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Abstract: Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues
and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has
been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer
context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin
A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine
signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling
of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to
the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of
antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T
lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation
of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For
these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the
tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of
Annexin A1 and on its interaction with the epidermal growth factor receptor.
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1. Introduction

Neoplastic transformation and progression encompass multiple unknown or poorly
described events. In this context, Hanahan and Weinberg proposed different hallmarks
that, despite being interrelated, define the principles of tumorigenesis. These hallmarks
include the resistance to cell death mechanisms, uncontrolled proliferation, induction of
angiogenesis, invasion potential, metastasis formation and immune escape [1]. Cancer cells
acquire these hallmarks by modifying the extracellular matrix (ECM) and modulating the
behavior of different cell types that surround the tumor. In this way, cancer cells create
a unique environment, called the tumor microenvironment (TME), that strongly favors
malignancy and cancer dissemination [2]. Unfortunately, the appearance of metastasis
profoundly worsens the prognoses of patients, since no efficient therapies are available [3].
It is therefore essential to study the factors that are involved in the establishment of the TME
in order to design new therapeutic strategies that could help to avoid cancer spreading
and manage metastatic cancer patients. Of particular interest is the understanding of how
cancer cells create a TME that favors immune evasion. In this context, it is important to
unravel the immunomodulatory role of the protein Annexin A1 (AnxA1), which is the
purpose of this review.

2. Anticancer Immune Response and Cancer Immune Escape

The immune system recognizes antigens expressed on the surface of transformed
cells, leading to their destruction, thus hampering tumor progression. Remarkably, both
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standard therapies and targeted therapies induce an anti-tumor immune response, while
immunotherapies modulate the immune system of cancer patients. However, the suc-
cess of these therapies relies on the immunogenicity of the tumor antigens expressed by
transformed cells [4]. Hence, those tumors that are strongly immunogenic easily elicit
an immune response, while recognition by the immune system is greatly impaired when
cancer cells are of low immunogenicity [5]. Interestingly, tumor cells can also develop the
immune escape hallmark that takes place either by the capacity of cancer cells of hiding
or inhibiting the attack by immune cells. In fact, cancer cells can modulate gene expres-
sion and signaling pathways of the immune system, inducing an immune-suppressive
phenotype that supports tumor growth and metastasis [6]. In this regard, cancer cells
also produce several factors that trigger a persistent inflammation that contributes to sup-
pressing anti-tumor immunity [7]. Indeed, while an acute pro-inflammatory response can
exert an anti-tumoral effect, chronic inflammation seems to be always detrimental in the
cancer context [8]. A proper anti-tumor immune response relies on the optimal function
of both the innate and adaptive immunities [9]. Conforming to this, a balance between
a pro-inflammatory response, mediated by eicosanoids and cytokines such as IL-1β, tu-
mor necrosis factor-α (TNF-α) and IL-6, and an anti-inflammatory response mediated by
pro-resolving mediators, is also crucial [10].

In order to activate the adaptive immune response, the activity of the antigen-presenting
cells (APCs), which are represented by macrophages, dendritic cells (DCs) and B cells, is
crucial [11]. In this sense, the T cell receptor (TCR) expressed on naïve T lymphocytes
must recognize MHC class II molecules loaded with tumoral peptides on the cell surface
of APCs. Besides this, the interaction between the CD28 molecule expressed on T cells
and the B7 molecule expressed on APCs, represent a costimulatory signal that is essential
for the activation of naïve T cells. Upon these interactions, naïve T cells clonally expand
and differentiate into effector or memory cells. Effector T cells are subdivided into (i) three
types of CD4+ T helper cells (TH1, TH2 and TH17) with different cytokine expression
profiles, (ii) regulatory T cells (Tregs) and (iii) cytotoxic T lymphocytes (CTLs) [12]. TH1
cells produce interferon-gamma (IFN-γ) and are necessary for an effective response against
intracellular infectious agents and cancer cells. Indeed, TH1 cells are essential for CTLs
activation, therefore for the destruction of infected or cancerous cells [13]. For this purpose,
TH1 cells produce cytokines that activate the expression of death receptors on cancer
cells [14]. On the other side, when TH1 cells are activated erroneously by self-antigens, they
are responsible for the development of autoimmune diseases [15]. TH2 cells express IL-4,
IL-5, IL-10 and IL-13, which are related to the humoral response [16]. They are involved in
immune reactions against allergens and parasitic infections, while, in the cancer context,
TH2 cells can favor tumor growth by enhancing angiogenesis and by inhibiting tumor
cell killing [17,18]. TH17 cells are characterized by the production of IL-17 and their pro-
inflammatory profile that is implicated in autoimmune and inflammatory disorders [19].
The role of TH17 cells in the cancer context is controversial, since some reports indicate
a suppressive role on anti-tumor immunity, while other reports describe their role in
enhancing recognition of cancer cells [20,21]. However, there is the possibility for TH17 cells
recruited to the tumor site to differentiate into the highly immunosuppressive Tregs [22].
Tregs play an outstanding role in maintaining self-tolerance, thus in avoiding autoimmunity
and allergies [23,24]. They are characterized by a CD4+CD25high phenotype and express
the transcriptional factor forkhead box P3 (FOXP3). Tregs favor cancer immune evasion by
producing the immune-suppressive cytokines IL-10 and IL-35 and transforming growth
factor-β (TGF-β) [25], which hamper APC functions or induce apoptosis of APCs [26].
Finally, CTLs are involved in the elimination of virus-infected or neoplastic cells and exert
their cytotoxic activity through the Fas receptor pathway or the release of perforins. The
cytotoxicity of CTLs can also be indirect through the release of cytokines such as IFN-γ
and TNF-α [27].

