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Abstract: Currently, more and more remotely sensed data are being accumulated, and the spatial
analysis methods for remotely sensed data, especially big data, are desiderating innovation. A deep
convolutional network (CNN) model is proposed in this paper for exploiting the spatial influence
feature in remotely sensed data. The method was applied in investigating the magnitude of the
spatial influence of four factors—population, gross domestic product (GDP), terrain, land-use and
land-cover (LULC)—on remotely sensed PM2.5 concentration over China. Satisfactory results were
produced by the method. It demonstrates that the deep CNN model can be well applied in the field
of spatial analysing remotely sensed big data. And the accuracy of the deep CNN is much higher
than of geographically weighted regression (GWR) based on comparation. The results showed that
population spatial density, GDP spatial density, terrain, and LULC could together determine the
spatial distribution of PM2.5 annual concentrations with an overall spatial influencing magnitude
of 97.85%. Population, GDP, terrain, and LULC have individual spatial influencing magnitudes
of 47.12% and 36.13%, 50.07% and 40.91% on PM2.5 annual concentrations respectively. Terrain
and LULC are the dominating spatial influencing factors, and only these two factors together may
approximately determine the spatial pattern of PM2.5 annual concentration over China with a high
spatial influencing magnitude of 96.65%.
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1. Introduction

Remote sensing technology has developed rapidly since the 1960s [1], and an abundance of
remote sensing data has been accumulated in this 50-year period. Although abundant remotely sensed
data have been applied to many fields, such as ecology, environment, geography, etc., the spatial
analysis method for remotely sensed lattice data desiderates innovation. A single spatial variable
generally has autocorrelation [2] (i.e., spatial dependence [3,4]), and various spatial variables have
correlation. Spatial autocorrelations can be analysed with local indicators of the spatial association
(LISA) index [5] (e.g., local Moran I [6], local Geary c index [7]). The main objective of spatial analysis
is to identify the natural relationships that exist between variables [8,9]. The mainstream classical
spatial analysis models, e.g., spatial lag model [10,11], spatial error model [10,11], and Bayesian
spatial regression model [12], can only evaluate the overall or average linear correlation feature over
a whole study region, neglecting the details of local area. These methods ignore the consequences
of spatial heterogeneity [13]. The majority of spatial analysing methods assume stationary space.
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However, assuming spatial convariance structure to be stationary is not so reasonable [14]. The spatial
influencing relationship can better be explored when the analysis is local and more detailed results can
be yielded [15]. The inclusion of a spatial heterogeneity resulting from differences in environmental
conditions, socioeconomic dynamics, and other factors reinforces the need for more regionalized
spatial analyses in exposure assessment and public health [16]. Although, the geographically weighted
regression (GWR) [17] method considers local details; however, it can only describe a linear or simple
non-linear spatial influencing relationship. In the era of big data, the need for developing advanced
spatial analysis methods (e.g., machine learning methods) for remotely sensed data is urgent.

Previously, there are several studies that have applied machine learning methods to address the
influencing factors on PM2.5 concentrations. Zheng et al. [18] used traditional artificial neural networks
to model spatial correlation between Beijing’s air qualities and influencing factors, e.g., meteorology,
traffic flow, human mobility. Yan et al. [19] predicted the daily average PM2.5 concentration in
Nanjing, Beijing, and Sanya, combining meteorological and contaminant factors based on the Long
Short-Term Memory (LSTM) model. Suleiman et al. [20] presented a machine learning model to
predict the traffic-related PM10 and PM2.5 concentrations from various variables (e.g., traffic variables).
Hsieh et al. [21] proposed a semi-supervised learning algorithm to optimize the monitoring locations
of air quality in Beijing based on spatial correlation. Certainly, there are some studies which utilized
typical methods to investigate the influence of satellite-based PM2.5. He et al. [22] used empirical
orthogonal function (EOF) to analyse the relationship between remotely sensed PM2.5 and climate
circulation transformation in East China. Hajiloo et al. [23] employed geographical weight regression
(GWR) to investigate impact of meteorological and environmental parameters on PM2.5 concentrations
in Tehran, Iran. Yang et al. [24] quantified the influence of natural and socioeconomic factors on PM2.5

