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Radiomics with 3-dimensional magnetic resonance fingerprinting:
influence of dictionary design on repeatability and reproducibility
of radiomic features
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Abstract
Objectives We aimed to investigate the influence of magnetic resonance fingerprinting (MRF) dictionary design on radiomic
features using in vivo human brain scans.
Methods Scan-rescans of three-dimensional MRF and conventional T1-weighted imaging were performed on 21 healthy vol-
unteers (9 males and 12 females; mean age, 41.3 ± 14.6 years; age range, 22–72 years). Five patients with multiple sclerosis (3
males and 2 females; mean age, 41.2 ± 7.3 years; age range, 32–53 years) were also included.MRF data were reconstructed using
various dictionaries with different step sizes. First- and second-order radiomic features were extracted from each dataset. Intra-
dictionary repeatability and inter-dictionary reproducibility were evaluated using intraclass correlation coefficients (ICCs).
Features with ICCs > 0.90 were considered acceptable. Relative changes were calculated to assess inter-dictionary biases.
Results The overall scan-rescan ICCs of MRF-based radiomics ranged from 0.86 to 0.95, depending on dictionary step size. No
significant differences were observed in the overall scan-rescan repeatability of MRF-based radiomic features and conventional T1-
weighted imaging (p = 1.00). Intra-dictionary repeatability was insensitive to dictionary step size differences. MRF-based radiomic
features varied among dictionaries (overall ICC for inter-dictionary reproducibility, 0.62–0.99), especially when step sizes were large.
First-order and gray level co-occurrence matrix features were the most reproducible feature classes among different step size dictio-
naries. T1 map-derived radiomic features provided higher repeatability and reproducibility among dictionaries than those obtained
with T2 maps.
Conclusion MRF-based radiomic features are highly repeatable in various dictionary step sizes. Caution is warranted when
performing MRF-based radiomics using datasets containing maps generated from different dictionaries.
Key Points
• MRF-based radiomic features are highly repeatable in various dictionary step sizes.
•Use of different MRF dictionaries may result in variable radiomic features, even when the sameMRF acquisition data are used.
• Caution is needed when performing radiomic analysis using data reconstructed from different dictionaries.
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CI Confidence interval
FSPGR Fast spoiled gradient echo

GLCM Gray level co-occurrence matrix
GLRLM Gray level run length matrix
GLSZM Gray level size zone matrix
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ICCs Intraclass correlation coefficients
MRF Magnetic resonance fingerprinting
NGTDM Neighboring gray tone difference matrix
VOI Volume of interest

Introduction

Radiomics involves high-throughput computer extraction of
potentially innumerable numbers of quantitative imaging met-
rics, or “radiomic features,” which are collectively used for
prediction of disease diagnosis, treatment response, and prog-
nosis [1–3]. In contrast to focal biopsy, which is an invasive
procedure that only evaluates a small portion of tissue,
radiomics allows the assessment of total pathology, including
surrounding tissue and tracking of changes over time via re-
petitive non-invasive imaging. The implementation of
radiomics into clinical practice has been challenging due to
its sensitivity to various factors, such as image acquisition,
imaging platform vendors, and feature extraction software,
which affect the repeatability and reproducibility of radiomic
features [4–8]. Integration of MRI-based radiomics into clin-
ical workflow is challenging, particularly because the ac-
quired signal intensity of MRI does not directly reflect the
local physical properties and may differ substantially across
imaging platforms [7, 9, 10]. Due to the qualitative nature of
MRI, MRI-based radiomic features currently used in practice
predominantly comprise morphometry (e.g., size, shape, and
volume) of the structure, rather than histogram measurements
or texture [5].

