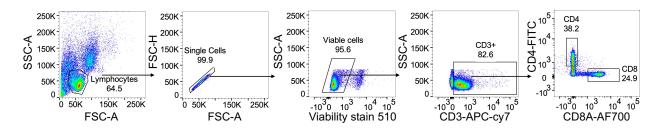
Supplementary information

Cytotoxic CD8⁺ T cells target citrullinated antigens in rheumatoid arthritis

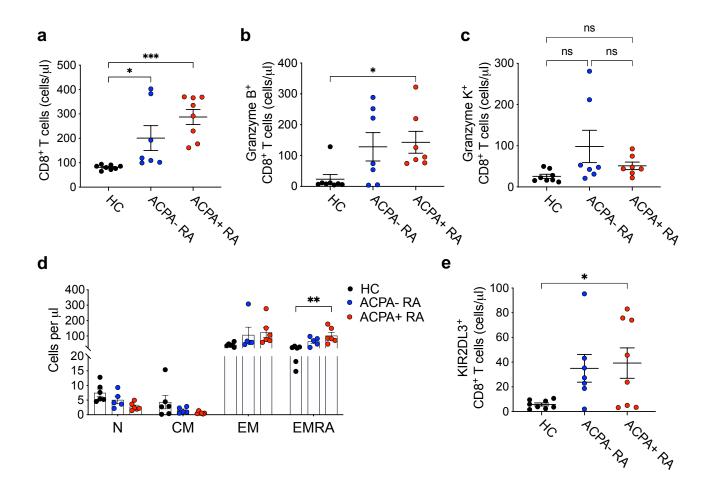
Authors: Jae-Seung Moon^{#1,2}, Shady Younis^{#1,2,3}, Nitya S. Ramadoss^{1,2}, Radhika Iyer^{1,2}, Khushboo Sheth^{1,2}, Orr Sharpe^{1,2}, Navin L. Rao⁴, Stephane Becart⁵, Julie A. Carman⁴, Eddie A. James⁶, Jane H. Buckner⁶, Kevin D. Deane⁷, V. Michael Holers⁷, Susan M. Goodman^{8,9}, Laura T. Donlin^{8,9}, Mark M. Davis^{3,10}, William H. Robinson^{*1,2,3}

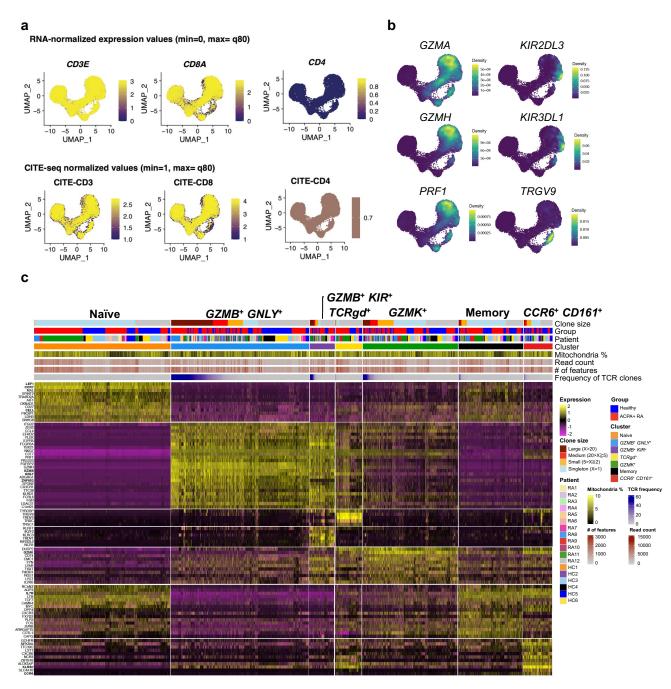

Affiliations:

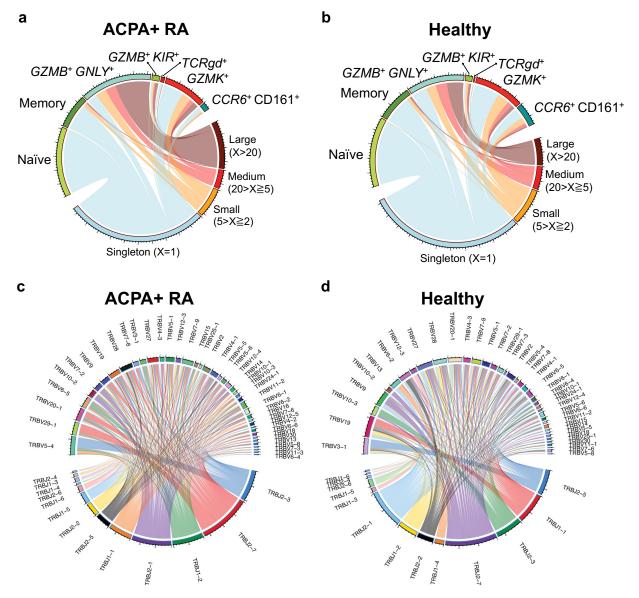
¹Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
²VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
³Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
⁴Immunology Discovery, Janssen Research and Development LLC, Spring House, PA 19477, USA
⁵Immunology Discovery, Janssen Research and Development LLC, San Diego, CA 92121, USA
⁶Benaroya Research Institute, Seattle, WA 98101, USA
⁷Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80220, USA
⁸Hospital for Special Surgery, New York, NY 10021, USA
⁹Weill Cornell Medicine, New York, NY 10021, USA

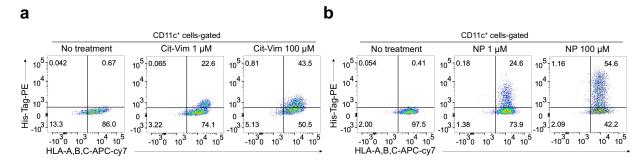

[#]These authors contributed equally: Jae-Seung Moon, Shady Younis

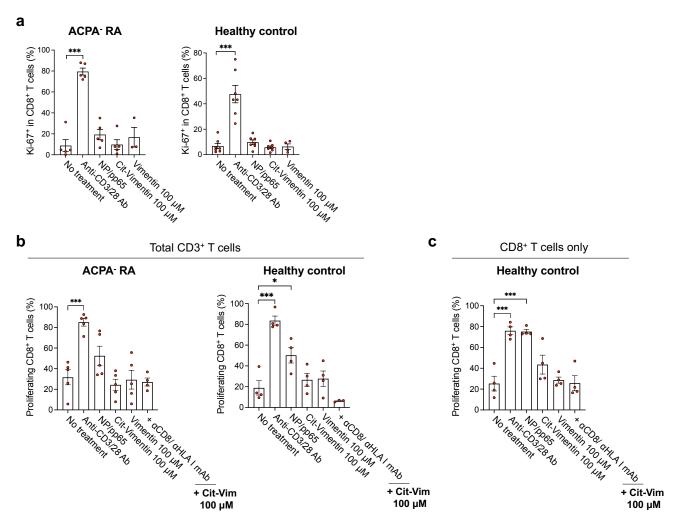
*To whom correspondence should be addressed: <u>w.robinson@stanford.edu</u>


Supplementary Figures

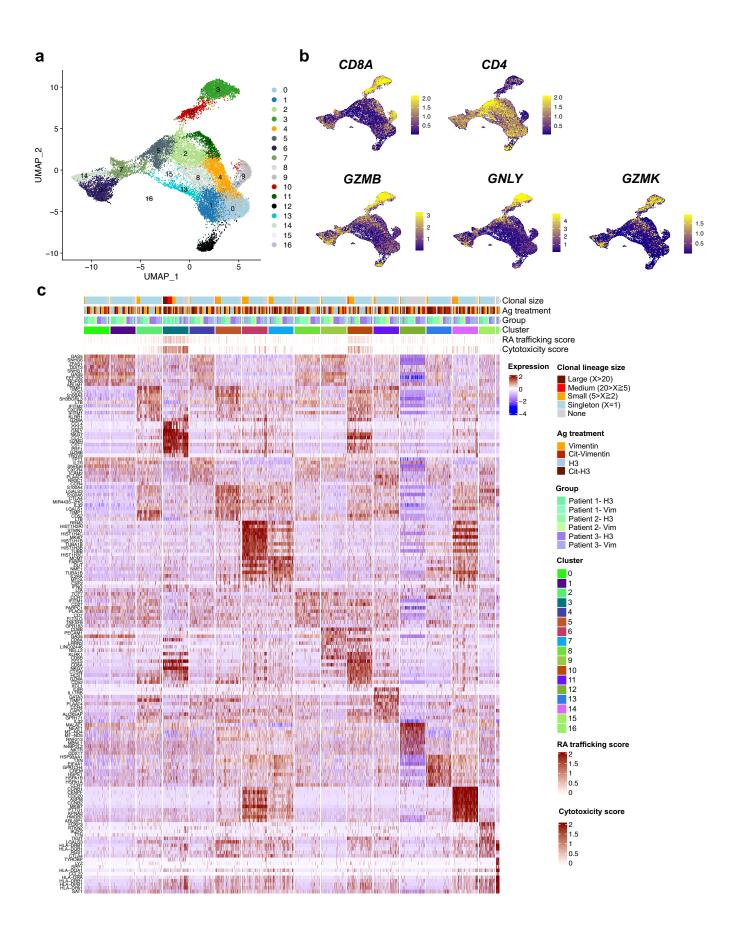

Supplementary Fig. 1: Flow cytometric analysis of CD8⁺ T cells in ACPA+ RA patient blood. Representative data from ACPA+ RA PBMCs are displayed as flow cytometric plots, and the gating parameters for the CD8⁺ T cell population indicated.


