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ABSTRACT: Multiscale QM/MM approaches have become the most suitable and
effective methods for the investigation of spectroscopic properties of medium- or large-
size chromophores in condensed phases. On these grounds, we are developing a novel
workflow aimed at improving the generality, reliability, and ease of use of the available
tools. In the present paper, we report the latest developments of such an approach with
specific reference to a general workplan starting with the addition of acetonitrile to the
panel of solvents already available in the General Liquid Optimized Boundary (GLOB)
model enforcing nonperiodic boundary conditions (NPBC). Next, the solvatochromic
shifts induced by acetonitrile on both rigid (uracil and thymine) and flexible (thyrosine)
chromophores have been studied introducing in our software a number of new features
ranging from rigid-geometry NPBC molecular dynamics based on the quaternion
formalism to a full integration of variational (ONIOM) and perturbative (perturbed matrix method (PMM)) approaches for
describing different solute−solvent topologies and local fluctuations, respectively. Finally, thymine and uracil have been studied also
in methanol to point out the generality of the computational strategy. While further developments are surely needed, the strengths of
our integrated approach even in its present version are demonstrated by the accuracy of the results obtained by an unsupervised
approach and coupled to a computational cost strongly reduced with respect to that of conventional QM/MM models without any
appreciable accuracy deterioration.

■ INTRODUCTION

Prediction of the spectra of medium-size semirigid chromo-
phores in the gas phase is a nontrivial problem, needing a
careful balance between feasibility and accuracy.1 The study of
flexible molecules in condensed phases is further complicated
by the necessity of an exhaustive sampling of both internal soft
degrees of freedom and environmental effects.2−5 As widely
recognized, both the quality of the sampling and the accuracy
of the quantum mechanical model concur to shape the
computed spectra, not to speak about the ill-defined role of
possible error compensations.
The most effective solution to this problem is offered by

multiscale strategies like quantum mechanics−molecular
mechanics (QM/MM) approaches in which a relatively small
part of the system (e.g., the chromophore) is treated at the
highest possible QM level, whereas the remaining (huge) part
(including remote regions of the solute and the solvent
possibly beyond the cybotactic zone) is treated at a lower QM
or MM level.6−10

When dealing with complex systems, the whole route from
the design of the study to its final accomplishment involves the
clever management of a number of tricky aspects. Therefore,
only well-devised and purposely tailored strategies can provide

a satisfactory modeling, since each step of the overall
procedure requires a fine tuning of the accuracy/cost ratio,
which must be balanced with that of the other steps and with
the final sought accuracy. In this framework, the main aim of
this contribution is to present some of the latest developments
we have implemented into a general workflow for the study of
the spectroscopic features of medium-to-large-size chromo-
phores in condensed phases. This effort is based on our
opinion that computational spectroscopy will not become a
routine companion of experimental studies in the analysis of
challenging systems until general and user-friendly tools have
been developed and validated.11 Broadly speaking, a general
QM/MM tool includes three main ingredients: (i) classical
sampling of the complete system; (ii) selection of a
representative number of system configurations for performing
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the successive high-level calculations, and (iii) QM/MM
calculations for the chosen structures. Even if the attention is
often focused only on the last topic, all of the ingredients often
play a comparable role in determining the final accuracy of the
results.
The description of a molecular system at the MM level

requires a set of parameters encoding its properties (force field
(FF)). Since the accuracy of the classical sampling strictly
depends on the quality of the force-field (FF) parameters, the
availability of an accurate FF is the mandatory first step of any
successful modeling.10,12,13

Once an FF is available, molecular dynamics (MD)
simulations can be used to sample the phase space usually
employing periodic boundary conditions (PBC).14 Unfortu-
nately, PBC are not free from possible artifacts for intrinsically
nonperiodic systems,15 and therefore, several alternative
strategies enforcing nonperiodic boundary conditions
(NPBC) have been proposed.16,17 According to this general
paradigm, a finite system (generally a sphere) containing the
solute and a sufficient number of explicit solvent molecules is
embedded within a polarizable continuum mimicking bulk
solvent effects, thus avoiding spurious anisotropic solvation
effects and periodicity artifacts. Besides, the computational cost
is significantly reduced due to the lower number of explicit
molecules required to fill the sphere compared to other cell
structures (e.g., cubic box). One of such mixed discrete/
continuum approaches is the so-called general liquid optimized
boundary (GLOB) model,18 which relies on a mean-field-
based approach to account for the interaction with the
continuum. GLOB has been applied to study various systems
and properties in aqueous solution,19−21 and recently, to
model also nonaqueous media.22,23 Further, the applicability of
the model has been tested for scenarios where the use of
polarizable force fields is of particular relevance.23 In recent
contributions,22−24 we have presented a novel MD engine
embedded in the Gaussian suite of programs and working
within the GLOB paradigm. The code has been used to
perform MD simulations using both fixed and fluctuating
charges25 (FQ) in aqueous or organic solvents using fully
flexible models or constrain-based methods such as SHAKE26

or SETTLE.27 However, for relatively small (but more
complex than trigonal cases) solvent molecules, a rigid-body
(RB) representation would improve the stability and accuracy
of the simulation. Therefore, in the present contribution, we
have introduced an RB MD integrator (based on quatern-
ions)28 and tested its performance within GLOB for
nontrigonal molecules (since most studies on quaternion-
based dynamics compare it to SHAKE, using water molecules).
Once a sufficient MD sampling is achieved, a number of
representative configurations of the complete system are
extracted for the following QM calculations.
Within the QM/MM paradigm, different schemes have been

developed for the treatment of interactions between QM and
MM regions. The most refined and widely employed approach
is based on the electrostatic embedding (EE) model4,29 in
which the partial charges of the MM region are included into
the QM Hamiltonian through an electrostatic term. This
approach includes the polarization of the QM wavefunction by
the MM region charges and avoids the approximation of
describing the QM fragment in terms of point charges. For this
kind of QM/MM calculations, an effective selection of a
reduced sampling able to cover most of the system
configuration space with the minimum number of snapshots

is of paramount relevance to limit the computational effort,
which scales with (i) the number of the degrees of freedom of
the system and (ii) the sensitivity to conformational
fluctuations of the phenomenon under investigation. As a
consequence, well-converged simulations of electronic spectra
usually require hundred to thousand snapshots distributed over
the whole configuration space. The simplest way to perform
this subsampling is to extract snapshots from the MM
trajectories with a constant step, but this strategy is both
inefficient and scarcely insightful. Unsupervised learning (UL)
techniques such as clustering,10,30,31 self-organizing maps,32