pollution using the GeoDetector model [25,26].
This study proposed a spatial analysis method that exploits the spatial influencing feature

of remotely sensed data based on the deep CNN. CNN is a mainstream deep learning method
and can effectively extract the feature representations from a large number of images [27] and
object detection [28]. Some researchers have applied deep CNN in remote sensing classification.
Q. Zou et al. [29] and Zhao et al. [30] proposed a DBN method for high-solution satellite imagery
classification. H. Liang and Q. Li, C. Tao et al., and F.P.S. Luus et al. [31], Nogueira et al. [32],
Volpi et al. [33], Chen et al. [34], have employed deep CNN in hyperspectral imagery classification or
feature extraction. Some researchers have also employed deep CNN in synthetic aperture radar (SAR)
image classification, e.g., Du et al. [35] and Geng et al. [36]. To our knowledge, the research applying
deep CNN into spatial influencing of remotely sensed lattice data is very rare. This study aimed to
present a deep CNN model exploiting the magnitude of spatial influence of four factors—population,
gross domestic product (GDP), terrain, and land-use and land-cover (LULC)—to remotely sense
the annual mean concentration of PM2.5 over China. This model not only considers local spatial
heterogeneity but also has super nonlinear fitting ability. Therefore, the presented model is rooted
in a deep learning framework and may reduce uncertainty of the results obtained from a simplistic
correlation analysis or simple regression model, therefore giving better information to decision makers
of public health.

2. Materials and Methodology

2.1. Materials

The materials used in this research contain five types of data: remotely sensed PM2.5 concentration,
population spatial distribution density, GDP spatial distribution density, terrain data, and LULC
in China. The remotely sensed PM2.5 annual concentration dataset in 2010 was produced by the
Atmospheric Physics Institute of Dalhousie University in Canada [37] with a resolution of 0.1◦ × 0.1◦.
The population density data in this paper are cited in the Gridded Population of the World (GPW), data
of the UN-Adjust Population Density-v4 [38], published by a data centre in NASA’s Earth Observing
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System Data and Information System (EOSDIS), with a resolution of 30′ × 30′. GDP spatial distribution
density, terrain data, and LULC datasets were drawn from the Resources and Environmental Science
Centre of the Chinese Academy of Sciences (http://www.resdc.cn). All above-mentioned data were
projected by Albers Conic Equal Area with WGS-84 datum, and the resolution was unified to 10 km×
10 km.

2.2. Methodology

The methodology in this paper consists of two modules: processing geospatial data and
structuring the deep CNN model. The purpose of the former is to establish the dataset for the
deep CNN model. The deep CNN model undertakes the mission of fitting the complex function of
spatial correlation relationship.

2.2.1. Processing Geospatial Data

The deep CNN method is usually applied in image identification or classification, not directly
transplanted into analysing geospatial data. In the geospatial issue, spatial correlation and geographical
attribute need to be considered. Hence, geospatial data require technical processing to match the
deep CNN model structure. The four influencing factors generate inputs. Each pixel location contains
PM2.5 concentrations as output and four influencing factors. In view of spatial correlation, the pixel
location and the surrounding locations should be considered. The deep CNN model has the ability
of processing big data; therefore the order of spatial correlation can be amplified. In this paper, the
order of spatial correlation adopts n-order shape, (2n + 1)× (2n + 1) pixels (n = 1, 2, . . .). Figure 1
shows an illustration of 5-order shape of the spatial correlation extent, including 11 × 11 pixels.
Subsequently, it can extract the corresponding four sets of influencing factor attribute data for a pixel
location. Each dataset of influencing factors comprises the corresponding values of the surrounding
(2n + 1) × (2n + 1) pixels. In short, the PM2.5 annual concentration of a pixel location is affected
by the four influencing factors of its own and the surrounding n-order spatial correlation extent,
(2n + 1)× (2n + 1) pixels. The mathematic form can be expressed as follows:

