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Abstract: Human campylobacteriosis, commonly caused by Campylobacter jejuni, is a food-borne
infection with rising prevalence causing significant health and socioeconomic burdens worldwide.
Given the threat from emerging antimicrobial resistances, the treatment of infectious diseases with
antibiotics-independent natural compounds is utmost appreciated. Since the health-beneficial effects
of cumin-essential-oil (EO) have been known for centuries, its potential anti-pathogenic and immune-
modulatory effects during acute experimental campylobacteriosis were addressed in the present
study. Therefore, C. jejuni-challenged secondary abiotic IL-10-/- mice were treated perorally with
either cumin-EO or placebo starting on day 2 post-infection. On day 6 post-infection, cumin-EO
treated mice harbored lower ileal pathogen numbers and exhibited a better clinical outcome when
compared to placebo controls. Furthermore, cumin-EO treatment alleviated enteropathogen-induced
apoptotic cell responses in colonic epithelia. Whereas, on day 6 post-infection, a dampened secretion
of pro-inflammatory mediators, including nitric oxide and IFN-γ to basal levels, could be assessed in
mesenteric lymph nodes of cumin-EO treated mice, systemic MCP-1 concentrations were elevated in
placebo counterparts only. In conclusion, our preclinical intervention study provides first evidence
for promising immune-modulatory effects of cumin-EO in the combat of human campylobacteriosis.
Future studies should address antimicrobial and immune-modulatory effects of natural compounds
as adjunct antibiotics-independent treatment option for infectious diseases.

Keywords: cumin-essential-oil; cuminaldehyde; Campylobacter jejuni; enteropathogenic infection;
immune-modulatory effects; secondary abiotic IL-10-/- mice; experimental campylobacteriosis model;
host–pathogen interaction; preclinical intervention study; natural antibiotics-independent com-
pounds

1. Introduction

Campylobacter species belong to the commensal gut microbiota of animal species used
for food production, such as chicken, turkey and other poultry [1,2]. Ingestion of meat
products or surface waters contaminated with Campylobacter bacteria is the main source
for human campylobacteriosis [3,4]. Campylobacter jejuni constitute the most common
foodborne enteropathogens in the European Union, exceeding Salmonella infections with
progressively increasing case numbers [5]. The highly motile Gram-negative C. jejuni
bacteria bypass the viscous intestinal mucus layer, cross the epithelia, and interact with
mucosal and lamina propria cells, leading to the recruitment of innate immune cells,
such as neutrophils, dendritic cells, macrophages, and monocytes [6]. The interaction
between the Toll-like receptor-4 (TLR-4) expressed by these immune cell subsets with the
surface lipooligosaccharide (LOS) derived from the C. jejuni cell wall leads to a massive
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pro-inflammatory mediator response, inducing apoptosis and ulcerations in the intestinal
epithelia, followed by impaired epithelial barrier function and malabsorption [6,7]. The
classical clinical signs of human campylobacteriosis are characterized by diarrhea with
mucous, inflammatory or even bloody discharge, abdominal cramping, and fever [8,9]. In
most cases, the disease course is self-limiting, resolving within approximately 7 to 14 days
post-infection (p.i.), and requires (if at all) a symptomatic regimen consisting of antipyretics
and substitution of fluids and electrolytes. Antibiotics may be indicated in severe cases,
particularly in immune-compromised patients [8,10–12]. Guillain–Barré syndrome, Miller
Fisher syndrome, irritable bowel disease, inflammatory bowel diseases, and coeliac disease
can develop as post-infectious morbidities in relatively rare instances after weeks or even
months [2,7,8,12–14].