and combinatorial optimization33 may yield a balanced and
efficient subsampling of MM trajectories once an exhaustive
overall sampling has been carried out. The application of UL
requires the choice not only of an efficient sampling/
classification method but also of suitable molecular descriptors
for the comparison of structures. These descriptors may be
structural properties of the QM fragment (e.g., the orientation
of groups on selected rotating bonds) or of the system (e.g. the
number of hydrogen bonds between the QM and MM
fragments) or electric properties (e.g., the electric field exerted
by the MM atomistic environment over the QM fragment) and
may be used in combination.
Within the QM/MM framework, the perturbed matrix

method (PMM) represents an effective alternative.34−36

Contrary to the variational approaches outlined above, the
embedding effects exerted by the MM environment on the
QM center are treated by a perturbative approach. The core of
the method is the diagonalization of the perturbed
Hamiltonian matrix expressed in terms of the Hamiltonian
eigenstates computed in the absence of the perturbation. The
QM computations are carried out for the corresponding
fragment in vacuum, while MM simulations of the complete
system are exploited to take environmental effects into
account. The method has been implemented in a local
development version of the Gaussian suite of programs,37 and
it has also been expanded to include different levels of theory
for the treatment of the perturbation term.38

Variational and perturbative approaches have been recently
combined in the ONIOM/EE-PMM method.39 In this
approach, a preliminary analysis of the MM sampling is
performed to identify a set of clusters or basins for partitioning
the trajectory. Then, the ONIOM/EE method is applied only
for “reference” snapshots of the simulation representative of
each subtrajectory within a single basin. This step allows us to
avoid the main potential shortcoming of the PMM, namely, the
use of a perturbative approach to describe the (possibly)
strong modifications induced by average solvent effects on gas-
phase structures and/or spectral features. Next, the PMM is
employed to treat local deviations within each cluster, i.e., to
model the electrostatic potential fluctuations with respect to
the reference configuration. Therefore, a key aspect of the
approach is the effective yet reliable definition of the basins,
which, for simple systems, can be based on intuitive “visual
inspection”. For more complex cases, several automatic
clustering procedures have been proposed,30,31,40 usually
based on the root-mean-square deviation (RMSD) of (non-
hydrogen) atoms after a roto-translational fit as a measure of
the distance between simulation frames. However, for the
accurate simulation of spectroscopic parameters of medium-
size chromophores, internal coordinates are more effective. On
these grounds, we propose a pipeline joining accuracy, ease of
benchmarking (validation is an important but often overlooked
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aspect of UL applications), and use of the most effective
generalized internal coordinates.
The effectiveness of the ONIOM/PMM approach for the

description of optical and chiroptical spectra has been recently
documented.41,42 On these grounds, the main purpose of the
present study is to assess the application of RB solvent models
under NPBC to the study of organic chromophores in
conjunction with the ONIOM/EE-PMM method. Concerning
solvents, the already available data for methanol24 were refitted
to a polynomial form, whereas new simulations of acetonitrile
(CH3CN) nanodroplets were performed employing a new very
reliable force field43 to test the RB integrator and to obtain an
mean field (FF) component (vide infra for details). Next, we
selected two semirigid chromophores, thymine and uracil,
whose relatively soft ring deformations can be more effectively
described, if needed, by vibrational modulation effects
obtained from a harmonic treatment of Franck−Condon
and, possibly, Herzberg−Teller contributions.41 Finally, we
considered a flexible chromophore, tyrosine, whose soft
(torsional) degrees of freedom can be well accounted for in
the framework of a classical treatment.
The manuscript is organized as follows: in the Methods

section, we (i) illustrate how RB algorithms have been
integrated in the NPBC framework, (ii) summarize the (MF)
optimization, (iii) describe the latest implementations of the
ONIOM/EE-PMM approach, and (iv) outline the procedures
used to select quantum centers (QCs, which will be explicitly
defined in the following); then, computational details and
simulation parameters are given. In the section devoted to
results, we first analyze the stability of the RB propagation for
pure acetonitrile in terms of energy and temperature
fluctuations and then proceed to optimize the MF potential
of pure solvents by means of long NPBC simulations. Finally,
the absorption spectra of the different chromophores in
methanol and/or acetonitrile are analyzed, starting from rigid
species and then considering flexible ones.

■ METHODS
Rigid-Body Dynamics. Under an RB representation, the

motion of a molecule is factorized into a translational part,
describing the motion of the molecular center of mass (COM)
in the laboratory reference frame (LF hereafter) and a
rotational part for the RB rotations around the principal
inertia axes. Since the geometry is fixed, the latter term can be
represented in a fixed reference frame (molecular frame or MF
hereafter) so that the molecular rotational motion is just
described by the rotations of MF with respect to LF. While the
description of the translational part is straightforward and
coincides with the dynamics of a particle having the mass of
the molecule, rotation can be represented in different ways.
The widely used Euler angles lead to singularities and loss of
degrees of freedom (misleadingly named “gimbal lock”). On
the other hand, quaternions provide a representation that is
singularity-free and computationally convenient. For this
reason, they are being increasingly used to represent RB
orientation in fields such as engineering and computer
graphics.44 Their use in MD was first proposed by Evans45,46

and later by Fincham,47 Svanberg,48 Omelyan,49 and
Rozmanov et al.50 An exhaustive review of the applications
of quaternions in molecular modeling has been given by
Karney.51 Here, we adapted the rotational velocity Verlet
(hereafter RVV1) integrator based on a quaternion represen-
tation of rotational motion proposed by Rozmanov et al. (see

ref 50). For the sake of brevity, here, we simply recall the
fundamental equation that allows us to rotate a vector 3∈ ; a
summary of quaternion definition and properties is given in
Appendix. A unit quaternion Q conveys all of the information
about a molecule orientation either in the MF or LF, and the
rotation of a vector v between reference systems can be
achieved with

Q Qv uMF LF
1= −

(1)

Backward rotation takes place exchanging Q with its inverse
Q−1 = Q*. The rotational motion of a generic molecule i is
ruled by the inertia tensor Ii, the orientation Ωi, the angular
momentum Li, and the torque Ti, which are the rotational
analogues of mass, position, momentum (or velocity), and
force used for rectilinear motions. In particular, the orientation
is a function of the angular momentum and inertia tensor and
its actual definition depends on how rotational motion is
described. The corresponding equations of motion are

t tT L( ) ( )i i
LF LF= ̇ (2)

t Q t Q t t( ) ( )
1
2

( ) ( )i i i i
MFωΩ̇ = ̇ =

(3)

where ω = Ii
−1(t)Li(t) is the angular velocity; note that in eq 3

the time derivative of the quaternion at t depends on Q(t)
itself. This is best explained following the different steps of the
RVV1 algorithm. The initial state for the ith molecule is
specified by the starting orientation Q(0) and COM position
xCOM(0), the starting angular momentum LLF(0) and COM
velocity vCOM(0), and the starting total force acting on the
COM and torque, FCOM(0) and TLF(0), respectively. The
quantities xCOM(0), vCOM(0), and FCOM(0) are used to
describe the translational motion with the standard velocity
Verlet (VV) algorithm,14 while rotational quantities are used as
follows (dropping the index i):

