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Analysis at the single‑cell 
level indicates an important 
role of heterogeneous global 
DNA methylation status 
on the progression of lung 
adenocarcinoma
Quan‑Fang Chen, Han Gao, Qing‑Yun Pan, Ying‑Ju Wang & Xiao‑Ning Zhong*

Aberrant DNA modifications affect the tumorigenesis and progression of lung cancer. However, the 
global methylation status of tumor cells and the heterogeneous methylation status of cells within 
the same tumor need further study. We used publicly available single-cell RNAseq data to investigate 
the impact and diversity of global methylation status on lung adenocarcinoma. Clustering cells into 
subgroups and cell differentiation pseudotime analysis, based on expression profile, demonstrated 
that the global methylation status was crucial to lung adenocarcinoma function and progression. 
Hypermethylated tumor cells had increased activity related to the hypoxia response. Hyper- and 
hypomethylated cells indicated upregulation in pathways involving focal adhesion and cell junctions. 
Pseudotime analysis showed that cell clusters with unique methylation activities were located at the 
ends of the putative trajectories, suggesting that DNA methylation and demethylation activities were 
essential to tumor cell progression. Expression of SPP1 was associated with the global methylation 
status of tumor cells and with patient prognosis. Our study identified the importance and diversity 
of global DNA methylation status by analysis at the single-cell level. Our findings provide new 
information about the global DNA methylation status of tumor cells and suggest new approaches for 
precision medical treatments for lung adenocarcinoma.

Lung cancer is a commonly diagnosed cancer that is a major cause of cancer deaths worldwide. Although deaths 
from lung cancer have declined dramatically during recent years, it is still the second most commonly diagnosed 
cancer and is responsible for most cancer deaths in both sexes1.

Genetic alterations are common in cancer, and DNA methylation is a common epigenetic modification 
present in the CpG-rich islands of cancer patients2. In particular, cancer tissues often have hypermethylation 
in the promoter regions of tumor suppressor genes, but hypomethylation of the genome overall3. DNA meth-
ylation patterns are associated with different gene expression profiles. Previous studies of the biological role of 
DNA methylation in lung cancer mainly focused on single genes, such as the relationship of the methylation 
of a promoter of a specific gene with its expression, and the relationship of the expression of this specific gene 
with oncogenesis and tumor progression. For example, previous studies reported hyper-methylation of the pro-
moters of CDKN2A, CDH13, and APC in lung cancer4. Despite extensive research on the hypermethylation of 
gene promoters, few studies have examined the genome-wide methylation activity of lung cancer cells. Tumors 
consist of cells with diverse molecular signatures, and this heterogeneity increases as cancer progresses5. The 
development of single-cell sequencing technology made it possible to profile global methylation levels in lung 
cancer at the resolution of single cells.

In this study, we used single-cell sequencing data from 3 patients with lung adenocarcinomas, and compared 
expression profiles of samples from the core, middle, and border of the tumor. We assessed the global methylation 
level using gene set variation analysis (GSVA) score on gene ontology (GO) items (GO_DNA_METHYLATION 
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and GO_DNA_DEMETHYLATION) and then compared the overall methylation level of each cell cluster to 
identify hyper- and hypo-methylation profiles. We also used single-cell pseudotime analysis to verify the role of 
global methylation on the progression of lung adenocarcinoma.

Results
Subtyping of lung adenocarcinoma tumor cells.  Tumor heterogeneity refers to the presence cells 
within the same tumor that differ in morphology and other phenotypic characteristics. We used the Seurat 
pipeline (Fig. 1) to characterize the detailed DNA methylation status of 6251 tumor cells from 3 patients with 
lung adenocarcinomas at the core, middle, and border sites into eight clusters (Fig. 2A). Analysis of these data 
using t-SNE plots according to sample site showed that cells from cluster-6 were all from the core region of the 
tumor, cells from cluster-4 were enriched in the core region, and cells from cluster-5 were depleted from the 
middle region (Fig. 2B).

GO and KEGG enrichment analysis for genes highly expressed in each cluster demonstrated that cells at the 
tumor core were enriched in functions related to antigen processing/presentation and immune response (Clus-
ter-4 in Fig. 3A and Cluster-6 in Fig. 3C). In addition, cells at the core and border regions had higher activities 
in extracellular matrix (ECM), integrin binding, and focal adhesion (Cluster-5 in Fig. 3B).