Experimental animals, such as conventional laboratory mice, are highly resistant
against C. jejuni infection, which also holds true for TLR-4 ligands derived from the Gram-
negative bacteria, including carbohydrate structures such as LOS and lipopolysaccharides
(LPS) [15]. However, the depletion of the complex murine gastrointestinal microbiota
by antibiotic compounds has been shown to sufficiently override the physiological colo-
nization resistance against the enteropathogens and thus, facilitate the establishment of
C. jejuni in the murine gastrointestinal tract [16]. Within six days post C. jejuni challenge,
secondary abiotic mice lacking the interleukin-10 (IL-10) gene (IL-10-/- mice) suffer from
severe campylobacteriosis. The disease is characterized by bloody diarrhea and wasting
symptoms and presents with acute enterocolitis, intestinal apoptosis, and pronounced
pro-inflammatory immune responses that are not limited to the intestinal tract but also
affect extra-intestinal and even systemic tissue sites [6,17]. In our recent preclinical inter-
vention studies, secondary abiotic IL-10-/- mice have been successfully applied to survey
anti-microbial and immune-modulatory properties of distinct molecules such as vitamin
C [18]; vitamin D [19]; carvacrol [20]; urolithin-A [21]; resveratrol [22]; essential oils (EO),
including cardamom-EO [23] and clove-EO [24]; as well as the neuropeptides PACAP [25]
and NAP [26] in acute campylobacteriosis. Furthermore, given the emergence of rising
antimicrobial resistance of bacterial pathogens also affecting Campylobacter species, we
are searching for natural compounds with non-toxic, anti-pathogenic, and/or immune-
modulatory properties that might be promising options for the treatment and/or even
prophylaxis of campylobacteriosis.

Cumin (Cuminum cyminum Linn.) is an aromatic medical plant belonging to the
Apiaceae family and is native in Middle Eastern countries [27,28]. The health-beneficial
anti-microbial, anti-inflammatory, and anti-oxidant effects of this natural compound have
been known for a long time. In traditional medicine, cumin and derivatives have, there-
fore, been used to treat a wide spectrum of diseases, such as gastrointestinal morbidities
including infectious diarrhea [27,29–32]. The major bioactive constituents of cumin-EO
are cuminaldehyde, eugenol, α-pinene, cymene, and terpenoids [29,33]. Cumin-EO has
antimicrobial activity against various bacteria, such as Staphylococcus aureus, Staphylococcus
epidermidis, Staphylococcus haemolyticus, Klebsiella pneumoniae, Propionibacterium acnes, and
Corynebacterium diphtheriae, and against fungi such as Candida albicans [34–36]. An in vitro
study revealed an increased permeability of the cell membrane of Campylobacter species,
including C. jejuni and C. coli, upon co-incubation with cumin-EO [37]. The exact molecular
mechanisms underlying the cumin-EO mediated toxicity against C. jejuni have not been
examined further, however. Additionally, in vivo data of the beneficial effects exerted
by cumin in C. jejuni infection are completely missing. Given our recent finding that the
eugenol containing clove oil was highly effective in murine campylobacteriosis [24], this
encouraged us to perform a preclinical intervention study regarding the anti-pathogenic
and immune-modulatory effects of cumin-EO during acute C. jejuni infection applied to
secondary abiotic IL-10-/- mice, as presented here.
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2. Material and Methods
2.1. Experimental Animals and Husbandry

The breeding and keeping of the IL-10-/- mice (C57BL/6j background) took place
in the Forschungsinstitute für Experimentelle Medizin, Charité—Universitätsmedizin
Berlin, Germany. The animals were housed under standard conditions (i.e., 22–24 ◦C
room temperature, 55 ± 15% humidity, 12 h light/12 h dark cycle). The animals were
kept in cages (maximum of 3–4 mice per cage) including filter tops within an experimen-
tal semi-barrier, supplied with drinking water (autoclaved tap water, ad libitum) and
food pellets (ssniff R/M-H, V1534-300, Sniff, Soest, Germany). In order to deplete the
commensal gut microbiota, 3-week-old animals were transferred into sterile cages and re-
ceived a broad-spectrum antibiotic solution via the drinking water (ad libitum) for 8 weeks
(Supplementary Table S1) as described earlier [16]. To avoid contaminations, the secondary
abiotic IL-10-/- mice were kept and handled under strict aseptic conditions. In order to
ensure the washout of the antibiotics, the animals received autoclaved tap water three days
before infection with C. jejuni.

2.2. Campylobacter jejuni Infection and Gastrointestinal Pathogen Loads

On days 0 and 1, 4-month-old secondary abiotic IL-10-/- mice (sex-matched littermates;
balanced gender ratio) were infected perorally with 109 colony forming units (CFU) of
the C. jejuni strain 81–176 grown on Columbia agar (with 5% sheep blood) and selective
karmali agar plates (both from Oxoid, Wesel, Germany). Therefore, bacterial colonies were
harvested with a sterile swab from respective agar plates after 48-h incubation under mi-
croaerophilic conditions and transferred to sterile phosphate-buffered saline (PBS, Thermo
Fisher Scientific, Waltham, MA, USA). Immediately thereafter, mice received 0.3 mL of the
bacterial suspension by gavage.