Different types of APCs drive differentiation toward a specific type of effector T cell.
Macrophages are released from the bone marrow as immature monocytes and, after circu-
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lating in the blood vessels, migrate to the target tissues to undergo final differentiation into
M1 or M2 mature macrophages. M1 macrophages produce pro-inflammatory factors such
as IL-12 and TNF-α and promote TH1 response, with potent microbicidal activity [28]. On
the other side, M2 macrophages control inflammation, remove apoptotic cells and sustain
tissue repair and are induced by IL-4. M2 macrophages enhance immune suppression by
producing the cytokines, IL-10 and TGF-β [29,30], and expressing arginase-1 (Arg-1) [31].
Moreover, they also stimulate tumor growth and progression by producing the vascular
endothelial growth factor (VEGF), thus supporting the angiogenesis process [32–34].

When the TME is enriched in IL-6, IL-1β and TNF-α, DCs achieve a maturation state
that activates the adaptive immune system in order to destroy infected or cancer cells [35].
On the other side, two types of DCs are involved in the maintenance of self-tolerance
in physiological conditions, the tolerogenic DCs (tDCs) and immature DCs (iDCs). Both
hamper the immune response by expressing low levels of co-stimulatory molecules and
producing IL-10 and TGF-β [36,37]. Remarkably, cancer cells enrich the environment with
immune suppressive factors and cytokines, such as VEGF, IL-10 and TGF-β, which can
either induce tDCs or hamper the maturation of DCs [38–40]. Immature DCs (iDCs) are
found in peripheral tissues where they recognize and phagocyte pathogens or antigens
and reduce the production of pro-inflammatory cytokines. When T cells are stimulated
either by iDCs or tDCs, a Treg phenotype or an anergic state are triggered [40,41]. Anergic
lymphocytes do not respond to their specific antigens; hence, their effector functions
and proliferation are inhibited, resulting in immunological tolerance [42]. B cells are also
important for the anti-cancer immune response, because, beside producing IgGs that
stimulate the T cell response, they can also directly kill cancer cells [43,44]. However, B
cells can also acquire a regulatory phenotype (Bregs) that negatively regulates the immune
response by producing IL-10, IL-35 and TGF-β [45].

Another class of immune cells that have been implicated in the negative regulation
of the immune system is represented by the myeloid-derived suppressor cells (MDSCs).
MDSCs are a heterogeneous population of immature myeloid cells that are important for
keeping inflammation and autoimmunity at bay [46,47]. Nevertheless, MDSCs contribute
to cancer immune escape by producing reactive oxygen species (ROS) [48] that promote
the function of Tregs, leading to a decreased activity of effector cells [49]. Notwithstanding,
for eliciting an efficient anti-tumor immunity, a cellular component of the innate immune
system, the natural killer cells (NK), deserves special attention. Thanks to the expression
of perforins, NK cells permeabilize infected or cancer cells and release granzymes, thus
exerting cytotoxic activity [50,51]. The absence of MHC class I molecules that characterize
certain cancers represents an activation signal for NK cells [52]. Once activated in this
manner, NK cells exert their cytotoxic activity on cancer cells. The absence of MHC class I
molecules in certain cancer cells represents an activation signal for NK cells. Once activated
in this manner, NK cells exert their cytotoxic activity. In addition, NK cells can kill cancer
cells by antibody-dependent cellular cytotoxicity. In this case, the receptor CD16 of NK
cells binds to tumor-specific antibodies enabling the recognition of membrane-associated
tumoral antigens and ultimately leading to the destruction of cancer cells [53].