Supplementary Fig. 2: Phenotypic characterization of CD8⁺ T cells in ACPA+ RA patient blood. a Expression of PD-1 or TIM3 in CD8⁺ T cells from PBMCs from healthy controls (n = 12) or ACPA+ RA patients (n = 13) measured by flow cytometry. *P=0.0376. b Percentage of KIR2DL3⁺CD8⁺ T cells in HC (n = 30), ACPA- RA (n = 14), or ACPA+ RA (n = 45) analyzed by flow cytometry (***P=0.0007, or *P=0.0355). c Representative dot plots showing expression levels of CD69 and KIR2DL3 in CD8⁺ T memory subsets (naïve, CM, EM, or EMRA). Data are presented as means ± SEM. *P < 0.05 or ***P <0.001 by two-tailed unpaired *t*-test (**a**) or one-way ANOVA (**b**) with Tukey's multiple comparisons test. ns, not significant. Source data are provided as a Source Data file. HC healthy control, ACPA anticitrullinated protein antibodies, RA rheumatoid arthritis, MFI median fluorescence intensity.

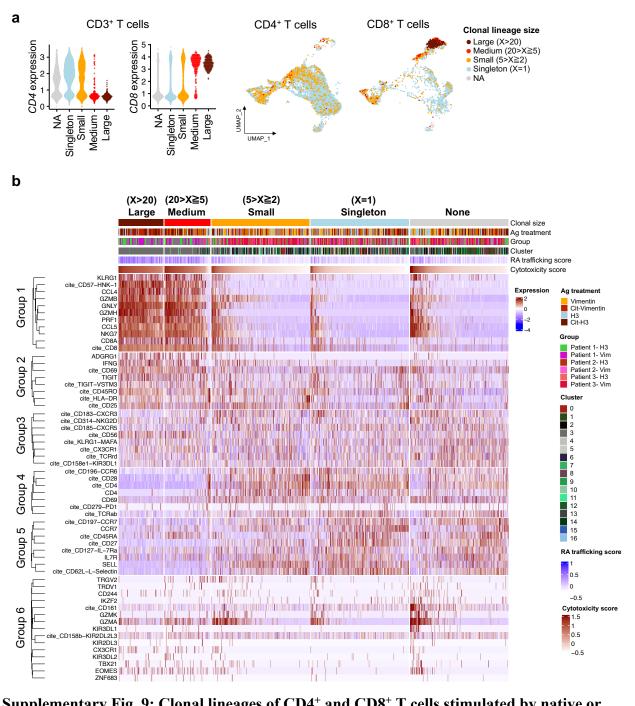

Supplementary Fig. 3: Absolute cell counts of CD8⁺ T cells in ACPA+ RA patients. Absolute cell numbers of total CD8⁺ T cells (a, HC n = 8, ACPA- RA n = 7, ACPA+ RA n = 8, **P*=0.0466, or *****P*=0.0005), granzyme B-expressing CD8⁺ T cells (b, HC n = 8, ACPA- RA n = 7, ACPA+ RA n = 7, **P*=0.0473), or granzyme K (c, HC n = 8, ACPA- RA n = 7, ACPA+ RA n = 7)-expressing CD8⁺ T cells, memory CD8⁺ T cells (d, HC n = 6, ACPA- RA n = 5, ACPA+ RA n = 5, **P*=0.006), or KIR2DL3⁺CD8⁺ T cells (e, HC n = 8, ACPA- RA n = 7, ACPA+ RA n = 8, **P*=0.0484) per 1 µl assessed by counting beads in each PBMC. Data are presented as means ± SEM. **P* < 0.05, ***P* < 0.01, or ****P* < 0.001 by ordinary one-way ANOVA (a-c, e) or two-way ANOVA (d) with Tukey's multiple comparisons test. ns, not significant. Source data are provided as a Source Data file. HC healthy control, ACPA anti-citrullinated protein antibodies, RA rheumatoid arthritis.


Supplementary Fig. 4: Expression of cell type marker genes in CD8⁺ T cells from ACPA+ RA and healthy control blood. a mRNA and CITE-seq expression of marker genes (*CD3E*, *CD8A*, and *CD4*) used to identify and confirm analysis of CD8⁺ T cells. Color indicates the expression level of each marker gene. b Density plots display marker genes including *GZMA*, *KIR2DL3* or *TRGV9*) in CD8⁺ T cells. c Heatmap of select differentially expressed gene signatures (log2 Fold Change > 0.8) in each cluster with bars; clonal size, patients, clusters, mitochondrial gene percentage, read count, number of features in each cell and frequency of TCR clone. ACPA anti-citrullinated protein antibodies, RA rheumatoid arthritis.

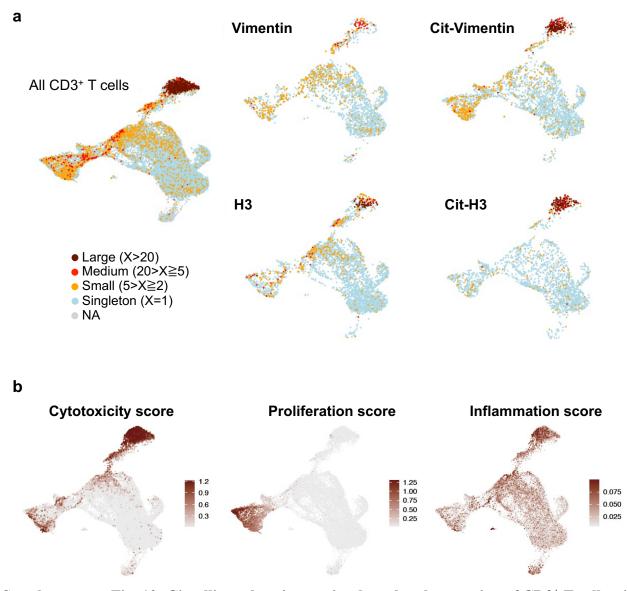
Supplementary Fig. 5: CD8⁺ T cells expressing cytotoxic mediators are clonally expanded in ACPA+ RA blood. a, b Chord diagrams representing the contribution of each cluster to clonal sizes (**a**) and the shared clonotypes between clusters (**b**). **c** TCR beta chain V- and J-gene usage of CD8⁺ T cells of ACPA+ RA blood. The width of each band represents the frequency of V- or J- gene usage. ACPA anticitrullinated protein antibodies, RA rheumatoid arthritis.



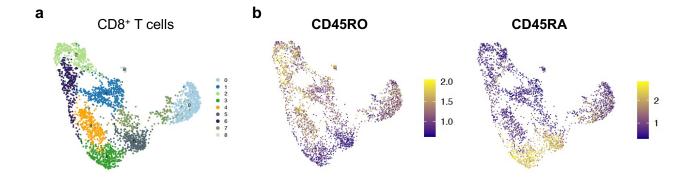
Supplementary Fig. 6: CD11c⁺ cells from ACPA+ RA patients endocytose cit-vimentin. a,b, Representative flow cytometric plots of protein endocytosis by CD11c⁺ cells in ACPA+ RA PBMCs show antigen-presenting cells uptake recombinant His-tagged cit-vimentin protein (**a**), or NP protein (**b**) in a dose-dependent manner (1 or 100 μ M) after 16 hr of culture. Cit-Vim citrullinated vimentin.