As described earlier, the daily pathogen loads were determined in fecal samples after
C. jejuni infection and upon necropsy in luminal samples from the gastrointestinal tract
(stomach, duodenum, ileum, and colon) by culture [16,38]. Briefly, serial dilutions of each
sample (in sterile PBS, Thermo Fisher Scientific, Waltham, MA, USA) were plated onto
karmali agar and incubated under microaerophilic conditions for at least 48 h and at 37 ◦C.
The detection limit of viable pathogens was 100 CFU per g (CFU/g).

2.3. Clinical Outcome

The daily clinical outcomes of each mouse were quantitated by using a cumulative
clinical score (Supplementary Table S2), as described previously [39].

2.4. Cumin-EO Treatment and Cohort Sizes

Starting on day 2 p.i and lasting until the end of the observation period, mice were
treated with cumin-seed-EO (Sigma-Aldrich, Munich, Germany) via the drinking water.
Cumin-EO was dissolved in sterile PBS with 0.05% carboxymethylcellulose, added to
autoclaved tap water to a final concentration of 1 mg/mL (ad libitum). Assuming a daily
drinking volume of approximately 5 mL and a mean body weight of 25 g, the daily cumin-
EO dose applied to the mice of the verum group was 200 mg/kg body weight. Mice
from the placebo cohort received the solution without the verum instead. Furthermore,
naive mice were included as non-treated and uninfected controls. The four independent
intervention studies were performed with the following cohort sizes: Naive cohort (4,
4, 4, 4); placebo treated and infected cohort (8, 7, 7, 7); cumin-EO treated and infected
cohort (5, 5, 5, 4).

2.5. Sampling

On day 6 p.i., mice were sacrificed by CO2 asphyxiation. For serum cytokine mea-
surements, cardiac blood samples were collected from each mouse. Ex vivo biopsies from
mesenteric lymph nodes (MLN) and the colon, as well as luminal samples from the gas-
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trointestinal tract, were derived under aseptic conditions. For further microbiological and
immune-histopathological analyses, large intestinal biopsies were sampled in parallel.

2.6. Histopathological Analyses

For histopathological analyses, colonic ex vivo biopsies were fixed immediately in 5%
formalin and embedded in paraffin. The sections (5 µm) stained with hematoxylin and
eosin (H&E) were examined for histopathological changes in the large intestine by light
microscopy (100-fold magnification). These changes were assessed quantitatively using
histopathological ratings (Supplementary Table S3), as stated recently [40].

2.7. In Situ Immunohistochemistry

Quantitative in situ immunohistochemical analyses were performed on the colonic
ex vivo biopsies (fixed immediately in 5% formalin and embedded in paraffin) to detect
apoptotic epithelial cells, macrophages and monocytes, T lymphocytes, regulatory T cells,
and B lymphocytes (Supplementary Table S4), as stated earlier [41,42]. The mean number
of respective positively stained cells in each sample was determined within six high power
fields (HPF, 0.287 mm2, 400-fold magnification) by a blinded independent investigator
applying light microscopy.

2.8. Pro-Inflammatory Mediators

Intestinal ex vivo biopsies collected from the colon (longitudinally cut strips of ap-
proximately 1 cm2, washed in PBS) and from MLN (3 nodes) were incubated for 18 h at
37 ◦C in 24-flat-bottom-well culture plates (Thermo Fisher Scientific, Waltham, MA, USA)
containing 500 mL serum-free RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with penicillin (100 µg/mL) and streptomycin (100 µg/mL; Biochrom,
Berlin, Germany). After the incubation, supernatants and serum samples were tested
for interferon-γ (IFN-γ) and monocyte chemoattractant protein-1 (MCP-1) by the mouse
inflammation cytometric bead assay (CBA; BD Biosciences, Heidelberg, Germany) in a
BD FACSCanto II flow cytometer (BD Biosciences, Heidelberg, Germany). Nitric oxide
concentrations were determined by the Griess reaction, as stated elsewhere [43,44].