In order to mount a proper anti-tumor immune response, it is essential that APCs,
T, B and NK cells function properly. However, cancer cells take advantage of several
tolerance mechanisms modulating the phenotype of tumor-surrounding cells to create
an immune-suppressive TME [54,55]. Understanding the mechanisms and the molecules
involved in this microenvironment, including immune cells, is essential in controlling the
evolution of the tumor and its impact on the outcomes of patients.

3. The Immunosuppressive Properties of the TME

The tumor and the surrounding environment are in a constant relationship in order
to establish and maintain the TME. The TME is a dynamic environment that strongly
influences cancer cells and is essential for tumor progression, metastasis and resistance to
therapies [56,57]. The TME is characterized by metabolic reprogramming, angiogenesis
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and dysfunction of the immune system that enables the immune escape [58–60]. The
TME comprises extracellular matrix (ECM) components, signaling molecules, endothe-
lial cells, cancer-associated fibroblasts (CAFs), immune cells and inflammatory cells [61].
Cancer cells control the functions of the cellular and non-cellular components of the TME
through the establishment of signaling networks by releasing soluble factors or extracel-
lular vesicles (EVs), or by cell–cell interactions [62,63]. ECM is composed of water and
macromolecules, including glycoproteins, collagens and enzymes that, in physiological
conditions, guarantee structural and biochemical support. Collagen is the main component
of ECM, functioning as a physical barrier to prevent cell migration; thus, it is responsible
to maintain the tissue morphology and organization [64,65]. Hence, in the TME, ECM
influences cell adhesion, cell proliferation and cell communication [2]. Metalloproteinases
released by cancer cells in the TME assist in the degradation of ECM barriers and allow
the release of growth factors that can, in this way, act on endothelial cells, stimulating
angiogenesis. Angiogenesis is essential to supply cancer cells with nutrients and supports
tumor development and progression [66]. The TME is enriched in CAFs that support
the migration of cancer cells from the primary tumor into the bloodstream to colonize
distal tissue and organs for metastasis establishment [67,68]. Immune cells, in turn, are
the second most abundant in the TME and are prevalently represented by granulocytes,
lymphocytes and macrophages [69]. Notably, the immune system of the TME has attracted
much attention in the last years to better understand one of the most crucial hallmarks of
cancer [1]. The TME can either promote tumor killing by the immune system (Figure 1A) or
immune evasion and tumor progression. An immune suppressive TME is characterized by
the presence of not functional T cells and APCs that lead to a lack of recognition of tumor
antigens. In this case, anti-tumor immunity is further hampered by the presence of several
immune suppressive cells, such as Tregs and MDSCs [1,70–72] (Figure 1B).
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Figure 1. The tumor microenvironment (TME). Cancer cells are surrounded by a complex and heterogeneous environment
composed of cancer-associated fibroblasts (CAFs), blood vessel cells and immune system cells, the TME. (A) Whether
enriched in functional antigen-presenting cells (APCs) or T cells, the TME can promote the recognition of cancer cells
by the immune system. (B) On the contrary, the TME can be enriched in dysfunctional APCs and T cells, myeloid-
derived suppressor cells (MDSCs) and Tregs, creating a highly immune suppressive environment that favors tumor growth
and progression.

The abundance of tDCs [73,74] and the constant communication between DCs and
Tregs are important features of the TME. When contacted by Tregs, DCs suffer changes in
their cytoskeleton and enter a lethargic state that impedes T cell priming [75]. Activation of
T cells is additionally compromised by the downregulation of co-stimulatory molecules on
DCs mediated by Tregs [76]. Moreover, Tregs express the immune checkpoint molecules,
CTLA4 and PD-L1, that hamper DCs activity by inhibiting B7. While these molecules are



Cells 2021, 10, 2245 5 of 24

essential to maintain immune response homeostasis, in the cancer context, they prevent
the activation of a T-cell mediated anti-cancer immune response [77].