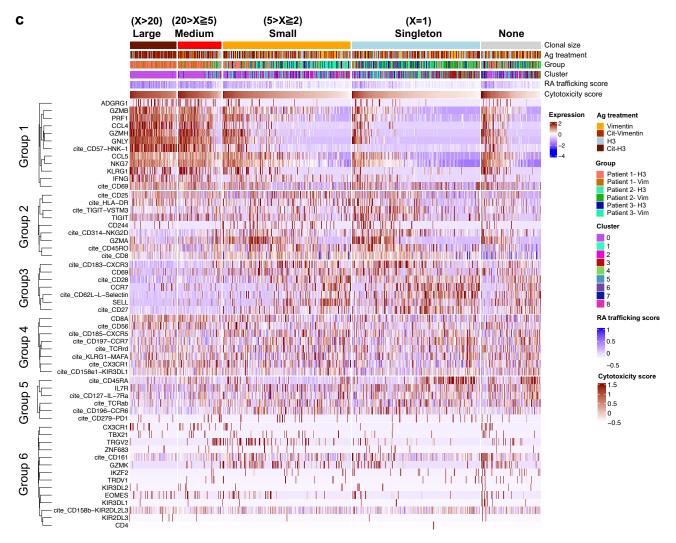

Supplementary Fig. 7: Citrullinated vimentin does not induce the proliferation of ACPA- RA or HC CD8⁺ T cells. a Percentage of Ki-67⁺CD8⁺ T cells in ACPA- RA (n = 5) or HC (n = 7) PBMCs after stimulation with anti-CD3/28 antibodies, NP (Influenza)/ pp65 (CMV) proteins (50 µM of each), citrullinated vimentin (100 µM), or native vimentin (100 µM) for 16 hr. ***P < 0.0001. b, c Quantification of the proliferating CD8⁺ T cells in co-culture of monocyte-derived dendritic cells (MoDCs) with ACPA-RA or HC total CD3⁺ T cells (b, ***P=0.0002 in ACPA- RA, ***P=0.0002, or *P=0.0214 in HC) or CD8⁺ T cells only (c, n = 4, ***P=0.0007, or ***P=0.0005). For b, no treatment, anti-CD3/28 Ab, NP/pp65, cit-vimentin or native vimentin n = 5, cit-vimentin with anti-CD8/ HLA class I antibodies n = 4 in ACPA-RA and no treatment, anti-CD3/28 Ab, NP/pp65, cit-vimentin with anti-CD8/ HLA class I antibodies n = 3 in HC. Bars represent means ± SEM. *P < 0.005 or ***P < 0.001 by ordinary one-way ANOVA with Tukey's multiple comparisons test. Source data are provided as

a Source Data file. ACPA anti-citrullinated protein antibodies, RA rheumatoid arthritis. mAb monoclonal antibody.

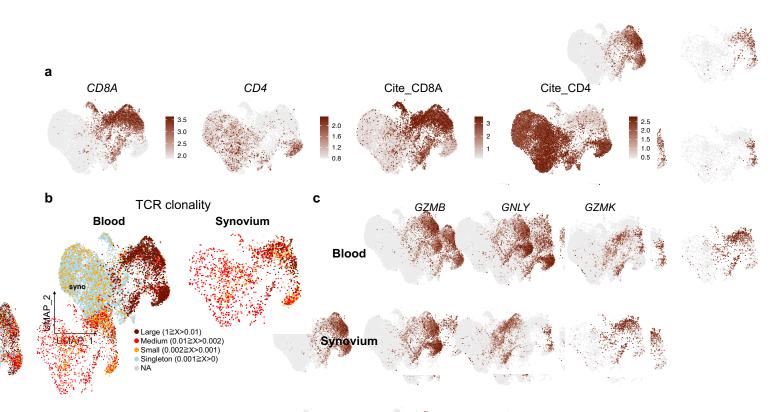


Supplementary Fig. 8: Single-cell RNA sequencing of CD3⁺ T cells stimulated by native or

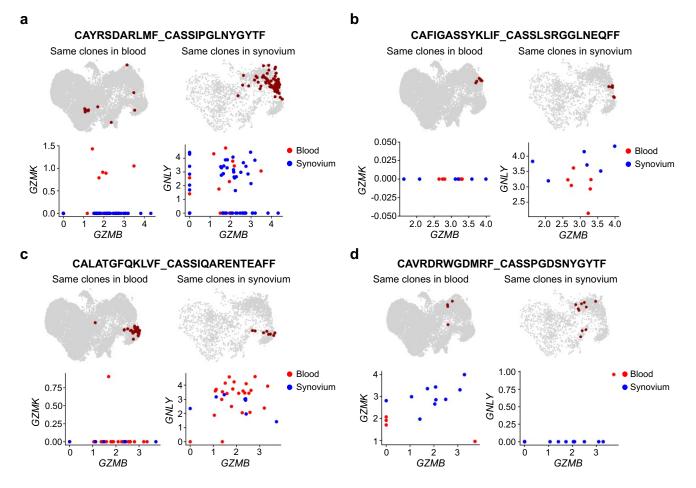

citrullinated antigens. a UMAP plot representing 17 distinct clusters of CD3⁺ T cells (n = 13,354) stimulated by native or citrullinated proteins. **b** Expression of *CD8A*, *CD4*, *GZMB*, *GNLY* or *GZMK* in the clusters. Color shows the expression level of each marker. **c** Heatmap showing transcriptional differences in each cluster. Top bars indicate clonal size, Protein treatment, patient group, clusters and scoring scale for RA trafficking and cytotoxicity. Individual T cells are ordered by clonal size in each cluster. RA rheumatoid arthritis, Vim vimentin, Ag antigen.

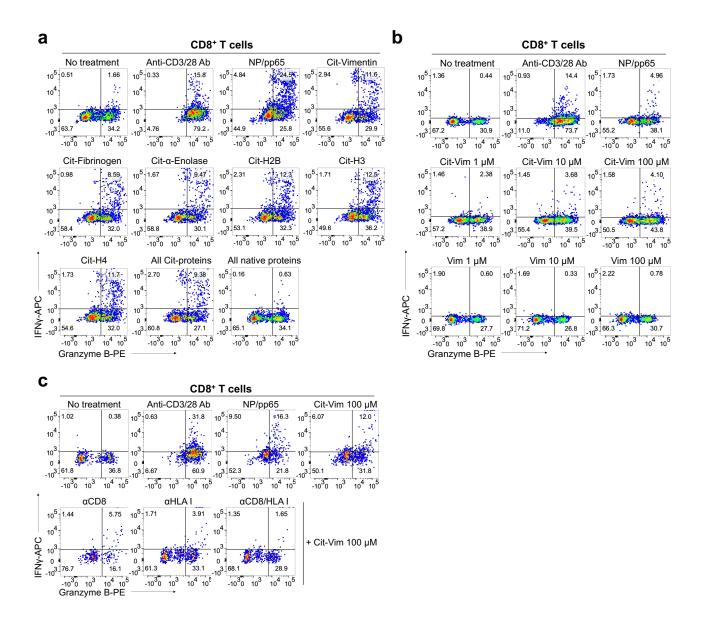


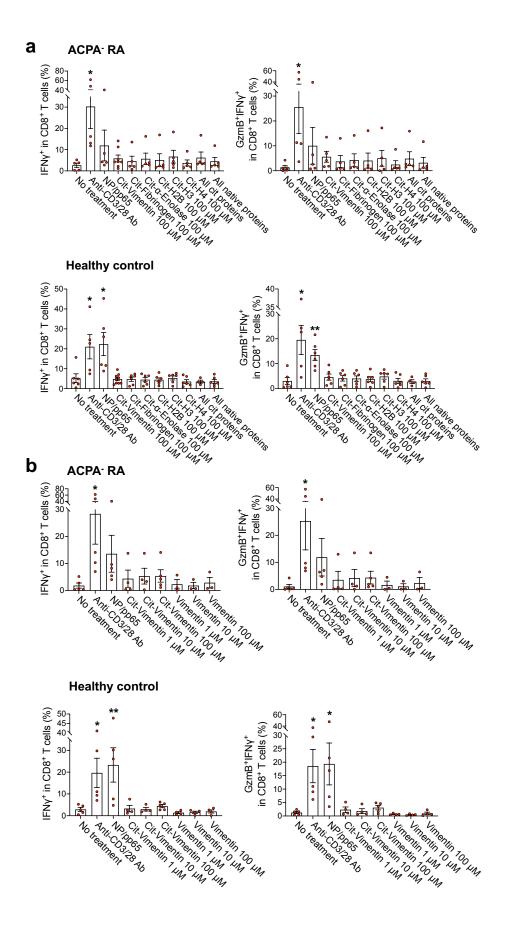
Supplementary Fig. 9: Clonal lineages of CD4⁺ and CD8⁺ T cells stimulated by native or citrullinated antigens. a Distribution of each clonal family in $CD4^+$ (n = 7,885) or $CD8^+$ (n = 3,284) T cells. b Heatmap representing 6 groups determined by unsupervised clustering based on the level of RNA and CITE-seq antibodies (cite_). Individual T cells are ordered by cytotoxicity score in each cluster. Ag antigen, Vim vimentin.