Magnetic resonance fingerprinting (MRF) is an image gen-
eration framework that can be employed to acquire quantita-
tive maps of multiple tissue properties simultaneously [11]. In
MRF, repetition times and flip angles are concurrently varied
in a pseudorandom fashion to create through-time signals that
characterize the various relaxation processes unique to each
tissue type. These through-time signals are pattern-matched to
separately simulated dictionary entries to restore measurable
tissue properties. While the signal intensity of conventional
MR images (such as T1- and T2-weighted images) depends
on manifold acquisition parameters and MR scanner varia-
tions, MRF can generate highly repeatable and reproducible
quantitative maps that have absolute scales [12–14]. Indeed,
MRF is projected to emerge as the key technology for repro-
ducible radiomic analyses and has been adopted for various
sites, including the heart [15], breast [16, 17], prostate [18],
liver [19], and brain [20–22], with promising results. MRF-
based radiomics has been reported to improve the differentia-
tion of common adult brain tumors by enabling the character-
ization of tumor heterogeneity and facilitating the prediction
of outcomes in patients with glioblastoma [23].

Pattern-matching and dictionary design are active research
areas due to the dependence of reconstructed MRF maps and

reconstruction time on these processes [24]. Currently, there is
substantial heterogeneity in dictionaries used for MRF, as var-
ious dictionaries with different step sizes are employed at dif-
ferent institutions [11, 13, 25–28]. To fully harness the
quantitative maps generated by MRF across scanners
and sites that are highly repeatable and reproducible,
an analysis of maps reconstructed with different dictio-
naries is warranted.

Despite the potential of MRF-based radiomics, the
influence of dictionary design on MRF-based radiomic
features has not been investigated extensively. Herein,
we investigated the influence of dictionary step size on
the repeatability of MRF radiomic features and evalu-
ated the stability of each feature using dictionaries with
different step sizes.

Materials and methods

MRF acquisition and dictionary-matching

This study was conducted in compliance with the Image
Biomarker Standardization Initiative guidelines [5, 29–31].
The methodology used for radiomics analysis is reported ac-
cordingly. The study was approved by the local institutional
review board.Written informed consent was obtained from all
participants prior to the scan. Twenty-one participants (9
males and 12 females; mean age, 41.3 ± 14.6 years; age range,
22–72 years) with no history of neurological or psychological
disorders were enrolled. Five patients with multiple sclerosis
(3 males and 2 females; mean age, 41.2 ± 7.3 years; age range,
32–53 years, median Expanded Disability Status Scale, 1
[range, 0–7.5]; mean disease duration, 11.2 ± 4.4 years [range,
4–18 years]) were also included. Only inter-dictionary repro-
ducibility was evaluated in patients because undergoing scan-
rescan was not feasible. All subjects underwent non-contrast-
enhanced brain scans using a 3-T scanner (Discovery 750 w,
GE Healthcare) with a standard 32-channel head coil. No mo-
tion correction techniques were applied.

Scan-rescan was performed using an identical protocol
consisting of whole-brain 3D MRF and conventional 3D fast
spoiled gradient echo (FSPGR) imaging. After the first imag-
ing set (consisting of an MRF scan and FSPGR scan) was
acquired, participants exited the room and were repositioned
before the rescan. The scanner was calibrated before each set
of scans. The 3D MRF sequence was based on steady-state
free precession with spiral projection k-space trajectory [14,
32]. The acquisition parameters of MRF were as follows: field
of view, 200 × 200 × 200 mm; matrix size, 200 × 200 × 200;
spatial resolution, 1.0 × 1.0 × 1.0 mm; and acquisition time,
9 min 51 s. The acquisition parameters of conventional 3D
T1-weighted structural images were as follows: acquisition
orientation, sagittal acquisition; TR/TE/inversion time, 7.7/
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3.1/400 ms; field of view, 256 × 256 mm; matrix size, 256 ×
256; section thickness, 1.0 mm; spatial resolution, 1.0 × 1.0 ×
1.0 mm; flip angle, 11°; receiver bandwidth, 244.1 Hz/pixel;
number of excitations, 1; and acquisition time, 5 min 45 s. The
spatial resolution of 3DMRF and 3D FSPGR was matched to
gapless isotropic 1.0 mm.