DNA methylation and de‑methylation activity in different tumor subtypes.  We determined 
GSVA scores for GO items using GO_DNA_DEMETHYLATION and GO_DNA_METHYLATION for each 
cell to assess methylation and demethylation activity. Comparison of these scores among all subtypes indicated 
that Cluster-1 and Cluster-2 had higher methylation scores and Cluster-3, -4, and -6 had lower methylation 
scores (Fig. 4A). In addition, cluster-2, -3, and -4 had higher demethylation scores and cluster-1, -5, -6, and -7 
had lower demethylation scores (Fig. 4B). Our comparison of methylation and demethylation activity within 
the same cluster indicated that cluster-1 had overall higher methylation activity, due to high methylation scores 
and low demethylation scores. In contrast, cluster-3 and -4 had overall higher demethylation activity (Fig. 4C). 
Taken together, this suggested that cells in cluster-1 were mainly hypermethylated and that cells in cluster-3 and 
-4 were mainly hypomethylated.

Figure 1.   Flowchart showing the analysis pipeline and main findings.

Figure 2.   t-distributed stochastic neighbor embedding plots of the eight clusters from Seurat analysis (A) and 
of the eight clusters according to tumor site (B). I inner (core), M middle, O outer (border).
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Figure 3.   Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis of Cluster-4 
(A), Cluster-5 (B), and Cluster-6 (C). BP biological process, CC cellular components, MF molecular functions.

Figure 4.   Methylation scores (A) and demethylation scores (B) for each cluster compared with all the others, 
and Gene Set Enrichment Analysis scores for methylation and demethylation scores within the same cluster 
(C). Boxplots show medians, interquartile ranges, and outliers. ns: p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; 
****p ≤ 0.0001.
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KEGG and GO functional enrichment analysis indicated that hypermethylated cells (cluster-1) were mainly 
related to the hypoxia response. Notably, genes related to resistance to EGFR tyrosine kinase inhibitors (TKIs) 
(including VEGFA, ERBB3, MET, ERBB2, KDR, STAT3, TGFA) were upregulated in this cluster (Fig. 5A). The 
hypermethylated cluster-1 and the hypomethylated cluster-3 (Fig. 5B) and cluster-4 (Fig. 3A) were predominantly 
upregulated in pathways involving focal adhesion and cell junctions.

Effect of methylation on tumor cell differentiation.  We applied unsupervised pseudotime inference 
analysis to investigate the relationship of methylation activity with tumor cell differentiation. Monocle software 
separated all cells into 7 states (Fig. 6A). Cluster-1 (high methylation activity) was mainly enriched in State-1 
and State-7 (Fig.  6B,C). Cluster-3 and Cluster- 4 (low methylation activity) were mainly enriched in State-6 
(Fig. 6B,D).

Gene set enrichment analysis (GSEA) scores for the pseudotime states also showed that State-1 and State-7 
had significantly higher methylation scores and lower demethylation scores than the other states (Fig. 7A,B). 
Within individual states, State-1 and State-7 also had significantly higher methylation scores than demethylation 
scores (Fig. 7C). State-6 had a lower methylation score (Fig. 7A) and higher demethylation score (Fig. 7B) rela-
tive to other states, and within the same state (Fig. 7C). Single-cell differentiation pseudotime analysis showed 
that cell clusters which had more diverse methylation activities were at the ends of the putative pseudotime. 
This indicates that DNA methylation and demethylation processes were crucial to lung tumor cell progression.

Association of branch points in pseudotime marking DNA methylation status with develop‑
mental decisions.  Our pseudotime analysis indicated that DNA methylation status affected cell progres-
sion, and that branchpoint-1 and -2 were critical turning points for modification of methylation activity and 
differentiation. During differentiation, progenitor cells undergo early changes that specify the type of terminal 
cell they will ultimately become. Thus, many progenitor cells can generate different lineages. The above two 
branchpoints correspond to different changes made early during cell differentiation. Branchpoints mark differ-
ent transcriptional sub-lineages according to gene expression patterns and help identify key events in different 
biological processes6. To further examine genes affecting cell fate, we analyzed genes that had dramatic changes 
at these two branchpoints. Heatmaps showed that for branchpoint-1, the S100A6 and SPP1 genes were enriched 
at cell fate-1 (Fig. 8A,C); for branchpoint-2, these same genes were enriched for cell fate-2 (Fig. 8B,C). Both 
branch points showed that these two genes had higher expression in lung tumor cells with high demethylation 
activity. In contrast, expression of the ABCC3 gene was lower in cells with high demethylation activity. We vali-
dated these findings using the TCGA LUAD dataset. Correlation analysis of the genes identified above with DNA 
methylation and demethylation signature scores showed that the expression of ABCC3 was positively associated 