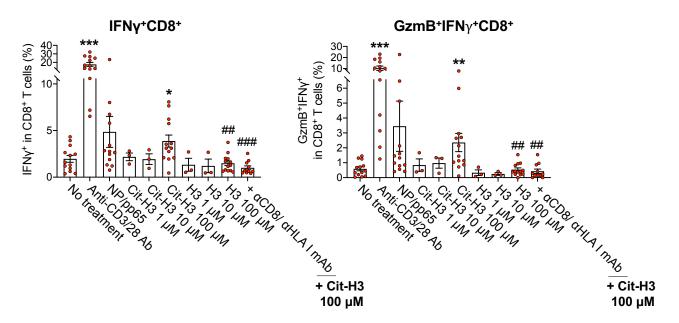


Supplementary Fig. 10: Citrullinated antigens stimulate clonal expansion of CD3⁺ T cells with high cytotoxicity scores. a UMAP plots of all CD3⁺ T cells stimulated by native or citrullinated Vimentin or H3 integrated with TCR clonality. **b** UMAP plots showing cytotoxicity, proliferation, or inflammation score. The score was calculated by the expression level of canonical marker genes. Cit- citrullinated.

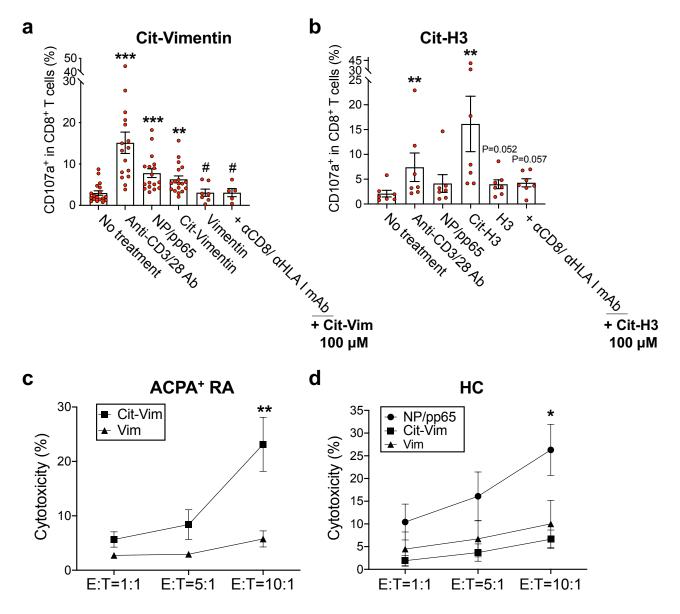



Supplementary Fig. 11: Phenotype of CD8⁺ T cells stimulated by native or citrullinated antigens. a UMAP plot of CD8⁺ T cells having 9 transcriptionally different clusters. b Expression level of CD45RO and CD45RA CITE-seq antibodies in CD8⁺ T cells. c Heatmap of 6 groups by unsupervised clustering using the level of RNA and CITE-seq antibodies (cite_). RA rheumatoid arthritis, Vim vimentin, Cit-citrullinated.


Supplementary Fig. 12: Integrated by fisin of seq data for paired RA blood and synovium CD8⁺ T cells. a UMAP plot be ding for the levels of CD8A and CD4 in mRNA and CITE-seq Abs. b UMAP plots of ACPA+ RA blood (i = 3) and synovium (n = 4) CD8⁺ T cells integrated with TCR clonality (n = 9,360 paired $TCR\alpha\beta$ sequences). Color indicates the groups by the ratio of clonotypes in total cells. c UN is nowing the expression of *GZMB*, *GNLY* and *GZMK* in integrated blood and synovial CD8⁺ T cells are sequences.


Supplementary Fig. 13: Shared T cell clonotypes between ACPA+ RA blood and matched synovium. a-d Mapping of shared clonotypes in the matched blood and synovium from ACPA+ RA patients. The frequent clonotypes are represented as CDR3 alpha-beta sequences. Dot plots show the expression level of *GZMB*, *GZMK*, and/or *GNLY* in the same clonotypes located in either blood (red) and synovium (blue). Source data are provided as a Source Data file.

Supplementary Fig. 14: ACPA+ RA patient blood CD8⁺ T cells are activated by citrullinated proteins in a CD8:HLA class I-dependent manner. a-c Representative flow cytometric plots of ACPA+ RA blood CD8⁺ T cells stimulated with citrullinated proteins (**a**), a range of concentrations of cit-vimentin or native vimentin (**b**), and in the presence of anti-CD8/ HLA class I-blocking antibodies (**c**). Ab antibody, Vim vimentin, Cit- citrullinated.



Supplementary Fig. 15: ACPA- RA patient CD8⁺ T cells react with viral but not citrullinated antigens. a Percentages of IFNy and/ or GzmB-expressing CD8⁺ T cells from PBMCs of ACPA- RA or HCs were measured by intracellular staining after stimulation with anti-CD3/28 antibodies, NP (Influenza)/ pp65 (CMV) proteins (50 μ M of each), citrullinated proteins (vimentin, fibrinogen, α enolase, and histones H2B, H3 or H4) (100 µM), all citrullinated proteins (20 µM each), or all native proteins (20 μ M each) for 16 hr. For ACPA- RA, no stimulation (n = 5), anti-CD3/28 Abs (n = 5), NP/pp65 (n = 5), cit-vimentin (IFN γ^+ n = 8, GzmB⁺IFN γ^+ n = 5), cit-fibringen, α -enolase, and histores H2B, H3 or H4 (n = 5), all cit proteins (n = 5), or all native proteins (n = 5); *P=0.0296, or *P=0.0498. For HC, no stimulation (n = 6), anti-CD3/28 Abs (n = 5), NP/pp65 (n = 6), cit-vimentin (IFN γ^+ n = 9, GzmB⁺IFN γ^+ n = 6), cit-fibringen, α -enolase, and histories H2B, H3 or H4 (n = 6), all cit proteins (n = 4), or all native proteins (n = 6); **P*=0.0274, **P*=0.0201, **P*=0.0150, or ***P*=0.0023. **b** Quantification of IFN γ^+ or IFN γ^+ GzmB⁺ CD8⁺ T cells in ACPA- RA or HC PBMCs stimulated for 16 hr with cit-vimentin or native vimentin in a concentration-dependent manner. No stimulation (ACPA- RA and HC n = 5), anti-CD3/28 Abs (ACPA- RA and HC n = 5), NP/pp65 (ACPA- RA and HC n = 5), cit-vimentin 1 or 10 μ M (ACPA- RA and HC n = 4), cit-vimentin 100 μ M (ACPA- RA and HC n = 5), vimentin 1,10 or 100 μ M (ACPA- RA n = 3 and HC n = 4). In ACPA- RA, **P*=0.0462, or **P*=0.05. In HC, **P*=0.0385, ***P*=0.033, *P=0.024, or *P=0.0491. For **a**, **b**, data are presented as means \pm SEM. By two-tailed unpaired *t*-test: *P < 0.05 or **P < 0.01 versus no treatment. Source data are provided as a Source Data file. ACPA anticitrullinated protein antibodies, RA rheumatoid arthritis, Ab antibody.

Supplementary Fig. 16: ACPA+ RA blood CD8⁺ T cells react with cit-H3.

Percentage of IFN γ or GzmB expressing CD8⁺ T cells in ACPA+ RA blood measured by intracellular staining after stimulation with a range of concentrations of citrullinated histone H3 (cit-H3) or native H3 protein in presence or absence of anti-CD8/HLA class I-blocking antibodies for 16 hrs. No stimulation (n = 13), anti-CD3/28 Abs (n = 13), NP/pp65 (n = 13), cit-H3 or native H3 1 or 10 μ M (n = 3), cit-H3 or native H3 100 μ M (n = 13), cit-H3 with anti-CD8/ HLA class I antibodies (n = 11). For IFN γ^+ CD8⁺, ****P*<0.0001, **P*=0.0172, ##*P*=0.0023, or ###*P*=0.0007. For GzmB⁺IFN γ^+ CD8⁺, ****P*<0.0001, **P*=0.0099. Data are presented as means ± SEM. By two-tailed unpaired *t*-test: **P* < 0.05, ***P* < 0.01 or ****P* < 0.001 versus no treatment, and ##*P* < 0.01 or ###*P* < 0.001 versus cit-H3 100 μ M.