Reconstructions and dictionary-matching were performed
using an in-house program in MATLAB (R2019a,
MathWorks). Dictionaries were generated using the extended
phase graph formalism [11]. To generate a set of dictionaries
with different step sizes, various step sizes were prepared as
shown in Table 1. The dictionary T1 range and T2 range were
kept the same across dictionaries, ranging from 10 to 3000 ms
and 10 to 1000 ms, respectively. In all dictionaries, we used
smaller step sizes for T2 than for T1 because T2 is smaller
than T1 in biological tissues. MRF T1 and T2 maps were
obtained using a maximum inner product search [11].

Data post-processing and radiomic feature extraction

An overview of data post-processing is illustrated in Fig. 1.
Skull-stripping was performed using the bet function imple-
mented in FMRIB Software Library (version 6.0.4; FMRIB
Analysis Group). Spherical volumes of interest (VOIs) with a
diameter of 20mmwere randomly andmanually placed inside
the skull on the first FSPGR image (Fig. 2) using the
“Segment Editor” module in 3D Slicer (version 4.10.2,
https://www.slicer.org/) [33]. Additionally, ellipsoid (axes,
20 × 12 mm) and cubic (12 mm each side) VOIs were also
prepared to investigate the effect of dictionary design on the
reproducibility of radiomic features under various VOI
shapes. We did not align the MRF images and rescan
FSPGR to initial FSPGR images to avoid intensity
interpolation, which may have altered the signal differences
originally contained within the data. Instead, VOIs set on
initial FSPGR images were rigidly translated to the rescan
FSPGR space, first-scan MRF space, and rescan MRF space
using the flirt function implemented in FMRIB Software
Library. Since all MRF datasets for each subject were inher-
ently aligned (highly dense, dense, moderate, sparse, and
highly sparse datasets were reconstructed from the same ac-
quisition data), each VOI was copied and pasted across MRF
datasets of the same subject. In total, 12,600 VOIs from
healthy volunteers (21 subjects, 300 VOIs per subject, scan-
rescan dataset) and 1250 VOIs from patients with multiple

sclerosis (5 patients, 250 VOIs per subject, scan dataset) were
used in subsequent analyses.

PyRadiomics (version 3.0) [34], an open-source radiomics
software package that is compliant with the IBSI benchmarks
[31], was used to extract first- and second-order features from
the VOIs for each dataset as defined in default by
PyRadiomics. Briefly, first-order features describe the distri-
bution of voxel intensities within a VOI, whereas second-
order features express combinations of voxel intensities of
neighboring pixels distributed within a VOI. Second-order
features included symmetrical gray level co-occurrence matrix
(GLCM), gray level run length matrix (GLRLM), gray level
size zone matrix (GLSZM), and neighboring gray tone differ-
ence matrix (NGTDM). These features complied with feature
definitions as described by the IBSI, which are available in a
separate reference manual by Zwanenburg et al [7]. Bin
counts of 64 were used because gray levels of 32 to 64 typi-
cally enable radiomic analysis without losing important fea-
tures in medical imaging [3, 10, 23, 35]. No image resam-
pling, image intensity normalization, or image filtering was
performed.

Statistical analysis

To evaluate intra-dictionary repeatability, two-way mixed-ef-
fects models of the intraclass correlation coefficients (ICCs,
unit: single rater/measurement, type: absolute agreement) and
their 95% confidence intervals (CIs) were calculated for each
feature value extracted from scans and rescans [36]. To eval-
uate reproducibility, two-way random-effects models of the
ICCs (unit: single rater/measurement, type: agreement, con-
sistency) and their 95% CIs were calculated against the refer-
ence value for each feature as a measure of the agreement
between the highly dense dictionary and others. This analysis
was performed to evaluate the stability of features against
differences in dictionary step size. The radiomic features ob-
tained from the densest dictionary were used as reference
values, as they were considered to contain the greatest amount
of information. Only the first scan was used to calculate re-
producibility because only one scan is available (rescan is not
performed) in clinical settings. Negative ICC estimates were
truncated at zero. To evaluate the effects of different step sizes
on radiomic features, percent relative changes were calculated
with respect to corresponding references. ICCs exceeding
0.90 were categorized as high performance and acceptable,