1. Laboratory frame quantities are rotated into the
molecular frame reference system (LF → MF)

Q QL L(0) (0)MF LF= * (4)

Q QT T(0) (0)MF LF= * (5)

2. The angular momentum in molecular frame is updated
at t

2
Δ using Euler’s equation

I L(0) (0)MF MF 1 MFω = [ ]− (6)

L T L(0) (0) (0) (0)MF MF MF MFω̇ = − × (7)

i
k
jjj

y
{
zzz

t t
L L L

2
(0)

2
(0)MF MF MFΔ = + Δ

(8)

The angular momentum in the laboratory frame is also
updated (using the torque), in analogy with velocity
Verlet for a rectilinear motion

i
k
jjj

y
{
zzz

t t
L L T

2
(0)

2
(0)LF LF LFΔ = + Δ

(9)

3. At this point, the analogues of force and velocity for
particle dynamics are updated at t

2
Δ ; we need to estimate

the orientation Q(Δt), which means solving eq 3. The
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initial estimates of ( )Q t
2

Δ and ( )Q t
2

̇ Δ are obtained using

eq 3 and then using the half-step quaternion derivative
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(0)
2

0 MFωΔ = Δ
(10)
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1
2 2

0 0Δ = + Δ Δ
(11)

4. At this point, we need to evaluate the quaternion
derivatives
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t
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Q
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Q
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2 2

k k( ) ( )Δ = + Δ ̇ Δ
(15)

Once the difference |(k)Q − (k−1)Q| is less than some
threshold ϵ, the system has converged and the final value
of Q(t) can be calculated

i
k
jjj

y
{
zzzQ t Q tQ

t
( ) (0)

2
Δ = + Δ Δ

(16)

At this point, the norm of Q is calculated; if the
deviation from a unit quaternion is small, normalization
is enforced applying Q = Q/|Q|, otherwise an error flag is
set to signal an unstable system (in our test, this
happened only during bug fix)

5. The solution of eq 16 allows the computation of the new
orientation for molecule i and, together with the COM
motion, the calculation of the new position of all atoms
in the laboratory frame. The first half-step of RVV1 is
now solved, and the new forces and torques at time Δt
can be computed.

6. In analogy with VV second half-step, the angular
momentum in the laboratory frame is now updated

i
k
jjj

y
{
zzzt

t t
tL L T( )

2 2
( )LF LF LFΔ = Δ + Δ Δ

(17)

7. At this point, a full integration step has been carried out
and the simulation can proceed to time (3/2)Δt.

At the beginning of a simulation, the inertia tensor I of all
rigid fragments is calculated and diagonalized; the rotation
matrix that aligns a molecule i with its principal axes is
converted to a quaternion and used to define its starting
orientation in MF, while the diagonal components of I are
stored. Starting (COM) velocities and angular momenta are
assigned by sampling for each fragment from a Gaussian
distribution and then scaling the values to obtain the desired
kinetic energy. In previous contributions using the GLOB
model, the integration time step was limited to 2.0 fs and the
solvent used (with the exception of CH3CN in ref 24)
enclosed in a sphere. To assure that solvent molecules
remained enclosed in the simulation box, an elastic boundary

(acting on atomic velocities) was enforced around it; this had
the advantage of conserving forces and did not create
nonphysical instabilities in the total kinetic energy, which
can arise when using a simple repulsive wall with a large time
step. However, this approach is straightforward when using
nonrigid molecules, but becomes cumbersome when using an
RB representation. For this reason, to enforce confinement in
the box while keeping spurious boundary effect and computa-
tional effort under control, we also added a rough-wall14

representation of the boundary for NVT simulations.
Whenever a rigid fragment steps beyond the boundary, it is
assigned a new random angular momentum and COM velocity
(under the constraint that the new velocity cannot be
tangential to the boundary or directed outward) sampled at
the reference (or current) temperature. If, for any reason, some
rigid fragments must be oriented in a predetermined way (not
in the present case), the rotation least-square fit method
described by Karney51 has been implemented.

Optimization of NPBC Mean Field. A detailed
description of the GLOB model is already available in the
literature.18,52 In brief, the interaction potential between the
explicit molecules and their environment includes (a) a wall
that confines the molecules within a rigid spherical cavity, (b) a
reaction field (UMF) that describes the long-range interactions
with bulk solvent, which are, in turn, partitioned into an
electrostatic part and a nonelectrostatic part (UMF = Uel +
UvW). The former contribution is described by means of an
implicit dielectric medium (here, the conductor-like polar-
izable continuum model, CPCM53), whereas the latter
contribution is recovered by an optimization procedure.
Since the purpose of UMF is to avoid spurious boundary
effects and deviations from bulk density in different layers of
the spherical box, we used the bulk density as the target of the
optimization of UvW. Additional details about the optimization
procedure for nonaqueous solvents can be found in our
previous report.24 The protocol starts with the division of the
spherical cavity into Ng concentric shells and with the
following definition of the UvW term

U G r r( ) ( e )i i
r r

vW
( ) /2i

2 2∑ ∑ λ= − = σ− −
(18)

where the index i runs on the concentric shells and G(r)
represents a Gaussian function with constant spread (σ) and
variable height (λi). At predefined intervals, the average density
in each concentric layer is compared to a threshold (the
interval [−1.0025ρ,1.0025ρ] was used with ρ being the bulk
density); the height (λi) of each shell is increased or decreased
by a fixed amount and UvW is updated. The local densities will
initially deviate from the target (bulk density) and slowly (after
some tens of nanoseconds) converge to it. When a satisfactory
convergence is reached, the corresponding profile is saved;
since UvW acts mainly near the border of the NPBC box, prior
to the fitting, the profile is truncated once its value is below 0.1
kJ/mol. The potential energy profile is finally fitted to a
polynomial expression

U a r
j

n

j
j

vW
1

∑=
= (19)