Figure 5.   Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis of Cluster-1 (A) 
and Cluster-3 (B). BP biological process, CC cellular components, MF molecular functions.
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with the methylation score, that is hyper-methylation. In contrast, S100A6 expression was positively correlated 
with hypo-methylation. These results are in agreement with our scRNAseq results conduced at the bulk RNAseq 
level (Fig. 8D).

We used TCGA LUAD dataset to examine the prognostic value of these three genes. Bulk RNAseq data from 
TCGA showed that SPP1 expression was significantly higher in tumor tissues than normal tissues (Fig. 9A). In 
agreement, Kaplan–Meier survival analysis showed that lower expression of SPP1 predicted significantly better 
outcomes in patients with lung adenocarcinomas (p = 0.015, Fig. 9B).

Discussion
DNA methylation and demethylation are major mechanisms of epigenetic regulation during cell growth and 
development. DNA methylation is mainly catalyzed by enzymes in the DNA methyltransferase (DNMT) fam-
ily, including DNMT3A and DNMT3B (which are responsible for de novo methylation) and DNMT1 (which 
maintains DNA methylation patterns)7. In addition, the ten-eleven translocation (TET) enzymes function as 
5mC oxidases and also function in DNA demethylation8. Hyper-methylation of the promoters of tumor sup-
pressor genes is associated with oncogenesis in many types of cancers9. However, tumor cells also exhibit global 
hypomethylation, and this leads to genomic instability due to genomic rearrangements that disrupt the cell cycle 
and activation of transposable elements within the genome, leading to further genetic damage10,11. Epigenetic 
changes are among the earliest and most pervasive genomic aberrations during carcinogenesis12,13. Thus, mark-
ers of DNA methylation may be suitable for the early detection of cancers and as potential therapeutic targets.

Tumor tissues are typically heterogeneous, in that cells within the same tumor often have different gene 
expression profiles. The newly developed single-cell sequencing protocols make it possible to provide detailed 
characterization of cell heterogeneity within a tumor14. The present study of the expression profiles of lung 
adenocarcinomas used a single-cell sequencing dataset to profile the methylation and demethylation activ-
ity of individual cells. Our results indicated there were clusters of lung tumor cells with remarkably different 
methylation activities. Our functional enrichment analysis indicated that genes related to focal adhesion had 
high expression in cells with specific methylation activities. Numerous studies reported that methylation of the 
promoters of genes that code for cell adhesion proteins increased tumor invasion and progression. For example, 
Tai et al. reported that increased methylation of the promoter of epithelial cell adhesion molecule (EpCAM) was 
associated with increased expression and proclivity for metastasis15. Another study found aberrant methylation 
of the promoters of three cell adhesion-related genes (CDH1, TSLC1, and TIMP3) in NSCLC was associated with 
more severe clinicopathology of the tumor and exposure to various environmental risk factors16.

Figure 6.   Cell progression pseudotime from Monocle analysis (A), methylation scores along the imputed 
pseudotime (B), demethylation scores along imputed pseudotime (C), and cell progression pseudotime 
according to Seurat cluster (D).
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However, most previous studies examined the methylation levels of selected gene sets and bulk tumor tis-
sues. We identified the relationships of precise tumor cell subclusters with abnormal invasive and metastatic 
potentials, and used single-cell GSEA analysis to examine global changes in DNA methylation status. Our results 
verified that changes in DNA methylation impacted tumor progression, especially invasion and metastasis. In 
particular, tumor cell clusters with high methylation activity also had a significant hypoxia response. Thien-
pont et al.17 found that tumor hypoxia reduced the activity of TET, a crucial DNA demethylation enzyme, and 
consequently increased the hypermethylation of specific gene promoters. They also found that hypoxic tumor 
tissues had hypermethylation of the promoters of tumor suppressor genes, and that restoration of tumor oxy-
genation abrogated the hypermethylation in mouse breast cancers17. However, another study reported that DNA 
methylation affected the accessibility of the HIF transcriptional factor to its binding site; DNA hypomethyla-
tion exposed HIF binding sites and induced HIF-dependent expression of cryptic unstable transcripts (CUTs). 
Tumors with high immune checkpoint expression also had decreased DNA methylation and higher expression 
of CUTs. These results indicated that the interplay between hypoxia and DNA methylation might influence 
tumor immunotolerance18.