C(PM2.5)
i = F

(
Popi|(2n+1)×(2n+1), GDPi|(2n+1)×(2n+1), Teri|(2n+1)×(2n+1), LULCi|(2n+1)×(2n+1)

)
+ ξi (1)

where C(PM2.5)
i is the PM2.5 annual concentration of the i-th pixel, Popi|(2n+1)×(2n+1),

GDPi|(2n+1)×(2n+1), Teri|(2n+1)×(2n+1), LULCi|(2n+1)×(2n+1) represent the four influencing factor
attribute values of the i-th pixel and its surrounding (2n + 1) × (2n + 1) pixels, and ξi represents
the error. The spatial influencing function F(.) can be learned by the deep CNN model.
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2.2.2. A Developed Deep Convolutional Neural Network Model

CNN contains two categories of cells in the visual cortex, simple cells which exploit local features
and complex cells which “pool” (e.g., maximizing, averaging) the outputs of simple cells within a
neighbourhood. The structure of CNN model which has two special aspects of local connections and
sharing weights is different from general deep learning models. A complete deep CNN stack three
types of layers, convolutional layers, pooling layers, and full connected layers.

The commonly used CNNs are 2-Dimensional CNN and 3- Dimensional (3-D) CNN. Figure 2
shows a 3-D CNN illustration with m (m = 1, 2, . . . ) filters and k (k = 1, 2, . . . ) convolution kernels.
The value of a neuron Sxyz

ij at position (x, y, z) of the j-th convolutional feature in the i-th layer can be
expressed as follows [34]:

Sxyz
ij = C(∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ki−1

∑
k=0

wpqk
ijm S(x+p)(y+q)(z+k)

(i−1)m + bij) (2)

where m indexes the convolutional feature in the (i− 1)th layer connected to the j-th convolutional
feature, and Pi and Qi are the height and the width of the convolutional kernel. Ki is the size of the
spatial influencing factors, wpqk

ijm is the value of position (p, q, k) connected to the m-th convolutional
feature, and bij is the bias of the j-th convolutional feature in the i-th layer.
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Figure 2. The illustration of 3-D convolution with m (m = 1, 2, . . . ) filters and k (k = 1, 2, . . . )
convolution kernels, the weights are color-coded.

This paper designs a deep 3-D CNN model for exploiting spatial influencing feature of remotely
sensed data. Figure 3 illustrates the presented deep CNN model architecture which contains including
four convolutional layers, four polling layers, and three hidden layers. And the activation function for
hidden layer adopted the Rectified Linear Unit (ReLU) function. The pooling mode employed average
mode. The batch normalization was set in each layer except for the output layer. The dropout ratio
and learning ratio were set as 25% and 1%, respectively. The dimension of the pre-processed input
neural layer is (2n + 1)× (2n + 1)× 4, including four sets of influencing factors with the i-th pixel
and its surrounding (2n + 1)× (2n + 1) pixels. Table 1 lists the experimental results when the spatial
correlation parameter n was assigned various values. It shows that the validation accuracy reaches
the highest when the spatial correlation parameter, n, is taken 9, although the training accuracy is
improved along with the increase of the parameter, n. Considering that the validation accuracy is better
indicator representing the accuracy of a model. Hence, the spatial correlation parameter, n, is assigned
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with nine. Then the input layer contains 19 × 19 × 4 neurons with the four factors’ attribute value.
The number of the output neuron is 11, labelled by PM2.5 annual concentration with 11 categories:
<10 µg/m3, 10 ∼ 20 µg/m3, 20 ∼ 30 µg/m3, 30 ∼ 40 µg/m3, 40 ∼ 50 µg/m3, 50 ∼ 60 µg/m3,
60 ∼ 70 µg/m3, 70 ∼ 80 µg/m3, 80 ∼ 90 µg/m3, 90 ∼ 100 µg/m3, >100 µg/m3.Int. J. Environ. Res. Public Health 2018, 15, x  5 of 11 

Figure 3. Illustration of the presented deep CNN model architecture exploiting spatial influencing feature of 
remotely sensed PM .  concentration, including four convolutional layers, four polling layers, and three hidden 
layers, the first layer is input containing four influencing factors’ values on a pixel, the output layer with 11 
neurons consisting of 11 categories of PM .  annual concentrations on the pixel location in the middle. 
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Figure 3. Illustration of the presented deep CNN model architecture exploiting spatial influencing
feature of remotely sensed PM2.5 concentration, including four convolutional layers, four polling layers,
and three hidden layers, the first layer is input containing four influencing factors’ values on a pixel,
the output layer with 11 neurons consisting of 11 categories of PM2.5 annual concentrations on the
pixel location in the middle.