2.9. Statistical Analyses

GraphPad Prism (version 8; San Diego, CA, USA) was used for the calculation of me-
dians and significance levels. The normal distribution of the data was determined by the
Anderson–Darling test. For not normally distributed data the Mann–Whitney test (for pairwise
comparisons) and Kruskal–Wallis test with Dunn’s post-correction (for multiple comparisons)
were applied. The one-way ANOVA with Tukey post-correction was performed on normally
distributed data for multiple comparisons. Two-sided probability (p) values ≤ 0.05 were
considered significant. Data were pooled from four independent experiments.

3. Results
3.1. Cumin-EO Treatment and Gastrointestinal C. jejuni Colonization in Secondary Abiotic
IL-10-/- Mice

109 viable C. jejuni strain 81–176 cells were applied to secondary abiotic IL-10-/- mice
on days 0 and 1 by gavage. On day 2 p.i., treatment with cumin-EO or placebo was initiated
and continued until the end of the study (i.e., day 6 p.i.) via the drinking water. The cultural
analyses of the fecal pathogen densities over time revealed comparably high median C.
jejuni loads of 109 colony forming units per g (CFU/g) feces derived from mice of both
cohorts as early as 2 days p.i. that did not change thereafter (Figure 1).

Interestingly, in a single mouse from the placebo and cumin-EO groups, the fecal C.
jejuni numbers were below the detection limit during the early course of infection (i.e., on
day 2 p.i. and between days 2 and 4 p.i., respectively). On the day of sacrifice at day 6 p.i.,
we performed a comparative survey of the pathogen loads along the gastrointestinal tract.
Interestingly, our cultural analyses revealed approximately 1.5 log orders of magnitude
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lower C. jejuni cell numbers in the distal small intestines (i.e., the terminal ileum) of
cumin-EO as compared to the placebo treated mice (p < 0.01), whereas in the stomach, the
duodenum and the colon C. jejuni were comparably high in either cohort (not significant
(n.s.); Figure 2). Hence, cumin-EO treatment resulted in lower C. jejuni loads in the ileum
as compared to placebo.
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Figure 2. Effects of cumin-EO treatment on gastrointestinal pathogen loads. C. jejuni infected
secondary abiotic IL-10-/- mice received either placebo (PLC, grey circles) or cumin-EO (white circles)
from d2 until d6 post-infection. Gastrointestinal pathogen numbers (colony forming units per gram,
CFU/g) were determined on d6 post-infection by culture. Medians (black bars) and significance
levels (p values) were analyzed with data pooled from four independent experiments using the
Mann–Whitney U-test. The numbers of included mice are given in parentheses.



Pathogens 2021, 10, 818 6 of 15

3.2. Clinical outcome Following Cumin-EO Treatment of C. jejuni infected IL-10-/- Mice

We further quantitatively assessed the clinical outcome in C. jejuni infected mice upon
cumin-EO treatment. Whereas at day 6 p.i., mice from the placebo group suffered from
key signs of acute campylobacteriosis, such as wasting symptoms and bloody diarrhea,
cumin-EO treated mice were far less clinically compromised and presented with less severe
and less frequent diarrheal and wasting symptoms (p < 0.05–0.001 versus placebo; Figure 3).
Hence, despite comparable large intestinal pathogen loads at day 6 p.i., cumin-EO treatment
could alleviate macroscopic (i.e., clinical) signs of acute campylobacteriosis.
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Figure 3. Effects of cumin-EO treatment on the clinical outcome of C. jejuni infection in IL-10-/-

mice. C. jejuni infected secondary abiotic IL-10-/- mice received either placebo (PLC, grey circles) or
cumin-EO (white circles) from d2 until d6 post-infection. (A) The overall clinical conditions of mice
were quantitatively determined on d6 post-infection, by using a cumulative clinical scoring system
(see methods) assessing the sum of the individual scores for (B) wasting symptoms, (C) diarrhea,
and (D) fecal blood. Naive mice (open diamonds) constituted untreated and uninfected controls.
Numbers of included mice are given in parentheses. Black bars indicate medians. Significance
levels (p values) were determined with data pooled from four independent experiments using the
Kruskal–Wallis test and Dunn’s post-correction.
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3.3. Microscopic Inflammatory Changes in the Colon Following Cumin-EO Treatment of C. jejuni
Infected IL-10-/- Mice