Supplementary Fig. 17: Citrullinated antigens stimulate ACPA+ RA blood CD8⁺ T cells to exhibit cytotoxic activity and mediate cell killing. a, b Flow cytometry analysis of CD107a⁺ expression by CD8⁺ T cells was used as a measure of degranulation activity. ACPA+ RA blood samples were stimulated with citrullinated or native forms of the RA autoantigens vimentin and histone H3 (100 μ M each), with or without anti-CD8/ HLA class I-blocking antibodies, and flow cytometry analysis performed to quantitate CD107a⁺CD8⁺ T cells. For (a), no stimulation (n = 18), anti-CD3/28 Abs (n = 16), NP/pp65 (n = 17), cit-vimentin (n = 18), vimentin (n = 7), cit-vimentin with anti-CD8/ HLA class I antibodies (n = 5); ****P* < 0.0001, ****P*=0.0003, ***P*=0.0021, #*P*=0.0364, or #*P*=0.0494. For (b), n = 7; ****P* < 0.0001, or **P*=0.028. c, d Antigen-independent cytotoxic activity of cit-vimentin, native vimentin, or viral protein

stimulated CD8⁺ T cells from ACPA+ RA (c) or HC (d) blood against the DLD-1 cell line was determined using a lactate dehydrogenase (LDH) release assay. For (c), cit-vimentin (n = 7) and vimentin (n = 5); ***P*=0.0025. For (d), NP/pp65 (n = 14), cit-vimentin or vimentin (n = 3). E:T ratio means effector/target cell ratio. Data are presented as means \pm SEM. For (**a**, **b**), using two-tailed unpaired *t*-test: **P* < 0.05, ***P* < 0.01, or ****P* < 0.001 versus no treatment; #*P* < 0.05 versus cit-vimentin; *P* value represented on the graph was compared with cit-vimentin. For (**c**, **d**), using two-way ANOVA with Tukey's multiple comparisons test: ***P* < 0.01. Source data are provided as a Source Data file. HC healthy control, ACPA anticitrullinated protein antibodies, RA rheumatoid arthritis, mAb monoclonal antibody, Cit-Vim citrullinated vimentin.

Supplementary Tables

	RA patients
Total Number	59
Gender, Female/Male	4/55
Age (years) - mean±SD	66.15±12.24
Dis duration (years) - mean±SD	11.35±10.69
Disease activity	
ACPA positive (%)	76.27
RF positive (%)	73.33
CDAI score - mean±SD	15.17±15.95
MTX use (%)	51.11
MTX duration (years)	4.96±4.9

Supplementary Table 1. Demographic characteristics of RA patients.

Supplementary Table 2 Differentially expressed genes in each cluster identified in ACPA+ RA as compared to HC blood. Differentially expressed genes in each cluster were selected with Log2 Fold change > 0.8. Wilcoxon Rank Sum test and the Benjamini– Hochberg method to adjust the *P* values for multiple testing. Avg average, Pct percentage, p_val_adj adjusted *P* value.

Gene	Avg_log2FC	Pct.1	Pct.2	p_val_adj	Cluster
CCR7	2.17188736	0.952	0.528	0	Naïve
LEF1	2.00017763	0.954	0.652	0	Naïve
ACTNI	1.50463023	0.94	0.711	0	Naïve
NELL2	1.42062488	0.889	0.612	0	Naïve
MAL	1.32861183	0.804	0.643	0	Naïve
LTB	1.29286009	0.964	0.78	0	Naïve
SELL	1.25489209	0.951	0.817	0	Naïve
NOSIP	1.2525314	0.947	0.812	0	Naïve
OXNAD1	1.2385171	0.956	0.681	0	Naïve
PIK3IP1	1.1523528	0.96	0.805	0	Naïve
AIF1	1.14401643	0.867	0.767	0	Naïve
TRABD2A	1.07210543	0.915	0.757	0	Naïve
LDLRAP1	1.05680921	0.928	0.822	0	Naïve
<i>CD27</i>	1.03820024	0.934	0.718	0	Naïve
SPINT2	1.02349056	0.967	0.724	0	Naïve
SNHG8	0.99485116	0.993	0.924	0	Naïve
NDFIP1	0.97624462	0.986	0.869	0	Naïve
ABLIM1	0.96524899	0.787	0.402	0	Naïve
CD8B	0.90637784	0.98	0.9	0	Naïve
CAMK4	0.85677228	0.958	0.737	0	Naïve
ARMH1	0.82194778	0.793	0.738	0	Naïve
HSPB1	0.79107008	0.972	0.821	0	Naïve
PCED1B	0.76851258	0.867	0.737	0	Naïve
RCAN3	0.74887121	0.782	0.717	0	Naïve
LDHB	0.74089477	0.961	0.907	0	Naïve
TCF7	0.95014837	0.841	0.758	3.76E-301	Naïve
CD55	0.86560341	0.88	0.786	3.17E-286	Naïve
SATB1	0.76575809	0.749	0.593	1.77E-205	Naïve
FLT3LG	0.71486197	0.879	0.791	1.39E-199	Naïve
S100B	0.81117364	0.72	0.75	1.09E-184	Naïve

FGFBP2	2.64092332	0.994	0.896	0	GZMB+ GNLY+
GZMH	2.48081498	0.982	0.899	0	GZMB+ GNLY+
GNLY	2.2873411	0.956	0.666	0	GZMB+ GNLY+
GZMB	2.20826241	0.949	0.829	0	GZMB+ GNLY+
ZNF683	1.93895227	0.954	0.888	0	GZMB+ GNLY+
NKG7	1.86436384	0.999	0.888	0	GZMB+ GNLY+
PRF1	1.71556813	0.988	0.773	0	GZMB+ GNLY+
ADGRG1	1.69693841	0.956	0.796	0	GZMB+ GNLY+
LGALS1	1.62412354	0.905	0.789	0	GZMB+ GNLY+
SPON2	1.56725113	0.933	0.694	0	GZMB+ GNLY+
PRSS23	1.46520941	0.945	0.865	0	GZMB+ GNLY+
FCGR3A	1.40710564	0.927	0.738	0	GZMB+ GNLY+
CX3CR1	1.31747937	0.874	0.788	0	GZMB+ GNLY+
ZEB2	1.29236084	0.834	0.797	0	GZMB+ GNLY+
PLEK	1.27834466	0.87	0.707	0	GZMB+ GNLY+
CST7	1.25537403	0.993	0.952	0	GZMB+ GNLY+
CCL4	1.25062717	0.856	0.876	0	GZMB+ GNLY+
ITGB1	1.21597628	0.94	0.911	0	GZMB+ GNLY+
KLRD1	1.21207058	0.915	0.787	0	GZMB+ GNLY+
EFHD2	1.17334611	0.876	0.717	0	GZMB+ GNLY+
FCRL6	1.15172947	0.935	0.93	0	GZMB+ GNLY+
TBX21	1.15137019	0.938	0.891	0	GZMB+ GNLY+
GZMA	1.14945792	0.986	0.847	0	GZMB+ GNLY+
S100A4	1.13366146	0.995	0.937	0	GZMB+ GNLY+
ITGB2	1.07810461	0.995	0.959	0	GZMB+ GNLY+
FLNA	1.06917519	0.974	0.941	0	GZMB+ GNLY+
SIPR5	1.01688766	0.906	0.847	0	GZMB+ GNLY+
SLC9A3R1	0.98919573	0.974	0.894	0	GZMB+ GNLY+
CCL5	0.97731527	0.994	0.97	0	GZMB+ GNLY+
HOPX	0.97559354	0.913	0.871	0	GZMB+ GNLY+
FCGR3A	1.78521332	0.98	0.784	3.47E-253	GZMB+ KIR+
TTC38	1.06213688	0.961	0.761	3.68E-205	GZMB+ KIR+
KIR3DL2	0.78538508	0.816	0.57	4.05E-177	GZMB+ KIR+
TRDV1	1.75850042	0.823	0.758	3.73E-166	GZMB+ KIR+
NKG7	1.08540583	0.999	0.916	6.13E-161	GZMB+ KIR+
SIPR5	0.96269525	0.953	0.86	1.03E-154	GZMB+ KIR+
GZMB	1.12077486	0.971	0.859	1.27E-147	GZMB+ KIR+
KLRC3	1.17386824	0.793	0.594	2.35E-140	GZMB+ KIR+
ADGRG1	0.93451484	0.941	0.837	1.72E-135	GZMB+ KIR+