Table 1 Step sizes and total
number of entries for each
dictionary. All dictionaries had
the same range of 10 to 3000 ms
for T1 and 10 to 1000 ms for T2

Dictionary name Highly dense Dense Moderate Sparse Highly sparse

T1 step size (ms) 10 20 40 80 100

T2 step size (ms) 2 4 8 16 20

No. of entries 148,005 36,803 9102 2257 1421
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Fig. 2 Representative magnetic resonance fingerprinting (MRF) maps
and a histogram of each dictionary with different step sizes.
Representative T1 maps generated from different dictionaries in axial,
coronal, and sagittal views (upper 3 rows). Representative spherical vol-
ume of interest with a diameter of 20mm is indicated by transparent green

color. Since datasets for each subject are inherently aligned in MRF, each
volume of interest was copied and pasted across all datasets. Note that the
images obtained from different dictionaries are challenging to distinguish
visually. Histogram of T1 values for each dictionary (bottom row). Note
that the sparser dictionary has coarser discretization values

Fig. 1 Schematic overview of the evaluation process of the effect of
magnetic resonance fingerprinting (MRF) dictionary design on radiomic
features. Various dictionaries with different step sizes were applied to the
same MRF acquisition data to reconstruct quantitative maps. Identical

volumes of interest were applied to each of these maps to extract radiomic
features, which were then used to evaluate intra-dictionary repeatability
and inter-dictionary reproducibility for each radiomic feature
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in accordance with thresholds reported in the literature
[37–39].

All statistical analyses were performed using R statistical
software (version 3.5.1; R Foundation for Statistical
Computing) with packages “psych” (version 1.8.10) and
“tidyverse” (version 1.2.1). The Wilcoxon rank sum test was
used to compare individual radiomic features across dictionar-
ies. Results were considered significant if p values were below
the significance threshold (0.05 divided by the total number of
combinations of the dictionaries) after applying the
Bonferroni method for multiple-comparison correction. The
significance threshold for adjusted p values was set at 0.05.

Results

Scan-rescan repeatability of MRF-based radiomic fea-
tures using dictionaries with different step sizes

Intra-dictionary scan-rescan ICCs of radiomic features derived
from MRF using different step sizes and conventional imag-
ing are presented in Fig. 3. Repeatability of individual
radiomic features is presented in Fig. 4 (first-order and sym-
metric GLCM), and see Electronic Supplementary Material
Figure 1 (GLRLM, GLSZM, and NGTDM). ICCs were com-
puted based on the entire study population. Intra-dictionary
repeatability was generally insensitive to dictionary step sizes.
Overall scan-rescan ICCs for conventional 3D T1-weighted
imaging and highly dense, dense, moderate, sparse, and high-
ly sparse dictionaries for MRF T1-derived radiomic features
were 0.95 ± 0.06, 0.94 ± 0.09, 0.94 ± 0.09, 0.94 ± 0.9, 0.93 ±
0.14, and 0.92 ± 0.16, respectively (mean ± standard devia-
tion). No significant differences were observed among differ-
ent MRF dictionaries (p = 1.0–1.0). T1 map-derived GLCM
features tended to have poorer repeatability in sparser dictio-
naries. Among dictionaries, the highly dense dictionary

provided the highest number of highly repeatable (i.e., ICC
> 0.90) radiomic features (n = 68/79, 86%), which was
noninferior to conventional imaging (n = 65/79, 83%) (p =
0.82). T2 maps generally exhibited poorer intra-dictionary
repeatability compared to T1 maps. Overall scan-rescan
ICCs for highly dense, dense, moderate, sparse, and highly
sparse dictionaries for T2-derived radiomic features were
0.87 ± 0.11, 0.87 ± 0.11, 0.86 ± 0.12, 0.87 ± 0.15, and 0.86
± 0.15, respectively (mean ± standard deviation). No signifi-
cant differences were noted in the repeatability of radiomic
features derived from T2 maps among different MRF dictio-
naries (p = 1.0–1.0). The percentage of highly repeatable T2
map-derived radiomic features provided by the highly dense
dictionary was 46% (n = 36/79).