Macrophages also contribute to the immunological status of the TME. Monocytes
are recruited to the TME and differentiate into tumor-associated macrophages (TAMs), a
particular cell type that expresses TGF-β, iNOS and Arg-1 [31,78] and resembles the M2 phe-
notype [79–81]. Interestingly, by secreting TGF-β, TAMs can impair NK cell functions [78].
Moreover, through the secretion of IL-6, TGF-β cancer cells promote the accumulation of
MDSCs [82,83], that, in turn, promote the expansion of Tregs [84]. MDSCs also upregulate
iNOS and Arg-1 and, in this way, suppress T cell-mediated anti-tumor immunity [73].
Finally, the TME is also characterized by a deficiency in the activity of NK cells and by the
recruitment of TH17 that, in turn, attract MDSCs through the production of IL-17 [85]. In
addition, TGF-β present in the TME can induce TH17 to differentiate into Tregs [22,86,87]
(Figure 2).
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Figure 2. Immune suppression in the TME. In the TME, soluble factors and extracellular vesicles
(EVs) released by cancer cells promote the differentiation into immune suppressive cells, such as
Tregs, MDSCs, M2 macrophages and tolerogenic DCs, which in turn, inhibit the anti-tumor immune
response mediated by T cells, CTLs and NK cells.

In summary, the TME is a complex and specialized environment that is finely tuned by
cancer cells and has a great impact on patients’ prognoses. A highly immune suppressive
TME is characterized by the presence of tDCs, M2 macrophages, MDSCs and Tregs that
avoid the mounting of a proper anti-tumor T cell response. However, other molecules are
actively involved, in an intricate pro-tumor signaling network. A protein that has attracted
much attention, for its immunomodulatory functions in cancer, is the phospholipid and
calcium-binding protein, Annexin A1 [88]. Different studies have been dedicated to dis-
covering its intricate functioning to better establish phenotypic patterns and assist in the
design of new therapeutic strategies.
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4. Structure and Functions of Annexin A1

Discovered in the 1980s, Annexin A1 (AnxA1) is a member of the Annexins su-
perfamily, a group of proteins that share high homology and are characterized by the
ability of binding phospholipids in a calcium-dependent manner [89–92]. AnxA1 is an
anti-inflammatory protein that acts on innate immune cell response and is one of the
downstream mediators of glucocorticoids [93–95]. Besides being highly expressed in neu-
trophils, monocytes and macrophages [96], AnxA1 is also expressed in several tissues and
organs, including the heart, liver, spleen, colon, pancreas, brain, adipose tissue, prostatic
tissue and arteries [97,98]. AnxA1 is composed of 346 amino acids (aa) and displays a
molecular weight of 37 kDa [99,100]. Structurally, it is composed of a C-terminal portion
(from Pro44 to Gly344) and an N-terminal region (from Ala2 to Asp43) that is specific to
AnxA1 [101]. The C-terminal portion is highly conserved among Annexins and contains
four domains of approximately 70 aa in length each, which are rearranged in 5 helixes
responsible for the binding to calcium. These four domains are organized in a compact
configuration that is maintained stable by hydrophobic interactions with resistance to
proteolysis [102–105] (Figure 3). Domains 2 and 3 guarantee the binding to calcium and, in
this way, mediate the association to membrane phospholipids, while the N-terminal region
stays away from the membrane and is susceptible to specific interactions with cellular
components [106,107]. On the contrary, the N-terminal region is extremely variable in
length and sequence and confers biological specific activities to the different members
of the family [108,109]. A crystallographic analysis showed that the N-terminal domain
organizes in two alpha helixes (from Ala2 to Asn16 and from Glu18 to Lys26) that spatially
arrange with a 60◦ inclination [81]. In the absence of Ca2+ ions, the N-terminal domain
stays close to domain 3, while, in the presence of Ca2+ ions, AnxA1 suffers a conformational
change that enables its binding to phospholipids through the C-terminal region and the
exposition of the N-terminal domain [101,102,104]. This conformational change allows the
amphipathic helix of the N-terminal domain to interact with a second phospholipid site that
promotes membrane aggregation or allows the interaction with cellular mediators [101].
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of an N-terminal peptide (green) and a C-terminal region, composed of four repetitive domains of about 70 aa each (blue).
In the N-terminal domain, AnxA1 display sites for EGFR (Y, Tyr21) and PKC dependent phosphorylation (S, Ser27), sites
for Cathepsin D (W, Trp12) and Calpain I dependent cleavages (K, Lys26) and a peptide motif (QAWFI), responsible for
the binding to S100A11. In the C-terminal portion, three sites of ubiquitination (Lys58, Lys166 and Lys276) and a site of
sumoylation (160 LRKD) are present.

