28 fusion protein, coupled to viral HN anchor molecules;
NDV-73T: themesogenic strain of NDV.; MTH-68/H: the live attenuated oncolytic viral strain of the NDV; NDV-HUJ: he NDV strain isolated from naturally attenuated B1 NDV vaccine strain.
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