We next assessed whether cumin-EO treatment resulted also in dampened micro-
scopic inflammatory sequelae in the infected intestines. Therefore, we quantitated mi-
croscopic inflammatory changes in large intestinal paraffin sections by histopathological
scoring. C. jejuni infection was associated with increased scores in both cohorts as com-
pared to naive control mice (p < 0.001), whereas, however, a trend towards less severe
histopathological changes could be observed in cumin-EO versus placebo mice (n.s., high
standard deviation in the former; Figure 4A; Supplemental Figure S1A). Since apoptosis
is regarded as a reliable marker for the intestinal inflammatory grading [16], we further
assessed microscopic inflammatory changes in the large intestinal tract. Therefore, we
quantitated numbers of apoptotic colonic epithelial cells that were positive for cleaved
caspase-3 as assessed by immunohistochemical staining of large intestinal paraffin sec-
tions. C. jejuni infected mice exhibited markedly increased numbers of cleaved caspase-3+

cells in their colonic epithelia versus naive controls (p < 0.01–0.001) but with approxi-
mately 50% lower median numbers following cumin-EO as compared to placebo treatment
(p < 0.01; Figure 4B; Supplemental Figure S1B). Hence, cumin-EO treatment decreased
enteropathogen-induced apoptotic cell responses in the colon.
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treatment of C. jejuni infected IL-10-/- mice. C. jejuni infected secondary abiotic IL-10-/- mice received either placebo (PLC,
grey circles) or cumin-EO (white circles) from d2 until d6 post-infection. (A) Histopathological changes in H&E stained
colonic paraffin sections (standardized scores) and (B) apoptotic epithelial cell numbers were assessed microscopically
by counting cells positive for cleaved caspase-3 (Casp3+) from six high power fields (HPF, 400-fold magnification) per
animal, respectively (see methods). Naive mice (open diamonds) constituted untreated and uninfected controls. Numbers
of included mice are given in parentheses. Black bars indicate medians. Significance levels (p values) were determined with
data pooled from four independent experiments using the Kruskal–Wallis test and Dunn’s post-correction.

3.4. Immune Cell Responses in the Colon Following Cumin-EO Treatment of C. jejuni Infected
IL-10-/- Mice

We further addressed whether cumin-EO application to C. jejuni infected mice in-
terfered with host immune responses in the colon. Therefore, large intestinal paraffin
sections were stained with antibodies against defined innate and adaptive immune cell
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populations and the numbers of positively stained cells within the colon mucosa and
lamina propria were enumerated. In mice from either treatment group, elevated numbers
of innate macrophages and monocytes, as well as of adaptive T lymphocytes, regulatory T
cells, and B lymphocytes, were determined (p < 0.001 versus naive) but with no differences
between both treatment regimens (n.s.; Figure 5). However, a trend toward lower T cell
numbers (i.e., approximately 50% differences in median counts) could be assessed in the
large intestines of cumin-EO compared to placebo treated mice at day 6 p.i. but did not
reach statistical significance given high standard deviations (n.s.; Figure 5B). Hence, cumin-
EO did not affect pathogen-induced innate and adaptive immune cell accumulation in the
infected large intestines.
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IL-10-/- mice. C. jejuni infected secondary abiotic IL-10-/- mice received either placebo (PLC, grey
circles) or cumin-EO (white circles) from d2 until d6 post-infection. (A) Macrophages/monocytes
(F4/80+), (B) T lymphocytes (CD3+), (C) regulatory T cells (FOXP3+), and (D) B lymphocytes (B220+)
per mouse were determined in immunohistochemically stained colonic paraffin sections (median
counts from six high power fields (HPF), 400-fold magnification) on d6. Naive mice (open diamonds)
constituted untreated and uninfected controls. Numbers of included mice (in parentheses) are given
together with medians (black bars). Significance levels (p values) were determined with data pooled
from four independent experiments using the one-way ANOVA with Tukey post-correction for
normally distributed data or the Kruskal–Wallis test with Dunn’s post-correction for not normally
distributed data.
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3.5. Pro-inflammatory Mediator Secretion by Mesenteric Lymph Nodes Following Cumin-EO
Treatment of C. jejuni Infected IL-10-/- Mice

We then assessed pro-inflammatory mediator secretion by MLN draining the infected
intestines. On day 6 p.i., increased nitric oxide and IFN-γ concentrations could be measured
in MLN derived from mice of the placebo cohort (p < 0.001 versus naive) as opposed to the
cumin-EO group (p < 0.05 versus placebo; Figure 6). Hence, cumin-EO treatment decreased
pathogen-induced pro-inflammatory mediator secretion by MLN back to basal levels.
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Numbers of included mice are given in parentheses. Black bars indicate medians. Significance levels (p values) were
determined with data pooled from four independent experiments using the Kruskal-Wallis test and Dunn’s post-correction.