About the cellular localization, previous studies described AnxA1 expression in the nu-
cleus, cytoplasm and cell membrane [110–113], which justifies its participation in different
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processes, such as proliferation, apoptosis, survival, differentiation and migration [109,114].
Regarding the nuclear localization, AnxA1 displays DNA and/or RNA binding sequences
and structural motifs and can bind either to double-stranded or single-stranded DNA, in
an Mg2+ and Ca2+ dependent manner, respectively. Furthermore, the helicase activity of
AnxA1 has been reported [105,115,116]. In the presence of ATP and Mg2+, nuclear AnxA1
binds to DNA and unwinds the double-strand by hydrolysis of ATP. In the presence of
Ca2+ ions, nuclear AnxA1 binds to two single-stranded DNA molecules, mediating their
annealing [115].

Cytoplasmic AnxA1 is distributed throughout the entire intracellular environment,
including the inner face of the plasma membrane, linked to vesicular structures, such as
early and multivesicular endosomes, phagosomes and, under certain circumstances, to
the endoplasmic reticulum [113,117]. In the cytoplasm, by inhibiting the phospholipase
A2 (PLA2), AnxA1 impedes the release of arachidonic acid and its pro-inflammatory
metabolites derivatives, such as thromboxane A2 and prostaglandins E2, I2, D2 and
F2α [92,118–122]. By acting on this lipid metabolism pathway, AnxA1 regulates tissue
repair and controls the migration of leukocytes through the endothelium [89,123,124]. Fur-
thermore, the action of AnxA1 in decreasing iNOS levels and in inhibiting the synthesis of
prostaglandins, by blocking the expression of cyclooxygenase-2 (COX2), has been demon-
strated in macrophages [89,125]. To inhibit PLA2, AnxA1 needs to interact with a member
of the S100 protein family, S100A11, which is a Ca2+ binding protein [126]. The biological
functions of this family of proteins are related to the processes of endocytosis, exocytosis,
inflammation, cell growth, apoptosis and enzymatic activity regulation [127]. Activation of
S100A11, through binding to the Ca2+ ion, promotes the recognition of different biological
targets, among them, the N-terminal domain of AnxA1 [126,128,129].

AnxA1 can also be cleaved at the N-terminal domain by elastases [117], metallopro-
teases [130,131], proteinase 3 [132], by the cysteine protease, Calpain I [133], or by the
aspartyl protease Cathepsin D [126,134]. Calpain I cleaves AnxA1 at Lys26, generating a
C-terminal fragment that displays pro-inflammatory effects through the activation of the
ERK1/2 pathway in endothelial cells and the accumulation of the intracellular adhesion
molecule 1 (ICAM1). ICAM1 expression leads to the immobilization of neutrophils on
endothelial cells and, in this way, increases the transendothelial migration capacity of
neutrophils [135]. Furthermore, the cleavage at Trp12 by Cathepsin D also contributes
to inflammation, since the fragment of AnxA1 generated has no PLA2 inhibitory activ-
ity [126]. AnxA1 is also translocated to the cell membrane and externalized or secreted
into the extracellular fluid to exert its anti-inflammatory properties [136]. The process of
externalization of AnxA1 occurs by three basic mechanisms: (i) through ATP A1 binding
cassette transport system (ABCA1), (ii) through phosphorylation of AnxA1 at the Ser27
residue and (iii) through the release of polymorphonucleate gelatinase granules during
the degranulation process [93,98,137]. Several groups reported that ABCA1 is a mediator
of AnxA1 externalization in cytoplasmic lipid structures, such as microvesicles (MVs).
Moreover, ABCA1 also contributes to AnxA1 externalization through lipidation and phos-
phorylation at Ser27 [98,138–140]. In pituitary cell lines, this type of phosphorylation is
induced by protein kinase C (PKC) and promotes AnxA1 translocation to the cell surface.
However, in order to traffic across the cell membrane, AnxA1 needs to be modified by
myristoylation [136]. In fact, AnxA1 contains in its aa sequence potential myristoylation
sites localized within the following peptides: Gly30–Ala35, Gly59–Ile65, Gly215–Asn222
and Gly320–Gln325 [136]. Finally, AnxA1 externalization can take place through degranu-
lation, a process that occurs along with chemotaxis and adhesion of polymorphonucleate
cells to the endothelial cell monolayer [100,141,142]. Since AnxA1 activation occurs in
a calcium-dependent manner, all the processes mentioned above are regulated by the
concentrations of Ca2+ ions [101].