The degree of the polynomial is determined running the
corresponding ridge regressions. We tested degrees from 0 to
10, and for each degree of the polynomial, the shrinking factor
value was optimized with a standard genetic algorithm (GA)54
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with a population size of 50, a mutation rate of 0.3, and a
crossover rate of 0.5 for 500 iterations. The degree of the
polynomial was finally selected by choosing the best outcome
of the corresponding learning curves for the root-mean-square
error (RMSE) and R2 values.
Treatment of the Embedding Effects in Quantum

Mechanical Calculations. The foundation and implementa-
tion of multiscale QM/MM methods have been reviewed
several times.4,29,55−57 Hence, only the general aspects relevant
for the present contribution are briefly recalled.
In the ONIOM/EE approach, the complete system (referred

to as real system) is partitioned into different fragments
(referred to as model systems) described at different levels of
theory. The, the electronic energy of the model system is
computed explicitly accounting for the presence of the
environment charge distribution by adding an electrostatic
contribution in the Hamiltonian.
In the PMM approach, instead, environmental effects are

considered as small perturbations tuning the Hamiltonian of
the model system (usually referred to as quantum center, QC,
in this context) built on the eigenstates of the unperturbed
model system. The perturbing contributions correspond to the
electric field originated from the atomic charges of the solvent
atoms in the different configurations obtained from an MD
simulation. In the original implementation of the method
(QC-based expansion), the perturbing electric field is
expanded around a single QC reference position (typically
the center of mass). Then, a more refined model was proposed
(atom-based expansion, employed in the present work),38 in
which the perturbation is expressed in terms of the electric
field generated by the solvent at each QC atom. Diagonaliza-
tion of the resulting perturbed Hamiltonian matrix provides
the instantaneous perturbed electronic eigenstates for a given
QC-environment semiclassical configuration. Interested read-
ers can refer to the literature34,35,37,38 for further details.
In the integrated ONIOM/EE-PMM approach,39,41 the

complete classical sampling is at first analyzed to identify a set
of relevant basins or clusters for partitioning the trajectory.
Then, for each of these subsamplings, a single reference
configuration is selected for performing ONIOM/EE compu-
tations. Next, the PMM is applied within each basin to treat
the fluctuations of the perturbing environment by expressing
the perturbed Hamiltonian matrix on the basis of the
ONIOM/EE eigenstates computed for the reference config-
uration. At the end, for each snapshot of each subsampling, the
procedure provides perturbed eigenstates and energies that,
collected together, allow the reconstruction of the relevant
features of the system resulting from the complete trajectory.
Computational Details. MD Simulations. NPBC simu-

lations were run with a locally modified version of the
Gaussian58 suite of programs. The RVV1 integrator was used
in all simulations, with an ϵ = 10−9 convergence criterion for
the calculation of quaternion derivatives. The van der Waals
mean-field potential for acetonitrile was optimized employing a
system composed of 382 solvent molecules enclosed in a
spherical nanodroplet with a radius of 20 Å (with the bulk
solvent, treated by the conductor version of the polarizable
continuum model, CPCM53 starting at 22 Å). This system was
simulated in an NVT ensemble for 5 ns at 300 K (Berendsen
coupling scheme) with a time step of 2.0 fs, starting from
random positions of the molecules. The coordinates of the last
configuration of this trajectory were used for short NVE
simulations (1 ns) with varying time steps (0.5, 1.0, 2.0, and

4.0 fs, respectively) to assess the stability of the RVV1
integrator. Then (under the same conditions, with δt = 2.0 fs),
the GLOB optimization procedure was carried out for 20 ns,
updating the Gaussian profile every 50 000 steps. The “rough
walls” boundary condition was used in all NVT/NPBC
simulations. The cavity was divided into bins of 0.25 Å (Ng
= 81 density layers) to optimize and use the MF term. Once a
stable MF potential was obtained, solute/solvent simulations
were carried out embedding each solute in a spherical solvent
cavity with a radius of 20 Å and centered at the solute center of
mass. The equilibration of the system involved an initial
minimization with the conjugate gradient method and a
subsequent simulation for 1000 ps with a small integration step
of 0.5 fs and temperature of 298.15 K. The production run was
then initiated at 298.15 K and continued for 25 ns with an
integration time step of 2.0 fs. Snapshots were saved at 2 ps
interval, and the last 20 ns were used for post-processing.
Tyrosine bond lengths were kept fixed by means of the
RATTLE59 method, which was also implemented in our MD
engine.

Clustering. In this study, we need: (i) a good representative
point (centroid) for each cluster, which will be used as the
reference configuration for the solute in the following
ONIOM/EE calculations and (ii) a robust and general recipe
to assign similar structures to the same cluster to apply the
PMM procedure. Since inclusion or exclusion of a single MD
frame has a negligible effect on the computational cost for
treating in-cluster fluctuations, we did not see particular
advantages in using density-based methods (e.g. DBSCAN60),
which give a division between “real ” and “noise” points. For
analogous reasons, the precise assignment of simulation frames
with intermediate structures is scarcely relevant since each
classical frame gives a tiny contribution to the overall signal.
For all of these reasons, simulation frames were clusterized by
the simple yet effective partition around medoids (PAM)
algorithm,61 which also allows a straightforward implementa-
tion of internal validation methods to PAM runs.62 To
determine the best number of clusters (k), we run PAM for
values from 2 to 20 and then used the Silhouette score (SI)
and Dunn index62 (DI) internal validation criteria to
determine the best k in addition to looking for a breakeven
point in the within sum of squares error (WSS). Both SI and
DI should have a maximum corresponding to the parameter set
(just the value of k in this case) that yields the best clustering,
while for WSS, one looks for a change in the slope. Hence, the
best value of k was obtained from the consensus of three
independent criteria. Dihedrals would be a sensible choice for
the feature space but cannot be used directly because of
torsional periodicity. Therefore, we used the dihedral principal
component analysis (DPCA) approach (thus switching from a
6- to a 12-dimensional feature space; see Figure 1B) described
by Altis et al.,63 which also allowed us to reduce the number of
features to be used in dissimilarity calculations; we chose the
minimum number of principal components, which yield 90%
or more of the original variance. After having obtained a
reduced feature space, we used the so-called L∞ or Chebichev
distance62 to compare structure pairs, to maximize the
dissimilarity between structures having a different orientation
in one of the transformed coordinates.