CST7	0.93584796	0.991	0.962	1.76E-130	GZMB+ KIR+
PRF1	1.01856434	0.989	0.828	4.97E-124	GZMB+ KIR+
TBX21	0.78939386	0.944	0.903	1.23E-123	GZMB+ KIR+
Clorf21	0.7426384	0.904	0.855	7.30E-122	GZMB+ KIR+
KLRD1	1.06721614	0.936	0.819	3.51E-117	GZMB+ KIR+
FGR	0.87854003	0.909	0.886	2.99E-115	GZMB+ KIR+
FCRL6	0.8177497	0.964	0.93	9.00E-114	GZMB+ KIR+
FGFBP2	0.8305155	0.983	0.922	9.59E-108	GZMB+ KIR+
CCL5	0.78234757	0.995	0.976	9.86E-99	GZMB+ KIR+
PLEK	0.84156567	0.912	0.747	7.33E-93	GZMB+ KIR+
GZMH	0.76278171	0.967	0.921	9.21E-89	GZMB+ KIR+
CMC1	0.83244954	0.816	0.632	8.14E-75	GZMB+ KIR+
CCL4	0.8534083	0.916	0.868	2.86E-68	GZMB+ KIR+
IKZF2	0.77393067	0.693	0.574	4.91E-65	GZMB+ KIR+
TIGIT	1.00714799	0.741	0.696	9.89E-58	GZMB+ KIR+
ZEB2	0.80594977	0.82	0.807	3.56E-55	GZMB+ KIR+
CD63	0.7813272	0.859	0.812	1.37E-53	GZMB+ KIR+
GNLY	0.80162342	0.881	0.744	2.43E-53	GZMB+ KIR+
KLRF1	0.93276105	0.648	0.531	5.53E-38	GZMB+ KIR+
NCR1	0.82343017	0.592	0.417	5.63E-19	GZMB+ KIR+
TYROBP	0.84125194	0.66	0.688	3.20E-12	GZMB+ KIR+
TRDV2	1.99128693	0.913	0.407	0	TCRgd+
TRGV9	1.92133086	0.852	0.666	1.24E-221	TCRgd+
TYROBP	1.33879925	0.875	0.677	2.75E-189	TCRgd+
MAP3K8	0.63507239	0.974	0.865	1.50E-171	TCRgd+
S100B	0.62382483	0.867	0.736	5.13E-162	TCRgd+
DUSP2	1.05992088	0.996	0.965	4.05E-146	TCRgd+
KLRB1	1.04734785	0.882	0.763	1.68E-121	TCRgd+
MATK	0.71312879	0.949	0.881	6.32E-108	TCRgd+
KLRG1	0.85459333	0.913	0.73	2.58E-103	TCRgd+
KLRD1	0.77247908	0.933	0.819	1.04E-102	TCRgd+
ID2	0.92916918	0.965	0.78	3.99E-97	TCRgd+
ALOX5AP	0.80492512	0.915	0.815	1.02E-71	TCRgd+
GNLY	0.74442669	0.879	0.743	5.58E-71	TCRgd+
CST7	0.58130969	0.99	0.962	1.93E-64	TCRgd+
NKG7	0.57142342	0.998	0.916	3.11E-63	TCRgd+
DUSP1	0.82391136	0.98	0.889	2.01E-61	TCRgd+
KRT10	0.55492149	0.988	0.941	6.52E-59	TCRgd+
TRDC	1.1402084	0.663	0.562	4.61E-51	TCRgd+

PRELID1	0.56047116	0.969	0.858	2.82E-46	TCRgd+
ANXA1	0.52941704	0.973	0.894	4.07E-45	TCRgd+
APOBEC3G	0.53168543	0.853	0.825	6.76E-42	TCRgd+
ZFP36	0.52644306	0.981	0.916	3.04E-38	TCRgd+
IL2RB	0.53117476	0.928	0.861	1.33E-31	TCRgd+
CD300A	0.51766821	0.7	0.544	1.28E-24	TCRgd+
NCR3	0.5182753	0.65	0.648	2.80E-12	TCRgd+
TRGC1	0.68535161	0.565	0.393	4.71E-10	TCRgd+
KLRC1	0.58682728	0.394	0.33	7.14E-06	TCRgd+
GZMK	1.99717379	0.895	0.768	0	GZMK+
DUSP2	1.35848465	0.991	0.96	0	GZMK+
<i>CD74</i>	1.07464734	0.946	0.907	0	GZMK+
COTL1	0.66638748	0.93	0.872	7.40E-248	GZMK+
RGS1	0.83275317	0.705	0.643	9.78E-207	GZMK+
FYN	0.81771733	0.904	0.784	1.04E-193	GZMK+
CMC1	1.0803568	0.754	0.615	1.22E-184	GZMK+
CCL4	0.63132847	0.892	0.866	3.33E-149	GZMK+
CCL5	0.52091684	0.989	0.975	5.05E-143	GZMK+
LYAR	0.58186799	0.882	0.839	3.17E-104	GZMK+
IL10RA	0.51340213	0.945	0.897	4.31E-87	GZMK+
TIGIT	0.68709491	0.686	0.701	1.23E-81	GZMK+
LYST	0.56801848	0.693	0.615	2.91E-77	GZMK+
PIK3R1	0.57399294	0.74	0.748	1.04E-46	GZMK+
LTB	1.07119384	0.977	0.804	0	Memory
IL7R	1.03381631	0.981	0.791	0	Memory
COTL1	0.76448942	0.959	0.871	0	Memory
CAPG	0.55036677	0.898	0.714	0	Memory
AQP3	0.54135708	0.898	0.798	5.71E-169	Memory
LGALS3	0.58233773	0.816	0.783	2.94E-168	Memory
JUNB	0.65509324	0.997	0.977	3.32E-153	Memory
ARHGAP15	0.76563726	0.913	0.809	2.03E-151	Memory
PTGER2	0.55948452	0.912	0.815	5.78E-145	Memory
LDHB	0.60480366	0.963	0.915	1.60E-143	Memory
CXCR3	0.64707736	0.868	0.738	4.90E-143	Memory
FXYD2	0.72697369	0.762	0.702	1.39E-142	Memory
FOS	0.59514237	0.921	0.784	6.91E-139	Memory
TIMP1	0.619823	0.838	0.698	3.64E-115	Memory
PLP2	0.68495292	0.86	0.759	9.64E-105	Memory
TCF7	0.53829795	0.884	0.763	1.00E-100	Memory

KLRB1	2.46140509	0.967	0.757	0	CCR6+ CD161+
LST1	0.65603783	0.865	0.596	1.93E-208	<i>CCR6+ CD161+</i>
IL7R	1.23562461	0.984	0.806	4.41E-207	<i>CCR6+ CD161+</i>
DPP4	0.91774681	0.888	0.701	1.12E-188	<i>CCR6+ CD161+</i>
TYROBP	1.19564119	0.884	0.675	1.58E-184	<i>CCR6+ CD161+</i>
МҮС	0.7221775	0.942	0.667	4.50E-178	<i>CCR6+ CD161+</i>
ТТС39С	0.78485329	0.964	0.854	2.13E-173	<i>CCR6+ CD161+</i>
GZMK	1.10947754	0.925	0.783	1.66E-162	<i>CCR6+ CD161+</i>
NFKBIA	1.35943949	0.936	0.831	2.11E-147	<i>CCR6+ CD161+</i>
NCR3	1.36753518	0.838	0.637	1.26E-143	<i>CCR6+ CD161+</i>
DUSP1	1.12077918	0.982	0.888	3.22E-142	<i>CCR6+ CD161+</i>
AQP3	1.08914582	0.927	0.804	1.39E-133	<i>CCR6+ CD161+</i>
LGALS3	0.95770062	0.805	0.786	3.32E-125	<i>CCR6+ CD161+</i>
SLAMF1	0.66166051	0.811	0.609	1.59E-108	<i>CCR6+ CD161+</i>
ALOX5AP	0.97222512	0.922	0.813	6.24E-106	<i>CCR6+ CD161+</i>
GCHFR	0.84474297	0.805	0.628	2.54E-105	<i>CCR6+ CD161+</i>
KLRG1	0.91738742	0.904	0.73	1.29E-93	<i>CCR6+ CD161+</i>
CXCR6	0.89331155	0.719	0.547	7.54E-90	<i>CCR6+ CD161+</i>
CCR6	0.81160558	0.728	0.758	1.09E-88	<i>CCR6+ CD161+</i>
LTB	0.80620585	0.967	0.817	1.07E-75	<i>CCR6+ CD161+</i>
ZBTB16	0.90784986	0.697	0.641	6.60E-71	<i>CCR6+ CD161+</i>
CD69	0.83337076	0.925	0.84	3.02E-52	<i>CCR6</i> + <i>CD161</i> +
GBP5	0.60826196	0.851	0.675	5.81E-48	<i>CCR6+ CD161+</i>
FOS	0.65314205	0.928	0.794	1.06E-43	<i>CCR6+ CD161+</i>
ERNI	0.83350715	0.73	0.697	4.33E-36	<i>CCR6+ CD161+</i>
SLC4A10	0.89645098	0.615	0.378	8.03E-31	<i>CCR6+ CD161+</i>
JAML	0.6162617	0.669	0.581	7.01E-29	<i>CCR6+ CD161+</i>
ZFP36L1	0.69958413	0.82	0.735	5.53E-26	<i>CCR6+ CD161+</i>
TMIGD2	0.72239382	0.697	0.714	9.21E-26	<i>CCR6+ CD161+</i>
DDIT4	0.7047064	0.984	0.947	1.59E-17	<i>CCR6+ CD161+</i>