The percentages of high repeatability (ICC > 0.90) of each
feature class among T1 and T2 maps among dictionaries were
69% (n = 124/180), 85% (n = 205/240), 63% (n = 100/160),
44% (n = 71/160), and 58% (n = 29/50) for first-order,
GLCM, GLRLM, GLSZM, and NGTDM features, respec-
tively. Poor repeatability was observed in the range, mini-
mum, and maximum for both T1 and T2 maps, and kurtosis
of T2 maps. Features related to lower gray level values (e.g.,
run low gray level emphasis) exhibited poorer repeatability
with increased dictionary step size using spherical VOIs.

The results using ellipsoid and cubic VOIs were similar to
those obta ined with spher ica l VOIs (Elect ronic
Supplementary Material Figure 2), showing high intra-
dictionary repeatability and general insensitivity to dictionary
step sizes.

Inter-dictionary reproducibility of MRF-based
radiomic features

The inter-dictionary reproducibility of radiomic features cal-
culated with MRF using different step size dictionaries is pre-
sented in Fig. 5. The percent relative differences and ICCs of

Fig. 3 Scan-rescan within-dictionary repeatability of magnetic resonance
fingerprinting (MRF)–derived radiomic features across dictionaries with
different step sizes. Spherical volume of interests was used. Intraclass
correlation coefficients computed for the entire study population are

depicted in boxplots. Boxes indicate the interquartile range (25–75%),
and circles indicate radiomic features. GLCM, gray level co-occurrence
matrix; GLRLM, gray level run length matrix; GLSZM, gray level size
zone matrix; NGTDM, neighboring gray tone difference matrix
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first-order and symmetric GLCM features are presented in
Electronic Supplementary Material Figure 3 and Figure 6, re-
spectively (see Electronic Supplementary Material Figures 4–
6, which illustrate the inter-dictionary reproducibility of
GLRLM, GLSZM, and NGTDM features). ICCs were com-
puted based on the entire study population. Across all feature
classes, features calculated using the dense dictionary gener-
ally exhibited greater agreement with those calculated with the

reference (i.e., highly dense dictionary). Radiomic features
calculated using the dense dictionary exhibited high reproduc-
ibility (ICC > 0.90) with those calculated using the highly
dense dictionary (T1, n = 79/79, 100%; T2, n = 73/79,
92%). Reproducibility decreased with an increase in dictio-
nary step size. The reproducibility ICCs (mean ± standard
deviation) for dense, moderate, sparse, and highly sparse dic-
tionaries in T1 maps were 0.99 ± 0.01, 0.96 ± 0.06, 0.70 ±

Fig. 5 Reproducibility of radiomic features calculated with magnetic
resonance fingerprinting (MRF) using dictionaries with different step
sizes. Intraclass correlation coefficients were computed using radiomic
features obtained from the highly dense dictionary as a reference for the
entire study population. Spherical volume of interests was used. Boxes

indicate the interquartile range (25–75%), and circles indicate radiomic
features. GLCM, gray level co-occurrence matrix; GLRLM, gray level
run length matrix; GLSZM, gray level size zone matrix; NGTDM, neigh-
boring gray tone difference matrix

Fig. 4 Intra-dictionary repeatability of magnetic resonance fingerprinting
(MRF)–derived radiomic features across conventional imaging and MRF
with dictionaries of different step sizes. (a) First-order features and (b)
symmetrical gray level co-occurrence matrix are shown. Spherical vol-
ume of interests was used. Conventional refers to conventional 3D T1-

weighted imaging. ICC, intraclass correlation coefficient; Id, inverse dif-
ference; Idn, inverse difference normalized; Idm, inverse difference mo-
ment; Idmn, inverse difference moment normalized; Imc, informational
measure of correlation; MCC, maximal correlation coefficient
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0.31, and 0.62 ± 0.36, respectively. For T2 maps, the repro-
ducibility ICCs (mean ± standard deviation) for dense, mod-
erate, sparse, and highly sparse dictionaries were 0.97 ± 0.06,
0.88 ± 0.16, 0.69 ± 0.33, and 0.66 ± 0.34, respectively.
Significant differences were observed in all dictionary combi-
nations for both T1 and T2maps (p < 0.001), except for highly
sparse and sparse dictionaries (p = 0.22 and 1.00 for T1 and
T2, respectively).