3.6. Systemic Pro-inflammatory Mediator Secretion Following Cumin-EO Treatment of C. jejuni
Infected IL-10-/- Mice

We finally addressed whether cumin-EO application might dampen pathogen-induced
systemic pro-inflammatory responses by measuring distinct mediators in serum samples.
Whereas mice from the placebo, but not the cumin-EO cohort, presented with increased
MCP-1 serum concentrations (p < 0.001versus naive; Figure 7A), systemic IFN-γ secretion
was comparably enhanced on day 6 following C. jejuni infection of mice from either cohort
(p < 0.001 versus naive; Figure 7B). Hence, cumin-EO treatment could prevent mice from C.
jejuni induced enhanced systemic MCP-1 secretion.
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4. Discussion

For the first time, our here presented preclinical intervention study provides evidence
for immune-modulatory effects of cumin-EO during experimental campylobacteriosis.
The applied cumin concentration in the drinking water (1 g/L) applied to C. jejuni strain
81–176 infected mice was higher than the minimal inhibitory concentration (MIC) against
C. jejuni strain ATCC033660, as assessed in a recent report (i.e., 0.005 g/L [37]). However,
one might expect that the biologically active cumin-EO concentration within the intestinal
lumen post-ingestion would be much lower given mixing and diluting with the secretory
intestinal fluids. It is, thus, almost impossible to extrapolate to a MIC of the cumin-EO
achieved in the intestinal lumen directed against the infecting bacteria. Furthermore,
Monteiro-Neto et al. [45] investigated the oral bioavailability of cumin-EO and its com-
pounds, such as cuminaldehyde. The results revealed that cumin-EO is a good candidate
for an orally bioavailable drug and is expected to be absorbed by the gastrointestinal tract.
Doses higher than 1320 mg/kg body weight would be lethal to mammalians [45]. Hence,
the daily dose used in our study (i.e., 200 mg/kg body weight) was far lower than the
determined potentially lethal dose. Following the therapeutic application of cumin-EO
through the drinking water starting 48 h after infection, the relatively high pathogen loads
of 109 CFU per g feces did not change until the end of the observation period. Upon
sacrifice, however, in the terminal ileum (but not in other parts of the gastrointestinal tract)
of cumin-EO treated mice, lower C. jejuni numbers could be assessed compared to placebo
controls. This result might appear rather surprising given that cumin-EO exerted not only
potent antibacterial properties against Staphylococcus species and Klebsiella pneumoniae [34–
36] but also against C. jejuni [37]. One needs to take into consideration, however, that these
results were derived from in vitro investigations. Additionally, although cuminaldehyde is
the major compound of cumin-EO, the origin of the EO itself is crucial for its composition
and biological effects [46]. This could also explain the reported differences in antimicrobial
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activities of cumin-EO. Given the lower pathogens numbers in the terminal ileum but not
the large intestine of cumin-EO as compared to placebo treated mice, it is tempting to spec-
ulate that most of the compound has been reabsorbed in the terminal ileum, whereas the
concentrations of cumin-EO in the colonic lumen could have been too low for biologically
relevant anti-C. jejuni effects. We would further like to emphasize that the 4-day cumin-EO
treatment period was relatively short. Therefore, in order to achieve more pronounced
benefits of cumin-EO application, a prophylactic treatment regimen starting prior infection
could be advantageous and will be addressed in our future studies.

Despite the high gastrointestinal pathogen burdens, cumin-EO treated mice suffered
less distinctly from clinical signs of acute campylobacteriosis as indicated by less pro-
nounced diarrheal and wasting symptoms. These results are in line with a previous in vivo
study showing that the single-dose administration of cumin extracts (500 mg/kg body
weight) alleviated castor-oil-induced diarrhea in rats as indicated by lower fecal weight,
less frequent defecation, and extended defecation times [32].