Our identification of tumor cell subtypes using single-cell analysis supports this interpretation. Thus, an in-
depth analysis of these clusters may provide a better understanding of the mechanism of immunotolerance and 
its regulation by hypoxia and DNA-methylation, and may also provide a basis for novel cancer immunotherapies. 
We also found significantly higher expression of genes that were related to resistance to EGFR-TKIs. TKIs have 
widespread clinical applications in cancer, but drug resistance greatly limits their efficacy19. Our finding that 
EGFR-TKI resistance was associated with overall hypermethylation activity suggested that DNMT inhibitors, 
such as azacytidine and decitabine, may help to relieve resistance to EGFR-TKIs.

Our pseudotime analysis of lung tumor cells indicated that hyper- and hypomethylated clusters were mainly 
at different ends of the progression timeline, suggesting an important role of methylation status during lung 
adenocarcinoma progression. Our examination of genes whose expression may determine cell fate indicated 
that S100A6 and SPP1 had higher expression in globally hypomethylated cells, and that ABCC3 had the opposite 
pattern (Fig. 1). The expression profiles of these genes determined the pseudotime of cell differentiation at the 
most important two branch points related to DNA methylation. Recent studies reported that SPP1 was associ-
ated with cell growth and invasion during tumorigenesis and metastasis20; SPP1 was overexpressed in cancers of 
the lung21, colon22, breast23, and prostate24; and SPP1 expression correlated with tumor stage and aggressiveness. 

Figure 7.   Methylation scores (A) and demethylation scores (B) for each Monocle state compared with all the 
other states, and comparison of methylation score and demethylation score within the same state (C). Boxplots 
show medians, interquartile ranges, and outliers. ns: p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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Figure 8.   Gene expression profiles (heatmaps) at branchpoint-1 (A) and branchpoint-2 (B), and expression 
profiles for ABCC3, SPP1, and S1000A6 along the progression pseudotime (C). Correlation of the expression of 
ABCC3 and S1000A6 with DNA methylation and de-methylation signatures using the TCGA LUAD datasets 
(D).

Figure 9.   Expression of SPP1 in normal tissue and tumor tissue from The Cancer Genome Atlas Lung 
Adenocarcinoma datasets (A) and Kaplan–Meier survival analysis for SPP1 from TCGA data (B). Boxplots 
show medians, interquartile ranges, and total range.
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S100A6 functions in the regulation of cell cycle progression and differentiation. Aberrant expression of S100A6 
was previously reported in cancers of the pancreas25, colorectum26, gastric system27, and breast28. A study of 
S100 proteins concluded that they may promote cancer progression by altering pathways related to cell survival 
and apoptosis29. More specifically, several studies reported that increased expression of S100A6 promoted cell 
proliferation by regulating the expression of IL‑8, CDK5, CDK4, MCM7, Bcl2, and could be used as a marker of 
tumor aggressiveness in gastric cancers27,30.

Previous epigenetic studies emphasized the relationships between methylation of the promoters of SSP1 and 
S100A6 and expression of these genes, but few studies examined the relationship of SPP1 and S100A6 expres-
sion with global methylation levels of tumor cells. Hypomethylation of highly repeated DNA sequences is more 
common in cancer tissues than normal tissues31, and global hypomethylation often occurs at the very beginning 
of tumorigenesis32,33. Although there are variations among different types of tumors, global hypomethylation 
is generally related to increased cancer progression and malignancy34–36. Although global DNA hypomethyla-
tion is tightly linked to the formation of repressed chromatin domains, and does not occur in the presence of 
histones H3K9me3 or H3K27me3, the mechanisms that drive these alterations are still uncertain37. Our single-
cell analysis indicated that expression of SPP1 and S100A6 were associated with global hypomethylation of lung 
adenocarcinoma cells. This result implicates these two genes in the regulation of the global methylation level of 
lung adenocarcinoma cells.

ABCC3 has greater expression in many cancers and is also a marker of multidrug resistance. Higher expres-
sion of ABCC3 correlated with lymph node involvement, advanced TNM stage, more malignant histological 
type, multiple-resistance to anti-cancer drugs, and reduced overall survival in NSCLC38,39. Our analysis showed 
that the expression of ABCC3 was positively correlated with global DNA hypermethylation of lung cancer cells.