First-order features were generally more reproducible than
second-order features. Reproducibility of GLRLM, GLSZM,
and NGTDM features was sensitive to an increase in dictio-
nary step size. Among first-order features, entropy and unifor-
mity were the most sensitive to changes in dictionary step size
and exhibited a relative difference of > 25% compared to
reference values (Electronic Supplementary Material
Figures 3). Results for sparser dictionaries were generally
more non-reproducible for second-order features than for
first-order features.

Radiomic features calculated using T1 maps exhibited
smaller percent relative differences among dictionaries than
those calculated using T2 maps (Figs. 5 and 6; see
Electronic Supplementary Material Figures 3–6). Overall,
T2-derived radiomic features exhibited greater variability

compared to T1-derived radiomic features. In contrast, T1-
derived radiomic features exhibited less variability but larger
bias (i.e., deviation from the highly dense dictionary, indicated
by the magnitude of percent relative differences). This tenden-
cy was most evident in NGTDM (see Electronic
Supplementary Material Figures 4–6).

The inter-dictionary reproducibility using ellipsoid and cu-
bic VOIs was similar to those obtained with spherical VOIs
(Electronic Supplementary Material Figure 2). Across all fea-
ture classes, features calculated using the dense dictionary
generally exhibited greater agreement with those calculated
with the reference (i.e., highly dense dictionary), and repro-
ducibility decreased with an increased dictionary step size.

The inter-dictionary reproducibility of radiomic features in
patients with multiple sclerosis is summarized in Electronic
Supplementary Material Figure 7. The results were similar to
those for healthy subjects. Across all feature classes, features
calculated using the dense dictionary generally exhibited
greater agreement with those calculated with the reference
(i.e., highly dense dictionary). The reproducibility ICCs
(mean ± standard deviation) for dense, moderate, sparse, and
highly sparse dictionaries in T1maps were 0.99 ± 0.02, 0.96 ±
0.07, 0.71 ± 0.31, and 0.64 ± 0.35, respectively. For T2 maps,

Fig. 6 Effect of magnetic resonance fingerprinting (MRF) dictionary step
size on symmetrical gray level co-occurrence matrix. (a) Inter-dictionary
percent relative change of radiomic features. (b) Intraclass correlation
coefficients (ICCs) for each feature (rows) extracted with different dictio-
nary step sizes (columns). Radiomic features obtained from the highly
dense dictionary were used as references based on the assumption that the

highly dense dictionary contained the greatest amount of information.
Spherical volume of interests was used. Id, inverse difference; Idn, in-
verse difference normalized; Idm, inverse difference moment; Idmn, in-
verse difference moment normalized; Imc, informational measure of cor-
relation; MCC, maximal correlation coefficient
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the reproducibility ICCs for dense, moderate, sparse, and
highly sparse dictionaries were 0.98 ± 0.05, 0.89 ± 0.16,
0.73 ± 0.30, and 0.68 ± 0.32, respectively.

Discussion

Due to its highly repeatable and reproducible quantitative
maps, MRF has emerged as a key technology for reliable
radiomic analyses. Maps derived using MRF may be used in
multi-center radiomic studies by pooling the data without the
need for normalization or harmonization [40] that could scale
away important information originally contained within the
images. Nevertheless, the influence of dictionary design, a
crucial component of MRF, on radiomic features has not been
comprehensively investigated. This study evaluated the influ-
ence of dictionary design on intra-dictionary repeatability and
inter-dictionary reproducibility of extracted radiomic features.
Our results demonstrated that (i) repeatability of MRF-based
radiomic features is unaffected by the dictionary step size, and
(ii) the use of differentMRF dictionaries may result in variable
radiomic features, even when the same MRF acquisition data
are used, and (iii) these results were consistent even when
using different VOI shapes for volunteers and patients.
Therefore, maps obtained with different dictionaries may pro-
duce erroneous radiomic analyses when used simultaneously.