The better clinical outcome in C. jejuni infected IL-10-/- mice upon cumin-EO treatment
was accompanied by less pronounced apoptosis of colonic epithelial cells, whereas only a
trend towards lower histopathological scores could be observed. In support, cumin treated
rats suffering from gentamicin-induced nephrotoxicity showed alleviated histopathological
including apoptotic changes. Furthermore, the anti-apoptotic properties of cumin could be
shown in vitro, given that the Iranian cumin-EO application to murine adrenal phaeochro-
mocytoma cells inhibited the α-synuclein fibrillation, which is known to induce apoptosis,
a key pathogenic event in Parkinson’s disease [47].

When assessing potential immune-modulatory effects of cumin-EO in our acute
campylobacteriosis model, we were rather surprised that numbers of innate as well as of
adaptive immune cell populations within the large intestinal tract did not differ between
the verum and placebo groups on day 6 p.i., as assessed by quantitative in situ immunohis-
tochemistry. Given approximately 50% differences in median CD3+ cell numbers in the
colonic mucosa and lamina propria, at least for the large intestinal T lymphocytes, however,
a trend towards lower counts could be assessed upon cumin-EO as compared to placebo
treatment on day 6 p.i. Interestingly, Chauhan et al. [48] demonstrated that oral application
of cumin extracts to Swiss albino rats with cyclosporin-A induced immune-suppression
resulted in elevated systemic abundance of CD4+ and CD8+ T cells, whereas the CD19+

B cell population was unaffected, resulting in enhanced systemic IFN-γ secretion [48].
Conversely, our study revealed that the oral cumin-EO application to C. jejuni-infected
IL-10-/- mice led to a less pronounced secretion of IFN-γ concentrations by MLN but did
not affect systemic IFN-γ as opposed to MCP-1 concentrations, given that the latter pro-
inflammatory mediator was increased in infected mice from the placebo but not the cumin
EO cohort. These results indicate that cumin may exert very distinct immune-modulatory
effects depending on its composition/formulation (given the differences observed upon
application of the extract versus the EO) and the respective disease model. We could also
show that cumin-EO reduced not only the IFN-γ, but also the nitric oxide concentrations
in MLN derived from infected mice back to basal levels. Our results are well in line with a
previous study showing that cumin-EO inhibited nitric oxide production in LPS-stimulated
murine peritoneal macrophages [49]. In support, Wei and colleagues demonstrated that ap-
plication of cumin-EO to LPS-stimulated murine RAW macrophages inhibited the inducible
nitric oxide synthase (iNOS) and cyclo-oxygenase that was accompanied by reduced IL-6
and IL-1β expression levels upon blockage of nuclear factor-kappa B (NF-κB), the phospho-
rylation of extracellular signal regulated kinase and c-Jun N-terminal kinase pathways [50].
Since the transcription factor NF-κB promotes the expression of genes involved in cellular
immune and inflammatory responses during early C. jejuni infection [51], blockage of
respective pathway by cumin-EO might explain the disease-alleviating effects observed in
our study. It is of note that cumin-EO is much more tolerable, given fewer undesired side
effects compared to clove-EO, which was shown to be similarly effective in acute murine
campylobacteriosis, as shown recently [24].
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Furthermore, since it has been suggested that many essential oils and their compounds
interact with the bacterial cell membrane [52], another potential strategy to combat the
infection or even antimicrobial resistance is to apply non-antibiotic compounds, such as
cumin-EO, in order to improve the activity of distinct antibiotic compounds. It has been
shown, for instance, that cumin enhances the bioavailability of erythromycin, cephalexin,
and amoxycillin [35,53]. Interestingly, α-pinene (another compound of cumin-EO) in-
creased the sensitivity of C. jejuni to ciprofloxacin and erythromycin by blocking the
expression of the efflux pumps encoding genes [54]. Additionally, the increase of extracel-
lular ATP concentrations when C. jejuni was exposed to cumin-EO indicates that cumin
demolished the membrane integrity of C. jejuni and permeabilized the bacterial mem-
brane, which could result in bacterial cell death [37,55]. However, more in vivo studies are
needed to further investigate the underlying mechanism of antimicrobial and immune-
modulatory properties of cumin-EO during enteropathogenic, including C. jejuni infections,
in more detail.

5. Conclusions

We conclude that cumin-EO is a promising immune-modulatory treatment option of
acute campylobacteriosis. Additionally, the application of cumin EO as food supplementa-
tion might be a useful strategy to improve host defense mechanisms, which are involved in
combating enteropathogens, including C. jejuni.
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