Supplementary Table 3. HLA typing of ACPA+ RA patients. 12 ACPA+ RA patients

C/2

1:02

1:02

1:05

1

1

1:04

1:02

1:03

1:01

1:01

1:02

DOA1*05:05:0

1:01

DRB345/2

DRB3*02:02:0

1:04

DRB3*03:01:0

3

Absent

1

DQA1*01:02:0

1:03

DRB345/1

DRB4*01:03:0

1:10

DRB4*01:03:0

1:01

DRB4*01:03:0

1:10

DPB1*01:01:01:01

DRB1/2

DRB1*11:04:01

DRB1*12:02:01:01

DRB1*01:01:01

Sample A/1 A/2 **B**/1 **B**/2 C/1 ID **JG330** A*29:02:01:01 A*32:01:01:01 B*35:03:01:01 B*44:02:01:01 C*12:03:01:01 C*05:01:01:02 **JG331** A*24:07:01 A*11:02:01 B*15:35 B*55:02:01:03 C*07:02:01:01 C*01:02:01:01 C*02:02:02:01 **JG332** A*24:02:01:01 A*01:01:01:01 B*27:05:02:05 B*08:01:01:01 C*07:01:01:01 **JG127** A*03:01:01:01 A*01:01:01:01 C*04:01:01:11 C*12:02:02:01 B*35:01:01:05 B*52:01:01:02 **JG128** C*07:02:01:03 A*23:01:01:01 A*11:01:01:01 B*07:02:01:01 B*35:01:01:05 C*04:01:01:01 A*23:01:01:01 B*15:220:01:01 **JG129** A*68:01:01:02 B*49:01:01:01 C*07:01:01:16 C*04:01:01:01 C*17:01:01:02 **JG143** A*02:01:01:01 A*74:01:01:01 B*42:01:01 B*27:05:02:01 C*15:02:01:01 **JG147** A*11:01:01:01 A*02:06:01:01 B*40:01:02:01 B*51:01:01:05 C*03:04:01:02 C*15:02:01:03 **JG149** A*24:02:01:01 A*31:01:02:01 B*08:01:01:01 B*57:01:01:01 C*07:01:01:01 C*06:02:01:01 **JG159** A*29:02:01:02 B*45:01:01:01 C*06:02:01:01 C*16:01:01:01 A*29:02:01:01 B*44:03:01:01 **JG262** A*03:01:01:01 A*01:01:01:01 B*40:01:02:01 B*08:01:01:01 C*03:04:01:01 C*07:01:01:01 **JG272** A*30:01:01:01 A*30:01:01:01 B*53:01:01:01 B*44:03:01:10 C*04:01:01:14 C*17:01:01:02 Sample **DPA1/1 DPA1/2 DPB1/1 DPB1/2 DQA1/1 DQA1/2** ID DPA1*02:02:0 DPA1*01:03:0 DQA1*03:01:0 DOA1*05:05:0 **JG330** DPB1*05:01:01:01 DPB1*04:02:01:02 2:01 1:05 1 DPA1*02:02:0 DQA1*03:03:0 DQA1*06:01:0 **JG331** Х DPB1*05:01:01:01 DPB1*01:01:01:04 2:01 1:02 DPA1*1:03:01: DPA1*01:03:0 DPB1*02:01:02:05/4 DPB1*04:02:01:02/105:01 DQA1*03:01:0 DQA1*01:01:0 JG332 /665:01 1:01 05 16:01 1 DPA1*01:03:0 DPA1*01:03:0 DQA1*01:01:0 DQA1*03:01:0 **JG127** DPB1*04:01:01:06 DPB1*04:01:01:05 1:04 1:05 1:02 DPA1*01:03:0 DOA1*01:02:0 DQA1*03:01:0 DPA1*02:06 DPB1*04:01:01:06 DPB1*04:01:01:05 **JG128** 1:04 1:03 DPA1*02:01:0 DPA1*02:01:0 DOA1*03:03:0 DOA1*01:02:0 **JG129** DPB1*01:01:01:01 DPB1*11:01:01:01 8:02 1:01 1:01 DPA1*02:01:0 DPA1*01:03:0 DQA1*04:01:0 DQA1*04:01:0 **JG143** DPB1*01:01:01:01 DPB1*02:01:02:05 8:02 1:01 1:04DPA1*02:02:0 DPA1*02:02:0 DOA1*03:03:0 DOA1*03:03:0 DPB1*05:01:01:01 DPB1*03:01:01:01 **JG147** 2:01 2:01 1:03 DPA1*01:03:0 DPA1*01:03:0 DQA1*05:01:0 DQA1*03:03:0 JG149 DPB1*04:01:01:06 DPB1*04:01:01:05 1:04 1:02 1:02 DPA1*01:03:0 DPA1*01:03:0 DQA1*03:03:0 DQA1*02:01:0 DPB1*04:01:01:05 **JG159** DPB1*16:01:01:01 1:02 1:01 1:01 DPA1*01:03:0 DPA1*01:03:0 DQA1*03:01:0 DQA1*05:01:0 DPB1*03:01:01:01 DPB1*04:01:01:05 **JG262**

DPB1*104:01:01:01

DRB1/1

DRB1*04:01:01:03

DRB1*04:05:01:01

DRB1*04:01:01:03

were randomly selected and sequenced to get HLA types.

1:03

DPA1*01:03:0

1:02

DQB1/1

DOB1*03:02:0

1:01

DQB1*04:02:0

1:09

DQB1*03:02:0

1:01

JG272

Sample

ID

JG330

JG331

JG332

1:02

DPA1*02:01:0

8:02

DQB1/2

DOB1*03:01:0

1:03

DQB1*03:01:0

1:12

DQB1*05:01:0

1:03

JG127	DQB1*05:01:0 1:03	DQB1*03:02:0 1:02	DRB1*01:01:01	DRB1*04:04:01	DRB4*01:03:0 3	Absent
JG128	DQB1*06:02:0 1:01	DQB1*03:02:0 1:02	DRB1*15:01:01:05	DRB1*04:04:01	DRB5*01:01:0 1:01	DRB4*01:03:0 1:01
JG129	DQB1*02:02:0 1:02	DQB1*05:01:0 1:03	DRB1*09:01:02:01	DRB1*13:02:01:02	DRB4*01:01:0 1:01	DRB3*03:01:0 1:01
JG143	DQB1*04:02:0 1:08	DQB1*04:02:0 1:04	DRB1*08:11	DRB1*03:02:01	DRB3*01:62	Absent
JG147	DQB1*04:01:0 1:02	DQB1*04:01:0 1:02	DRB1*04:05:01:03	DRB1*04:05:01:02	DRB4*01:03:0 1:01	DRB4*01:03:0 1:01
JG149	DQB1*02:01:0 1	DQB1*03:01:0 1:01	DRB1*03:01:01:01	DRB1*04:01:01:01	DRB3*01:01:0 2:01	DRB4*01:03:0 1:10
JG159	DQB1*03:01:0 1:01	DQB1*02:02:0 1:01	DRB1*04:01:01:03	DRB1*07:01:01:04	DRB4*01:03:0 1:10	DRB4*01:01:0 1:01
JG262	DQB1*03:02:0 1:02	DQB1*02:01:0 1	DRB1*04:04:01	DRB1*03:01:01:01	DRB4*01:03:0 1:10	DRB3*01:01:0 2:01
JG272	DQB1*06:02:0 1:01	DQB1*03:01:0 1:03	DRB1*15:03:01:02	DRB1*13:03:01	DRB5*01:01:0 1:01	DRB3*01:01:0 2:03

Marker	Clone	Fluorescence	Company	Dilution
CD3	SK7	APC-H7	BD Biosciences	1:200
CD4	RPA-T4	FITC	BD Biosciences	1:200
CD8	RPA-T8	Pacific Blue Alexa Fluor 700	BioLegend BD Biosciences	1:200 1:200
CD69	FN50	PerCP-Cy5.5	BD Biosciences	1:200
GPR56	CG4	PE	BioLegend	1:200
ΤϹℝγδ	B1	FITC	BD Biosciences	1:200
Granzyme K	G3H69	Alexa Fluor 647	BD Biosciences	1:150
Granzyme B	GB11	PE FITC	BD Biosciences	1:200 1:200
CCR7	150503	PE	BD Biosciences	1:150
CD45RA	HI100	Brilliant Violet 421 FITC	BioLegend BD Biosciences	1:200 1:200
PD-1	NAT105	PerCP-Cy5.5	BioLegend	1:200
TIM3	F38-2E2	APC	BioLegend	1:200
CD158b (KIR2DL2/L3)	DX27	FITC	BioLegend	1:200
His-tag	J095G46	PE	BioLegend	1:100
HLA-A,B,C	W6/32	APC-Cy7	BioLegend	1:200
Ki-67	Ki-67	Brilliant Violet 421	BioLegend	1:100
	4S.B3	APC-Cy7	BioLegend	1:200
ΙΓΝγ	B27	PE	BioLegend	1:200
	B27	APC	BD Biosciences	1:150
CD107a	H4S3	APC-Cy7	BioLegend	1:200

Supplementary Table 4. Antibodies used in flow cytometry experiments.