3. Results

The remotely sensed PM2.5 annual concentration and influencing factors possessed 96,337 pixels,
among which, 86,903 pixels (accounting for the ratio of 90%) were used for deep learning, and the
remaining 9434 pixels (accounting for 10%) were reserved for validation. Training accuracy is defined
as the accuracy applied to the training data (i.e., 86,903 pixels), while validation accuracy is the accuracy
for the remaining data (i.e., 9434 pixels), and estimated accuracy is the accuracy for the total data (i.e.,
96,337 pixels). To investigate the integrated and respective spatial influence of the four various factors,
we exploited the congregate magnitude of spatial influence from the four factors and the separate
influencing magnitude from one or two factors.
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Table 1. Experimental results of the training and validation accuracy of the deep 3-D CNN model
when the spatial correlation parameter, n, is assigned various values.

Spatial Correlation Parameter, n Training Accuracy Validation Accuracy

1 67.94% 80.17%
2 77.71% 82.37%
3 88.08% 86.11%
4 92.01% 90.50%
5 94.51% 91.83%
6 96.53% 92.14%
7 97.35% 92.90%
8 98.30% 92.46%
9 98.71% 93.29%

10 98.87% 92.40%
11 99.29% 93.28%
12 99.53% 93.25%

3.1. Integrated Spatial Influencing Feature

If the four impact factors were all fed into the input layer, after 1000 epochs of learning, the training
accuracy of 86,903 pixels were 98.71%, and the validation accuracy of the remaining 9434 pixels
reached 93.29%. Figure 4 illustrates the spatial distribution of the original and estimated PM2.5 annual
concentration of the total 96,337 pixels using the trained deep learning model fed with the four
influencing factors.
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Figure 4. Original (A), estimated spatial distribution of PM2.5 annual mean concentrations in 2010
(B) by the deep CNN model and (C) Geographic Weighted Regression (GWR) model, with the four
influencing factors (population spatial density, GDP spatial density, terrain, and LULC) over China
in 2010.
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The estimated spatial distribution of PM2.5 annual concentration was nearly the same, except for
very few pixel locations. It indicated that the four factors (population spatial density, GDP spatial
density, terrain, and LULC) can almost determine the PM2.5 annual concentration. Furthermore,
Table 2 listed the corresponding confusion matrix between the original and estimated PM2.5 annual
concentration of the total 96,337 pixel locations by the four factors using the trained deep CNN model.
The result showed that although there are some incorrect estimated pixel values which were close
to the correct values, that is an obvious narrow diagonal band. The overall estimated accuracy is
97.85%. The estimated accuracy of the first category of PM2.5 annual concentration, <10 µg/m3,
reaches a maximum of 99.38%. The minimum and the second minimum predicted accuracies are
90.81% and 95.48% respectively, occurring on the eighth and eleventh category of 70 ∼ 80 µg/m3

and 90 ∼ 100 µg/m3. The estimated accuracy can be regarded as the spatial influencing magnitude
of the influencing factors on PM2.5 annual concentration. A high estimated accuracy reflects directly
a high spatial influencing feature. The results show that there is a strong correlation between PM2.5

annual concentration and the four factors. Especially while the trained deep CNN evaluated the
total 96,337 pixels, the overall estimated accuracy has reached up to 97.85%, indicating the spatial
influencing magnitude of the four factors on PM2.5 annual concentration.

Table 2. The confusion matrix of the original vs. estimated PM2.5 annual concentrations by the deep
CNN model fed by the four influencing factor data: population, GDP, terrain, and LULC.