ONIOM/EE-PMM Calculations. The whole solute was
always taken as the QC (i.e., the model system), whereas the
solvent molecules represented the perturbing embedding
environment. The dependence of the electronic properties of
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a semirigid QC from its structural deformations can be
generally treated, if needed, a posteriori by means of harmonic
QM models introducing vibronic contributions by means of
Franck−Condon and Herzberg−Teller models.41 As a
consequence, the classical sampling can be safely performed
by keeping the solute constrained in its equilibrium structure.
Furthermore, in the present context, only low-resolution
experimental spectra are available so that we can disregard
additional vibronic computations. We have shown39,41 that in
the case of rigid solutes not experiencing too strong solute−
solvent interactions, the complete trajectory can be considered
as a single extended basin. Therefore, we performed just one
expensive ONIOM/EE computation, then applying the PMM
for all of the remaining frames of the trajectory.39,41 At
variance, to deal with flexible QC, the approach followed in
previous studies39 was further improved. In fact, the former
procedure was based on a sort of “visual partitioning” in which
the trajectory is divided into four subtrajectories according to
the value of the dihedral angle defining the orientation of the
hydroxyl group with respect to the aromatic ring. In the
present context, we performed, instead, an unsupervised cluster
analysis based on internal coordinates to identify both the set
of clusters composing the trajectory and the cluster centroids.
However, the issue of the selection of the reference structures
(used for ONIOM/EE computations) was not completely
solved by taking the most representative solute conformation
from each cluster. Thus, for each cluster, we followed a
procedure reminiscent of the so-called ASEC method,64,65

employing a “collective frame” representative of the average
configuration of the molecular environment for the corre-
sponding cluster by extracting 30 snapshots sequentially from
each subtrajectory and assigning 1/30 of the actual atomic
charge to each environmental atom for the ONIOM/EE
calculations.41 We computed the first 11 electronic states and
the complete matrix of the corresponding dipole moments by

exploiting the ONIOM/EE model by means of time-
dependent density functional theory (TD-DFT) using the
B3LYP66 functional with the 6-311G(d) basis set. For each
electronic state, the corresponding atomic charges were also
computed according to the CM5 methodology by employing
the same level of theory.67 All of the relevant QM data were
utilized to apply the perturbative approach for evaluating
environmental effects beyond the reference configurations.
Gaussian distribution functions were used as broadening
functions to get the absorption spectra for all of the basins.
We used the same sigma value employed in previous studies on
tyrosine (0.0008 au of frequency).36,39 The final absorption
spectrum is then obtained by weighting the spectra resulting
from each basin according to the corresponding cluster
population. For the case of uracil and thymine, we exploited
the solute structural rigidity and the lack of strong solvent
effects to apply the procedure according to a very simple yet
effective scheme.39 Namely, we computed from the corre-
sponding MD simulations the values of the three components
of the electric field acting on the center of mass of the solute
due to the solvent molecules. Then, from each trajectory, the
MD frame characterized by the electric field components
closest to the average values was extracted to be utilized as the
reference configuration. On each selected configuration, the
first 11 unperturbed electronic states and the complete matrix
of the corresponding dipole moments were computed using
the TD-DFT theory (CAM-B3LYP/6-311+G(d)) within the
ONIOM/EE procedure. Then, fine tuning of the spectra by
fluctuations within each cluster was taken into account through
the perturbative approach.

■ RESULTS AND DISCUSSION
Analysis of MD Trajectories. Stability of the Rigid-Body

Integrator. In this section, we analyze the stability of the RVV1
integrator when simulating pure CH3CN nanodroplets under
NPBC by running several simulations with increasing time
steps. The general robustness of the quaternion-based
approach for propagating the equations of motion has been
extensively tested in previous studies for TIP4P water48−50

systems under PBC; hence, our purpose here is to fully assess
the integrator stability under different conditions (e.g. for a
system with a higher number of long-range interactions
compared to TIP4P water). To this end, prior to the
optimization of the MF potential, we started a set of 1 ns
long NVE simulations of pure CH3CN with time steps of 0.5,
1.0, 2.0, and 4.0 fs.
Figure 2 shows the temperature of the last 200 ps of the

NVE trajectories for the various time steps; it is quite apparent
that systematic drifts are never present, in line with previous
results. Figure 3 shows the average number of self-consistent
iterations in the first part of the RVV1 algorithm needed to
achieve the desired accuracy of 10−13 and the corresponding
error obtained on the last 200 ps of each trajectory; note that
this average is calculated on the maximum value of iterations
performed for any given rigid body in each time step and,
coherently, the reported error is an average of the highest
values obtained in each simulation step. The results are quite
similar to those obtained by Rozmanov et al. for TIP4P water:
less than six iterations (on average) are needed for time steps
of 0.5 or 1.0 fs, and about eight iterations for larger time steps,
the higher error obtained for δt = 1.0 fs with respect to 2.0 and
4.0 fs being related to the reduced number of iterations
performed.

Figure 1. (A) Schematic drawing of the GLOB model. (B−D) Ball-
and-stick representation of the chromophores studied in this
contribution: (B) uracyl, (C) thymine, and (D) tyrosine; the dashed
arrows and Greek letters represent the degrees of freedom used for
dihedral principal component analysis (DPCA) and clustering (see
Figures 12 and 14).
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Finally, Figure 4 shows the total energy fluctuation for the
first 300 fs of various runs, which was calculated as a

percentage of E E E( ) /t t t
2⟨ − ⟨ ⟩ ⟩ ⟨ ⟩ , where ⟨E⟩t is the average

energy. It is quite apparent that the run corresponding to δt =

4.0 fs shows larger oscillations of the total energy compared to
simulations with smaller time steps (but still in the range of
10−6 with respect to the total energy), a behavior also observed
for TIP4P water. Given the high accuracy that we seek for
computational spectroscopy applications and the relatively
small computational cost of these MD simulations, we choose
a time step of 2.0 fs for all NPBC simulations.

Optimization of MF Potential for Acetonitrile. Once the
stability of the rigid-body integrator for the acetonitrile
nanodroplets was assessed, we run a 40 ns long simulation
to obtain an optimized UvW mean-field potential energy profile
using the simulation settings described in the section devoted
to computational details. The obtained profiles are shown in
Figure 5 (without the truncated portion) together with the

fitted polynomial. The fit was carried out over 50 points with a
resolution of 0.2 Å, and the test set was obtained in the same
way. Looking at the learning curves for RMSE and R2, we
selected a fifth (for methanol)- or fourth (for acetonitrile)-
degree polynomial to fit UvW, and the corresponding
parameters are shown in Table 1 and in Figure 6.
Finally, the effect of the presence of the optimized UvW term

on the acetonitrile box was assessed running a final 5 ns
simulation and plotting the average density in concentric
spherical shells of constant volume, as shown in Figure 7.
Inclusion of the UvW contribution leads to a maximum
deviation from the bulk density of about 1 mol/L at 2 Å from
the wall and to a stable density at 6.0 Å from the wall, whereas
the profile without UvW shows larger deviations and reaches a
stable value at a longer distance from the wall.
Methanol was already parameterized for use within GLOB in

a previous paper.24 Here, we have refitted the original data,

Figure 2. Time evolution of the temperature in the last 200 ps (after
equilibration) of an NVE simulation under NPBC of pure CH3CN;
the labels show the different time steps used and the mean and
standard deviation for each trajectory.