Supplementary Table 5. CITE-seq antibodies used in 10X single cell RNA

sequencing.

TotalSeqC- Barcode	Specificity	Clone	Reactivity	Barcode sequence
<u>34</u>	CD3	UCHT1	Human	CTCATTGTAACTCCT
45	CD4	SK3	Human	GAGGTTAGTGATGGA
46	CD8	SK3 SK1	Human	GCGCAACTTGATGAT
50	CD19	HIB19	Human	CTGGGCAATTACTCG
63	CD45RA	HIIDI) HII00	Human	TCAATCCTTCCGCTT
84	CD45KA CD56	QA17A16	Human	TTCGCCGCATTGAGT
85	CD36 CD25	BC96	Human	TTTGTCCTGTACGCC
83	CD25 CD45RO	UCHL1	Human	CTCCGAATCATGTTG
88	PD-1	EH12.2H7	Human	ACAGCGCCGTATTTA
89	TIGIT	A15153G	Human	TTGCTTACCGCCAGA
139	TCRrd	B1	Human	CTTCCGATTCATTCA
139	CXCR3	G025H7	Human	GCGATGGTAGATTAT
140	CACR5 CCR6			GATCCCTTTGTCACT
		G034E3	Human	
144	CXCR5	J252D4	Human	AATTCAACCGTCGCC
146	CD69	FN50	Human	GTCTCTTGGCTTAAA
147	CD62L	DREG-56	Human	GTCCCTGCAACTTGA
148	CD197/CCR7	G043H7	Human	AGTTCAGTCAACCGA
149	CD161	HP-3G10	Human	GTACGCAGTCCTTCT
154	CD27	O323	Human	GCACTCCTGCATGTA
159	HLA-DR	L243	Human	AATAGCGAGCAAGTA
165	NKG2D	1D11	Human	CGTGTTTGTTCCTCA
168	CD57	QA17A04	Human	AACTCCCTATGGAGG
179	CX3CR1	K0124E1	Human	AGTATCGTCTCTGGG
224	TCRab	IP26	Human	CGTAACGTAGAGCGA
246	CD122	TU27	Human	TCATTTCCTCCGATT
250	KLRG1	2F1/KLRG1	Human/Mous e	GTAGTAGGCTAGACC
386	CD28	CD28.2	Human	TGAGAACGACCCTAA
389	CD38	HIT2	Human	TGTACCCGCTTGTGA
390	IL-7Ra	A019D5	Human	GTGTGTTGTCCTATG
592	CD158b/KIR2DL2/L 3	DX27	Human	GACCCGTAGTTTGAT
599	CD158e1/KIR3DL1	DX9	Human	GGACGCTTTCCTTGA

RA trafficking	Cytotoxicity	Proliferation	Inflammation
CXCR1	GNLY	HMGB2	AGER
CXCR2	GZMA	CDK1	ALOX12
CXCR3	GZMB	NUSAP1	ALOX15
CXCR4	GZMH	UBE2C	ALOX5
CXCR5	GZMM	BIRC5	AREG
CCR1	GZMK	TPX2	ATF2
CCR2	NKG7	TOP2A	BCL2L1
CCR3	KLRB1	NDC80	BCL6
CCR4	KLRD1	CKS2	BIRC2
CCR5	KLRK1	NUF2	CIQA
CCR6	NCR1	CKS1B	CIQB
CCR10	SLAMF6	<i>MKI67</i>	CIR
CX3CR1	SLAMF7	ТМРО	CIS
CCL2	TYROBP	CENPF	C2
CCL3	KIR3DL1	TACC3	СЗ
CCL4	KIR3DL2	SMC4	C3AR1
CCL5		CCNB2	C5
CCL19		CKAP2L	CCL17
CCL20		CKAP2	CCL19
CXCL10		AURKB	CCL2
CXCL16		BUB1	CCL20
		KIF11	CCL22
		ANP32E	CCL23
		TUBB4B	CCL24
		GTSE1	CCL3
		KIF20B	CCL4
		HJURP	CCL5
		CDCA3	CCR1
		CDC20	CCR2
		ТТК	CCR3
		CDC25C	CCR4
		KIF2C	CCR7
		RANGAP1	CD4

Supplementary Table 6. Gene list used to measure a score of synovial trafficking, cytotoxicity, proliferation or inflammation.

NCAPD2	<i>CD40</i>
DLGAP5	CD40LG
CDCA2	CD55
CDCA8	CD86
ECT2	CDC42
KIF23	СЕВРВ
HMMR	CFB
AURKA	CFD
PSRC1	CFL1
ANLN	CREB1
LBR	CSF1
СКАР5	CSF2
CENPE	CXCL10
CTCF	CXCL3
NEK2	CXCL9
 G2E3	CXCR1
 GAS2L3	CXCR2
 <u>CBX5</u>	CXCR4
 CENPA	CYSLTR1
	CYSLTR2
	DAXX
	DAXA DDIT3
	ELK1
	FASLG
	FLT1
	FOS
 	FXYD2
 	GNAQ
	GNAS
	GNB1
 	GRB2
 	HDAC4
	HIF1A
	HLA-DRA
	HLA-DRB1
	HMGB1
	HMGB2
	HMGN1
	HRAS

HSH2D
HSPB1
IFI44
IFIT1
IFIT2
IFIT3
IFNG
IL10
IL10RB
IL12A
IL13
IL15
IL17A
IL18
IL18RAP
ILIA
IL1B
ILIRI
ILIRAP
ILIRN
IL2
IL21
IL22
IL22RA2
IL23A
IL23R
IL3
IL4
IL5
IL6
IL6R
IL7
IRF1
IRF3
IRF5
IRF7
ITGB2
JUN
KEAP1

	LIMK1
	LTA
	LTB
	LTB4R
	LTB4R2
	<i>LY96</i>
	MAFF
	MAFG
	MAFK
	MAP2K1
	MAP2K4
	МАР2К6
	MAP3K1
	<i>MAP3K5</i>
	<i>MAP3K7</i>
	<i>MAP3K9</i>
	MAPK1
	<i>MAPK14</i>
	<i>MAPK3</i>
	<i>MAPK8</i>
	<i>MAPKAPK2</i>
	<i>MALKALK2</i> <i>MAPKAPK5</i>
	MALKALKS MASP2
	MAX
	MAA MEF2A
	MEF2A MEF2C
	MEF2C MEF2D
	MKNK1
	MMP9
	MRC1
	MX1
	MX2
	МУС
	MYD88
	NFATC3
	NFE2L2
	NFKB1
	NLRP3
	NOD1

	NOD2
	NR3C1
	OAS2
	OASL
	PDGFA
	PLA2G4A
	PLCB1
	PPP1R12B
	PRKCA
	РКСВ
	PTGDR2
	PTGER2
	PTGER4
	PTGIR
	PTGS1
	PTGS2
	PTK2
	RACI
	RAF1
	RAPGEF2
	RELA
	RELB
	RHOA
	RIPK1
	RIPK2
	ROCK2
	RPS6KA5
	SHC1
	SMO1
	STATI
	STAT2
	STAT3
	TBXA2R
	TCF4
	TGFB1
	TGFB3
	TGFBR1
	TLR1
	TLR1

	TLR3
	TLR4
	TLR5
	TLR6
	TLR8
	TLR9
	TNF
	TNFAIP3
	TNFSF14
	TOLLIP
	TRADD
	TRAF2
	TREM2
	TSLP
	TYROBP