Recent advances in next-generation sequencing and single-cell technologies allowed the examination of cell 
heterogeneity within tumors. We used these methods to identify different cell profiles based on clustering of 
similar cells into subgroups, and then compare the gene expression patterns of different subgroups. Our single-
cell sequencing methods thus provided a detailed classification of lung adenocarcinoma cells, identification of 
clusters based on global methylation profiles, and examination of the functions of these clusters. Our pseudotime 
analysis suggested that global methylation level affected the differentiation of tumor cells and that SPP1 was 
associated with methylation level and patient prognosis.

Methods
Data sources.  RNA-seq datasets were from The Cancer Genome Atlas (TCGA) and clinical data for lung 
adenocarcinoma were from the University of California Santa Cruz (UCSC) Xena browser (https://​xenab​rowser.​
net/). Single-cell RNA sequencing datasets for lung tumors were downloaded from ArrayExpress (https://​www.​
ebi.​ac.​uk/​array​expre​ss/) with the accession numbers E-MTAB-6149 and E-MTAB-6653 (Table 1). Table 2 sum-
marizes the clinical data of these three patients. All methods were carried out in accordance with relevant guide-
lines and regulations.

Single‑cell RNA‑seq data acquisition and pre‑processing.  Raw gene expression matrices for each 
sample were analyzed using the Seurat package (ver. 3.2.2) for R software40. Count matrices were filtered again by 
removing cell barcodes that had fewer than 201 genes. The remaining cells were first integrated using canonical 
correlation analysis (CCA) for the 5000 genes with the greatest variation in expression. All variably expressed 

Table 1.   Samples used for data analysis (E-MTAB-6149 and E-MTAB-6653).

Sample Patient # Tumor site Cells (N)

BT1290 3 Border 497

BT1291 3 Middle 842

BT1292 3 Core 1104

BT1295 4 Border 321

BT1296 4 Middle 859

BT1297 4 Core 1520

BT1375 6 Core 346

BT1376 6 Middle 528

BT1377 6 Border 234

Table 2.   Characteristics of the 3 NSCLC patients included in this study.

Patient # Age, years TNM Stage Carcinoma type Affected lobe Smoking status

3 68 pT4N2M0 IIIB Adenomatous Right upper Former

4 64 pT2aN1M0 IIB Adenomatous Left upper Former

6 65 pT4N1M0 IIIA Adenomatous Left upper Former

https://xenabrowser.net/
https://xenabrowser.net/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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genes were used to construct principal components (PCs), and the 30 PCs with the greatest variance in the 
dataset were selected. Clusters were calculated using the FindClusters function with a resolution of 0.2, and 
were visualized using the t-distributed stochastic neighbor embedding (t-SNE) for dimensional reduction. Up-
regulated marker genes in each cluster were calculated using the FindAllMarkers function with only.pos = TRUE 
and an adjusted p-value below 0.05.

Functional enrichment analysis.  GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis for significantly up-regulated genes were analyzed using the ClusterProfiler41 package for R soft-
ware. The 5 GO terms with the smallest adjusted p values for molecular function (MF), biological process (BP), 
and cellular components (CC), and the top 10 enriched KEGG pathways were shown.

Estimation of DNA methylation and de‑methylation activity.  To evaluate DNA methylation 
and de-methylation activity (i.e. the global methylation level of each cell), a GSVA score was calculated for 
each cell on GO items with GO_DNA_DEMETHYLATION (GO:0080111) and GO_DNA_METHYLATION 
(GO:0006306) using the GSVA package for R software42.

Monocle analysis.  The Monocle package (version 2.16.0) for R software was used to plot pseudotime to 
illustrate the behavioral similarity and transitions of lung tumor cells6. The integrated expression matrix derived 
from Seurat was used to build a CellDataSet for the Monocle pipeline. All cells were finally aggregated into 7 
different states according to the pseudotime inferred from the expression profiles.

Survival analysis and Expression analysis for bulk RNAseq data.  Survival analysis and comparison 
of expression in tumor and normal tissues from TCGA lung adenocarcinoma (LUAD) dataset was performed 
using GEPIA (http://​gepia.​cancer-​pku.​cn/)43. Group cutoff of survival analysis was set as the median expression 
value of each testing gene.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.

Received: 11 April 2021; Accepted: 15 October 2021
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