Figure 3. Average maximum number and convergence error of pure
CH3CN trajectories under NPBC as a function of the integration time
step. The averages were calculated for the last 200 ps of each
simulation.

Figure 4. Total energy fluctuation (percentage) for the first 300 fs of
pure acetonitrile simulations.

Figure 5. Mean field potential energy profile; data used in the fitting
and the corresponding fitted polynomial are drawn in black, while the
test points are drawn in red. (A) Results obtained for methanol and
(B) results obtained for acetonitrile.
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obtaining well-converged results for a fifth-degree polynomial,
whose coefficients are given in Table 1.

Application of the ONIOM/EE-PMM Procedure. Rigid
Solutes: Uracil and Thymine. We computed the UV−vis
absorption spectra of thymine and uracil in acetonitrile
according to two of the QM/MM procedures outlined
above, namely, the conventional ONIOM/EE method and
the integrated ONIOM/EE-PMM approach. Within the
approximation of rigid solute MD sampling, we employed
around two hundred equispaced snapshots to perform QM
calculations when employing the ONIOM/EE procedure. Test
computations confirmed that this number of snapshots is
largely sufficient to obtain well-converged spectra and, indeed,
lower numbers of snapshots (around 100) are normally
sufficient. On the other hand, for the ONIOM/EE-PMM
procedure, we utilized only one structure for the QM
calculations. The results shown in Figure 8A demonstrate

that application of both the proposed methods produced
almost identical results, in good agreement with the
experimental data. In fact (besides the typical shift character-
izing the level of theory of the electronic calculations), from all
of the computations, we obtained spectra characterized by one
peak in the 200−300 nm region with a maximum absorption
coefficient of about 9000 M−1 cm−1 and a full width at half-
height (FWHW) of ≈0.6 eV (the experimental values are: λmax
= 261 nm, FWHM = 0.6 eV).68 Figure 8B shows the UV
absorption spectra of uracil in acetonitrile obtained by the
ONIOM/EE-PMM procedure. The spectrum shows again a
peak in the 200−300 nm region with a maximum absorption
coefficient of about 9000 M−1 cm−1 and a full width at half-
height of ≈0.6 eV, in line with the experimental results.68

To explicitly address the effect of the solvent fluctuations
modeled by the PMM, in Figure 9, we report a comparison
between the single ONIOM/EE calculation (the reference)
and the complete PMM outcome for the transition energy and
the transition dipole moment of uracil in acetonitrile. It is quite
apparent that both quantities fluctuate around their ONIOM/
EE values with oscillations small enough to be confidently
described by a perturbative approach. From the perspective of
the general procedure, inclusion of the PMM treatment of the
fluctuations within each cluster (following the trajectory
partitioning) allows us to avoid the customary practice of

Table 1. Parameters of the UvW Polynomial Fits for
Methanol and Acetonitrile

parameter CH3OH CH3CN

a0 −1.8081 7.4319 × 10−3

a1 −4.3732 × 10−1 −3.8878
a2 3.5936 × 10−1 1.4842
a3 −6.2067 × 10−1 −1.8302 × 10−1

a4 4.2625 × 10−3 7.1257 × 10−1

a5 −1.0404 × 10−4 NA

Figure 6. Value of RMSE and R2 as a function of the degree of the
polynomial; train and test values are superimposed. (A) Results
obtained for methanol; (B) results obtained for acetonitrile.

Figure 7. Average density and the corresponding standard deviations
of CH3CN in 10 concentric shells of constant volume for NPBC
CH3CN simulations. The results in the presence (black circle full
line) and absence (red squares and dashed line) of UvW mean field are
compared to the total box density (blue dotted line).

Figure 8. (A) UV absorption spectra of thymine in acetonitrile
obtained from ONIOM/EE-PMM (black line) and ONIOM/EE (red
line) procedures. (B) ONIOM/EE-PMM spectrum of uracil in
acetonitrile.
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simulating these effects by a phenomenological Gaussian
broadening with a negligible computational cost.
We then computed the UV−vis absorption spectrum of

thymine and uracil in methanol according to the ONIOM/EE-
PMM procedure, employing again just one structure for the
full QM/MM calculations. The spectra shown in Figure 10 are
again in satisfactory agreement with the experimental results.68

A comparison of the spectra obtained in methanol and
acetonitrile shows that the solvatochromic shifts originated
from these two solvents are comparable, in agreement with the
tiny displacement of the absorption maximum (about 0.05 eV)
shown by the corresponding experimental spectra.69 As a
matter of fact, from our MD simulations, we inferred that
embedding uracil in methanol or acetonitrile does not entail
dramatic differences when the electric field exerted on the
solute by the environment is considered. In support of this, in
Figure 11B, the distributions of the electric field intensity
exerted on uracil center of mass in both solutions are shown.
Likewise, inspection of the uracil solvation shell showed that,
on average, four to five solvent molecules can be found close to
the uracil oxygen atoms (precisely, within a sphere of 3.1 Å
centered on each oxygen) irrespective of the simulated solvent.
The distributions are shown in Figure 11C along with

representative snapshots of uracil in both solutions, where
the solvent molecules close to the solute are highlighted.

Flexible Solute, Step 1: Clustering and Determination of
the Reference Structures. A rational way of analyzing the
conformational space explored by a flexible solute of average
size during a simulation is by computing the distribution of the
sampling for each dihedral angle. In fact, the profiles provide a
“visual” idea of both the conformations possibly assumed by
the molecules and the least probable ones, as shown in Figure
12, for the case of neutral tyrosine in acetonitrile. For most of
the angles, the distributions follow the expected sinusoidal
trend, except for the α angle where the higher probability of
having the carboxyl hydrogen close to the amino group is
reflected by the asymmetry of the curve. Note that for β and ζ
angles (see Figure 1 for labeling), which represent the rotations
of the amino group and the benzene ring, respectively, we
initially obtained multimodal profiles. These collapsed into the
curves reported in the figure after removing redundancies due
to atom types symmetry. Correlation among the dihedral
angles was analyzed by means of DPCA. Given the periodicity
of the six dihedral angles, the corresponding sine and cosine
values were computed, thus obtaining the12-dimensional space
used for computing the covariance matrix. The results
presented in Figure 12B,C show that structural deformation
along the first four principal components cover around 80% of
the tyrosine internal motion and that the 90% threshold is
reached with six components. To exploit the advantage of
using internal coordinates, we utilized the space spanned by
the first 10 principal components (this corresponds to 99% of
the original variance) to define the feature space to be
clustered (see the Methods section for details).
To get the best number of clusters, we run the PAM

procedure from k = 2 to k = 20 and calculated the
corresponding validation criteria: WSS, DI, and SI. The results
shown in Figure 13 show without ambiguities that k = 4 is a
good value to partition data.