96,337 Pixels
Original PM2.5 Annual Concentration (µg/m3 )

<10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90 90~100 >100

Estimated
PM2.5 annual
concentration

(µg/m3)

<10 18,395 337 0 0 0 0 0 0 0 0 0
10~20 112 11,792 70 3 0 1 0 0 0 0 0
20~30 2 83 21,891 86 12 1 0 2 0 0 0
30~40 0 3 101 10,804 89 3 0 0 0 0 0
40~50 0 6 18 115 13,971 60 5 0 0 0 0
50~60 0 0 1 5 62 4103 57 4 0 0 0
60~70 0 0 0 0 0 49 3650 62 0 0 0
70~80 0 0 2 0 0 1 142 3598 159 0 0
80~90 0 0 0 0 0 0 14 296 4563 60 0

90~100 0 0 0 0 0 0 0 0 38 1332 7
>100 0 0 0 0 0 0 0 0 1 3 166

Accuracy 99.38% 96.49% 99.13% 98.10% 98.85% 97.27% 94.36% 90.81% 95.84% 95.48% 95.95%

3.2. Single Spatial Influencing Feature

The spatial influencing magnitude of the single factor can be measured by the deep CNN model
proposed in this paper. We have implemented other deep CNNs whose input layer contains 19× 19
neurons with a single factor attribute value; the other parameters are the same as above. After 1000
epochs of learning, the training accuracy and validation accuracy of population spatial density and
GDP spatial density were 47.12% and 36.13%, 50.07% and 40.91%. Furthermore, the results show
that PM2.5 annual concentration has strong spatial correlation with terrain or LULC, as the validation
accuracies of terrain and LULC were up to 83.17% and 72.37%. The result showed that although the
overall estimated accuracies of population and GDP over China were relatively low, the two factors
could have determined the severe PM2.5 polluted region. Furthermore, the result indicated that terrain
and LULC are the main spatial influencing factors on PM2.5 annual concentration over China.

In addition, we also have implemented the deep CNN with an input layer containing 19× 19× 2
neurons describing terrain and LULC. The learning result shows that the training accuracy and
validation accuracy of the two factors, terrain and LULC, were up to 90.69% and 87.95%. Table 3 listed
the corresponding confusion matrix between the original and estimated PM2.5 annual concentration
produced by the trained deep CNN fed by terrain and LULC data on the total 96,337 pixel locations.
Except for the eleventh category (>100 µg/m3) of PM2.5 annual concentration, the other ten categories’
estimated accuracies are more than 91%. Furthermore, the overall estimated precision can reach up
to 96.65%.
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Table 3. The confusion matrix of the original vs. estimated PM2.5 annual concentrations by the deep
CNN model fed by the two influencing factor data, terrain and LULC.

96,337 Pixels
Original PM2.5 Annual Concentrations ( µg/m3 )

<10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90 90~100 >100

Estimated
PM2.5 annual
concentration

(µg/m3)

<10 17,974 535 0 0 0 0 0 0 0 0 0
10~20 161 11,775 135 3 0 0 0 0 0 0 0
20~30 3 129 21,622 129 20 0 1 6 0 0 0
30~40 1 3 177 10,869 128 4 1 1 2 0 0
40~50 1 1 27 181 13,991 90 8 1 8 0 0
50~60 0 0 2 3 81 4099 93 3 1 0 0
60~70 0 0 4 1 5 75 3491 75 1 1 0
70~80 0 0 1 0 1 1 181 3395 193 1 0
80~90 0 0 1 0 2 0 17 462 4445 108 0

90~100 0 0 0 0 5 0 5 4 101 1290 40
>100 0 0 0 0 0 0 0 0 0 4 158

Accuracy 99.08% 94.63% 98.42% 97.17% 98.30% 96.02% 91.94% 86.01% 93.56% 91.88% 79.80%