The repeatability of MRF-derived radiomic features using
the highly dense dictionary was comparable to conventional
imaging in our study (89%, 87%, and 82% for MRF T1 maps,
MRF T2 maps, and conventional imaging, respectively). The
repeatability observed in this study was generally higher than
values reported in the literature based on conventional MRI.
Baessler et al [9] reported that the percentage of robust scan-
rescan features obtained from conventional T1-weighted im-
ages was 54% (n = 25/45), whereas MRF using the highly
dense dictionary generated repeatability of 89%. Although a
direct comparison is challenging since we used a different
radiomics platform and Baessler et al used vegetables and
fruits rather than the human brain for imaging, our results
demonstrate thatMRFwith a highly dense dictionary provides
repeatable radiomic features.

Although our results indicate that merging ofMRF-derived
radiomic features calculated using different step size dictio-
naries should be avoided, several features exhibited high re-
producibility across different dictionaries. First-order features
and GLCM were generally more reproducible compared to
other second-order features, in accordance with previous lit-
eratures [30, 41]. We identified several features with high
reproducibility (ICC > 0.90) across dictionaries. This indicates
the possibility of mergingMRF-derived radiomic features cal-
culated using different step size dictionaries. For example,
Badve et al reported that mean T1 and T2 values and T2
skewness exhibited significant differences between solid

tumor regions in glioblastoma and low-grade gliomas [22].
These features were highly reproducible across different dic-
tionaries (ICC > 0.90 for both T1 and T2), highlighting the
feasibility of pooling data from different dictionaries for this
purpose. MRF-based radiomic analyses of adult brain tumors
by Dastmalchian et al. revealed that inverse differences were
normalized and homogeneity (equivalent of inverse differ-
ence) values of peritumoral white matter provided the best
discrimination of low-grade gliomas, glioblastomas, and me-
tastases [23]. Our results suggest that inverse differences have
high reproducibility among highly dense, dense, andmoderate
dictionaries, and normalized inverse differences are highly
reproducible (ICC > 0.90 among all dictionaries) and repeat-
able (ICC > 0.90, except for T2 of the highly sparse
dictionary).

Several limitations of our study should be acknowledged.
First, although a wide age range of healthy volunteers was
included, the sample size of patients was small. Thus, we only
evaluated the influence of dictionary design on radiomic fea-
tures but not on downstream analysis in clinically relevant
predictive models. Radiomic features are conveyed to
machine-learning models for use in certain tasks, such as
predicting diagnosis, treatment response, and prognosis.
Performing MRF-based radiomics on real patient data
to evaluate the impact of dictionary design on resulting
predictive models is warranted in the future. This may
enable accurate radiomic analysis of MRF data from
different dictionaries used simultaneously. Second, we
used a single sequence with fixed acquisition parame-
ters, which may overlook the flexibility and robustness
of the MRF framework. It would be interesting to in-
vestigate these effects on radiomic features in a future
study. Third, we employed a single scanner study de-
sign and were thus unable to evaluate the inter-scanner
reproducibility of MRF-based radiomic features in this
study. Due to the high reproducibility of MRF T1 and
T2 maps across scanners, the inter-scanner reproducibil-
ity of MRF-based radiomic features may achieve greater
reproducibility than conventional qualitative imaging.
This would be of substantial interest in clinical settings
and warrants further investigation. Nevertheless, given
the current paucity of investigations on repeatability
and dictionary dependence of MRF-based radiomic fea-
tures, our findings serve as a baseline and provide fun-
damental information which will facilitate clinical inte-
gration of MRF-based radiomics.

Our findings indicate that MRF-based radiomic features
are highly repeatable across various dictionary step sizes.
The repeatability of MRF-based radiomics is insensitive to
dictionary step size. Based on our results, except for a small
subset of radiomic features, we recommend against perform-
ing radiomic analysis using data reconstructed from different
dictionaries.
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