Figure 9. Comparison between the results of the single ONIOM/EE
calculation (colored line) and the complete PMM outcome (black
line) for the transition dipole moment (top) and the transition energy
(bottom) obtained for uracil in acetonitrile.

Figure 10. UV absorption spectra of (A) thymine and (B) uracil in
methanol obtained from ONIOM/EE-PMM computations.

Figure 11. (A) Representative snapshots of uracil in acetonitrile (top)
and methanol (bottom) solutions. Solvent molecules within 3 Å from
uracil oxygen atoms are shown in a ball-and-stick mode. (B)
Distribution of electric field intensities exerted by acetonitrile (black
line) and methanol (red line) on uracil. (C) Distribution of the
number of solvent molecules within 3 Å around uracil.
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With this in mind, we divided our trajectory into four
clusters. In an attempt to get insights into the nature of the
partitioning, we computed the distributions of tyrosine
dihedral angles within each cluster, as reported in Figure 14.
Comparing this with Figure 12A allows us to catch the nature
of the partitioning. In fact, almost all of the profiles (again
except that of α) turned into unimodal distributions. As

outlined in the Methods section, the clustering procedure
provides also the centroid of each cluster. In Table 2, we report
the conformational features of these structures along with the
percent weight of each cluster in the total sampling. Shifting
the comparisons to Cartesian coordinates, in Table 3, we
report the RMSD obtained by pairwise comparing the
centroids and the in-cluster average RMSD (computed with

Figure 12. (A) Distribution of the dihedral angles in tyrosine sampled by the MD simulation in acetonitrile (refer to Figure 1 for labels and colors).
(B, C) Results of the DPCA: amount of variance explained by each of the selected components (namely, the eigenvalues of the covariance matrix,
black dots) and cumulative sum of the percentage of variance explained by each of the selected components (red dots).

Figure 13. Within-cluster sum of squares error (WSS), Silhouette coefficient (SI), and Dunn index (DI) computed for different number of clusters.

Figure 14. Distributions of the dihedral angles in tyrosine sampled within each cluster (α: black line, β: red line, γ: green line, δ: blue line, ε: yellow
line, ζ: cyan line; refer to Figure 1 for the labeling of the dihedral angles).
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respect to the corresponding centroid). These data also show
that when taking into account a slightly different feature
(clearly related to the one used for the clustering), a
satisfactory partitioning of the starting trajectory is obtained.
Flexible Solute, Step 2: Spectroscopic Calculations. The

centroids of the four clusters defined above were extracted
from each subtrajectory and then utilized for QM calculations.
Since the whole clustering procedure concerned only the
tyrosine internal (classical) motion, the selected structures
needed to be properly complemented with representative
arrangements of the embedding solvent to be used for the
reference ONIOM/EE calculations (see the Methods section).
To this end, for each cluster, we composed a collective frame
by putting together different instantaneous solvent config-
urations, while for the following EE calculations, we scaled the
charge of each solvent atom according to the number of
configurations collected. This way, we provided the references
representation of each average in-cluster solute−solvent
interaction. Then, the corresponding local fluctuations were
modeled with the PMM. Namely, we applied the procedure by
treating each cluster as the simulation of a semirigid solute and
then by weighting the outcome of each single-cluster
calculations by the statistical relevance of the corresponding
cluster, as reported in Table 2. Application of the procedure
provided the spectrum reported in Figure 15. Experimentally,
the absorption spectrum of the tyrosine zwitterion has been
recorded in aqueous buffer solution presenting an absorption
peak around 277 nm characterized by an extinction coefficient
of around 1400 M−1 cm−1.70,71 Conversely, to model tyrosine
within proteins, the related peptide analogue Ac-Tyr-NH2 can
be studied. The absorption spectrum in acetonitrile of this
chromophore, more closely resembling our solute, is
characterized by a peak around 278 nm of 1150 M−1 cm−1

intensity.72 Given the inherent difference between the
simulated chromophore and the one experimentally studied,
a quantitative agreement between the QM calculations and
experiment cannot be expected, but, qualitatively, the
computed spectrum appears fully reasonable.

A last comment is in order about the performances of the
integrated ONIOM/EE-PMM approach in comparison to
those of the standard ONIOM/EE and PMM models.
According to previous results,39 for rigid solutes, the three
models provided similar results. However, for flexible solutes,
the standard PMM model provided disappointing results,
whereas the integrated procedure was in very good agreement
with ONIOM/EE at a strongly reduced computational cost
(by about 2 orders of magnitude). In fact, the integrated
procedure merges the strengths of the variational and
perturbative methods. As a matter of fact, the variational
procedure ensures the accuracy of the evaluation of the
embedding effects on the electronic properties of the quantum
portion of the system. Then, the perturbative approach
provides a reliable description of the further fine tuning of
the spectra by the fluctuations of the embedding environment
overcoming the need for a huge number of calculations. Thus,
the difficulties faced by conventional methods (high cost of
variational approaches and limited convergence radius of
perturbative approaches) are avoided and the computational
cost/accuracy ratio is cut down. An accurate spectrum of
tyrosine in acetonitrile can be obtained by means of just four
full QM/MM computations in place of the 400−800
calculations required by the conventional ONIOM-EE
approach.