3.3. Comparation with the GWR Prediction

To verify the advantage of the deep CNN model presented in this paper, we conducted the GWR
in the same dataset. Figure 4C is the estimated spatial distribution of PM2.5 annual concentrations over
China in 2010 by the GWR model. It can be seen that the GWR estimated results have obvious bias
comparing with the origin data (Figure 4). Furthermore, the lowest and highest PM2.5 concentrations
were particularly misestimated by the GWR model. And the overall estimated accuracy was 72.81%
which is more less than the estimated accuracy of the deep CNN model, 97.85%. Comparing the
Figure 4B,C, it indicated that although the overall spatial structure estimated by the GWR is generally
similar with the origin spatial structure of PM2.5 annual concentrations, there were some deviations
in detail. The cause of the difference of the two models could be that, the deep CNN model has
super strong non-linear fitting ability which can train very complicated non-linear function, however,
the GWR is still a linear regression model which cannot catch complicated non-linear variation effects.
Inaccurate correlativity between PM2.5 concentration and other influencing factors could lead to biased
public policies. Scientific public policy-making need more fine and accurate analysing evidences.

4. Discussion

This study proposed a deep CNN model to exploit spatial influencing magnitude for the annual
mean concentration of remotely sensed PM2.5 over China. In consideration of the influencing
mechanism and the availability of the dataset, this study investigated the spatial influence of
the four factors (population, GDP, terrain, and LULC) on the annual concentration of PM2.5 over
China. The influencing factors of PM2.5 pollution are known to include natural and anthropogenic
activities [39]. Among the four factors selected for this paper, terrain represented natural elements,
population and GDP reflected anthropogenic activities, and LULC could be regarded as a mixture
of natural and anthropogenic activities. The presented deep CNN method fully considered the local
spatial heterogeneity, and a wider spatial correlated scope could be considered by more than one-order
shape extent, which benefited from the strong ability of the deep CNN to process big data.

This paper bridged the gap between spatial analysis and deep CNN technology with the idea
of reprocessing or reorganizing remotely sensed data for deep CNN input. The deep CNN method
was commonly used to extract the feature representations from a mass of labelled images [27,28].
As aforesaid, few researchers applied the deep CNN model when analysing spatial influence of
multiple variables. From a different view, combining a geospatial reprocess, this study designed a
3D deep CNN structure in which the input and output neurons were influencing factors and PM2.5

concentration, respectively. The strong non-linear function fitting ability of a deep CNN model could
then detect complicated non-linear spatial influencing effect, and the deep CNN model might consider
local spatial heterogeneity. From the results, the developed deep CNN model can fully consider spatial
relationship and can calculate on each pixel location. Hence, the results can effectively describe the
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spatial influencing feature on every pixel location. Although the GWR method can also investigate
the local correlation on each pixel location, only a linear or simple non-linear regression can be
implemented, and the capability of processing big data is not very strong. From the above, the deep
CNN model can not only process big data well but can also fit or learn very complicated correlativity.

This paper demonstrated that the deep CNN technology could be applied in exploiting the
spatial influence feature of geospatial or remotely sensed data, and its advantages could be fully
performed. The spatial influencing magnitude of the four factors on the annual concentration of
PM2.5 was investigated employing the presented deep CNN model. This model was not only used in
exploring spatial influence of remotely sensed PM2.5 concentration, but also in other fields, such as
detecting risk factors of some kind of epidemic based on remotely sensed data. Through the model,
the risk level of risk factors in public health could be quantificationally assessed. In other words,
the developed deep CNN model has the potential to expand the field of spatial analysis of remotely
sensed lattice data. Despite all this, this research has some limitations. Firstly, the spatial dependent
variable, PM2.5 annual concentration, is classified into 11 categories, not as a continuous variable.
Secondly, the deep CNN model can learn a very complicated function structure, but the mathematical
mechanism is currently not clear, namely mysterious “black boxes” [40], and it is difficult to explain in
a geographical process.

5. Conclusions

Population spatial density, GDP spatial density, terrain, and LULC can almost determine the
spatial pattern of PM2.5 annual concentration with an overall estimated precision of 97.85% over China.
Furthermore, terrain and LULC are the main spatial influencing factors on PM2.5 annual concentration
among the four factors. And the overall spatial influencing magnitude of the two factors, terrain and
LULC, reached up to 96.65%, nearly equal to all four factors’ spatial influencing magnitude on PM2.5

annual concentration.
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