■ CONCLUSIONS
In the present contribution, we outlined the general workflow
under active development in our laboratory for the
spectroscopic characterization of chromophores in condensed
phases. We focused our attention on two aspects: (i) the
performance of a new RB MD integrator (based on quaternion
representation) into the latest development of the MD engine
within a modified version of the Gaussian software and (ii) the
effectiveness of the ONIOM/EE-PMM strategy in conjunction
with a clustering procedure to address both rigid and flexible
chromophores within a general model enforcing nonperiodic
boundary conditions. In fact, the stability of GLOB MD
simulations confirmed both the validity and robustness of the
molecular mechanics machinery employed. The obtained
classical samplings were then utilized as the statistical
ensembles to perform computational spectroscopy studies
merging variational and perturbative approaches.
Seen as a whole, the proposed computational procedure

(starting from NPBC simulations and then proceeding with

Table 2. Values of Dihedral Angles of Each Cluster Centroid
(Refer to Figure 1 for Labeling) and Percent Weight of Each
Cluster in the Total Sampling

centroids dihedral angles (degree)

α β γ δ ε ζ

statistical
weight
(%)

cluster 1 −163 −71 −177 71 −80 2 20
cluster 2 −119 −65 0 −57 −96 6 21
cluster 3 −116 −61 177 −63 −103 4 37
cluster 4 −156 −66 9 68 −75 −3 22

Table 3. Results of RMSD Analyses: Average In-Cluster
RMSD with Respect to the Corresponding Centroid in the
Diagonal Elements of the Table (Also Highlighted in Bold),
Centroids Pairwise RMSD in the Remaindersa

cluster 1 cluster 2 cluster 3 cluster 4

cluster 1 0.57 1.58 1.57 0.22
cluster 2 0.57 0.23 1.63
cluster 3 0.50 1.63
cluster 4 0.51

aThe values are reported in Å.

Figure 15. Tyrosine in acetonitrile electronic absorption spectrum as
obtained by applying the ONIOM/EE-PMM procedure.
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clustering and ONIOM/EE-PMM computations) significantly
enhances the feasibility of spectroscopic applications in
condensed phases. From the one side, only the essential
degrees of freedom are explicitly sampled and, from the other
side, the number of expensive high-level computations is
strongly reduced without any significant accuracy loss, but with
the possible gain of additional insights from a simplified view.
In conclusion, we think that, with further developments and

validations underway, we have already developed an effective
tool for aiding the assignment and interpretation of electronic
spectra of medium-size chromophores in condensed phases.
Extension to realistic models of biological systems requires the
effective treatment of chromophores embedded in a macro-
molecular chiral cavity rather than in a substantially isotropic
solvent.73 While both ONIOM and PMM can, in principle,
deal also with these situations, proper tuning and validation of
the general strategy is surely needed. Work is already in
progress along this and related directions.

■ APPENDIX: PROPERTIES OF ROTATIONAL
QUATERNIONS

In this section, a brief summary of quaternions and their
properties is given; the reader may refer to, e.g., Hanson’s44 or
other specialized texts for more extensive explanations.
Quaternions were originally devised by Hamilton as a
generalization of complex numbers, and we used a related
notation

q q q q qw i j k0 1 2 3= + + + (20)

with the rules

i j k w2 2 2= = = − (21)

ij ji k jk kj i ik ki j, ,= − = = − = = − = (22)

but they are more commonly represented as an ordered set of
four reals or with the so-called angle−axis representation

q q q q qQ q( , , , ) ( , )0 1 1 3 0= = (23)

The connection of quaternions to the representation of
rotations follows by writing them in terms of Euler angles
(θ, ψ, ϕ)

q cos( /2)cos(( )/2)0 θ ϕ ψ= + (24)

q sin( /2)cos(( )/2)1 θ ϕ ψ= − (25)

q sin( /2)sin(( )/2)2 θ ϕ ψ= − (26)

q cos( /2)sin(( )/2)3 θ ϕ ψ= + (27)

Any rotation of a generic three-dimensional (3D) vector u
about a fixed axis can be represented by the Euler−Rodrigues
formula (where c is the axis of rotation and ζ is the angle)

v u c u c c ucos ( ) (1 cos ) sinζ ζ ζ= + · − + × (28)

which can be written in terms of Q using relations 24−28 and
expanded in matrix form to give the matrix A commonly found
in textbooks and papers:a

i

k

jjjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzzz

q q q q q q q q q q

q q q q q q q q q q

q q q q q q q q q q

A 2

1
2

1
2

1
2

0
2

1
2

0 3 1 2 1 3 0 2

1 2 0 3 0
2

2
2

0 1 2 3

0 2 1 3 2 3 0 1 0
2

3
2

=

+ − + −

− + − +

+ − + −

(29)

It can be shown that acting with A on u is equivalent to eq 1

Qv Qu Au= * = (30)

Q Qu v A vT= * = (31)

meaning that the RVV1 algorithm can be implemented using
either rotation matrices or the quaternion operations; here, we
used the latter approach for the sake of efficiency (about half of
floating point operations are required for a single rotation).
We now examine some properties of quaternion arithmetic

that are used in the RVV1 algorithm. A “scalar quaternion” [q0,
0] has vector part q = [q1, q2, q3] zero, while a “pure
quaternion” is vanishing vector part; eliminare ‘zero’ [0, q].
Quaternion addition is just

Q P q p q pq p q p, , ,0 0 0 0+ = [ ] + [ ] = [ + + ] (32)

and quaternion multiplication can be written as

p q p qQP p q q p p q,0 0 0 0= [ − · + + × ] (33)

The conjugate of Q is defined as

Q q q,0* = [ − ] (34)

and the following relationships can be proven

Q Q( )* * = (35)

PQ Q P( )* = * * (36)

P Q P Q( )+ * = * + * (37)

The norm of Q is given by

N Q Q QQ q

q q q q

q q( ) , 02
0
2

0
1

1
2

2
1

3
2

= || || = * = [ + · ]

= + + + (38)

a unit quaternion is such that N(Q) = QQ* = 1. Inversion of a
quaternion is achieved by

Q
Q

Q Q
1 =

· *
−

(39)

hence, Q−1 = Q* for unit quaternions. In this manuscript, we
consider always unit quaternions for all rotations of reference
frames, enforcing normalization every time a quaternion is
calculated or updated.
The dependence of Q̇(t) on Q(t) (eq 3) is derived as

follows. Since we use unit quaternions, QQ* = 1 is constant,
and we can write

t
QQ Q Q QQ

Q Q QQ

d
d

0* = ̇ * + ̇ * =

̇ * = − ̇ *

from which it follows that P = Q̇Q* has vanishing scalar part
and vector part −q̇ × q. Now, we know from eq 1 that r(t) =
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Q(t)r(0)Q*(t) and thus r(0) = Q(t)*r(t)Q(t); taking the time
derivatives yields (dropping the dependence of Q on t)

t Q Q Q Q

Q Q t QQ QQ t QQ

P t t P

t t

t t

t

t

r r r

r r

r r

p r r p

p r p r

p r

r

( ) (0) (0)

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 ( )

( )ω

̇ = ̇ * + *̇

= ̇ * * + * *̇

= −

= × − ×

= × + ×

= ×

= ×

where ω is the angular velocity in the laboratory frame. The
angular velocity in molecular fixed frame can be calculated as

P Q PQ Q Q Q Q Q Q2 2 2 2MF MFω = = * = * ̇ * = * ̇

which gives eq 3.
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