Once externalized, AnxA1 can interact with formylated peptide receptors (FPR1, 2
and 3) that belong to the G protein-coupled receptors family [143,144]. The main receptor
responsible for the anti-inflammatory effects of AnxA1 is FPR2, which is expressed in
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several cell types, including endothelial cells and stromal cells, being more abundantly
expressed in leukocytes [145]. Once activated by AnxA1, FPR2 elicits signaling pathways
that inhibit leukocytes migration and adhesion, thus leading to the resolution of inflam-
mation [127,145,146]. FPR2 interacts with a variety of ligands, including the N-terminal
domain of AnxA1 [147,148]. It is noteworthy that recent studies have shown that FPR2
can be found as a monomer or homo/heterodimer (associated with FPR1 or FPR3). In
this context, according to the FPR complex formed, FPR2 ligands can activate multiple
pathways, which partially explains the multiple functions exerted by AnxA1 [148,149].
FPR1 was also originally identified for its ability to recognize the N-formylated peptides
of bacterial origin and, in this way, to activate phagocytic leukocytes chemotaxis towards
the site of infection. This receptor is mainly expressed on leukocytes, such as neutrophils,
monocytes/macrophages, NKs and DCs, and has specific endogenous agonists, such as
AnxA1 [144,150–154].

AnxA1 displays anti-inflammatory activities by activating apoptosis of neutrophils.
Indeed, AnxA1 activates apoptosis by increasing the cytosolic calcium flux that leads to
dephosphorylation of the death promoter associated with Bcl-2 (Bad) [137]. Furthermore,
apoptotic neutrophils release AnxA1 in order to stimulate their phagocytosis through
the recruitment of monocytes. Such a process avoids inflammation, thus ensuring the
integrity of the adjacent healthy tissue [155]. AnxA1 also acts in resolving inflammation by
decreasing the expression of the intracellular adhesion molecule (ICAM) and of the vascular
cell adhesion molecule 1 (VCAM1) that results in the detachment of leukocytes from the
endothelium and migration inhibition [156]. Finally, AnxA1 is associated with the process
of differentiation of bone and muscle tissue and with the activation and differentiation of
T cells into T helper cells [157,158]. Indeed, in T cells, the activation of FPR1 by AnxA1
activates ERK and Akt and increases the TCR signaling pathway. Therefore, the activation
of downstream transcription factors, such as the nuclear factor of activated T-cells (NFAT),
NF-κB and the activating protein-1 (AP-1), is enhanced [159].

Notably, AnxA1 integrates several signaling pathways that are involved in health
and disease. AnxA1 exerts important anti-inflammatory and pro-resolution properties
by eliciting signaling pathways through FPRs that inhibit adhesion and migration of
leukocytes and by directly inhibiting PLA2. However, AnxA1 can also be pro-inflammatory,
when cleaved by proteases. Due to its pleiotropic behavior, its role in cancer has been
extensively studied in the last years and its expression has been frequently correlated with
cancer aggressiveness and resistance to therapies [160,161].

4.1. AnxA1 in Cancer

Besides AnxA1 being widely described for its anti-inflammatory activities, its role in
cancer development and progression stands out [105]. In this context, it has been suggested
that AnxA1 plays a role in malignant transformation, activation of oncogenes, inactivation
of tumor suppressor genes, induction of proliferation and cellular invasion [162–165].
However, AnxA1 can act either as an anti-tumor or as a pro-tumoral factor, depending on
the tumor origin and stage [166]. High AnxA1 expression levels have been found in breast
cancer [167,168], melanomas [169], hepatocellular carcinomas [170], colorectal cancers [171],
gliomas [172], lung adenocarcinomas [173,174] and prostate cancer [175], correlating with
worse prognosis, lower disease-free survival rates and lower overall survival [170,174,176].
On the contrary, low expression levels of AnxA1 have been observed in squamous head
and neck cancer [177] and thyroid cancer [178] and associate with a worse prognosis, poor
differentiation, lower overall survival and higher relapse rates [177–179].

Cao and collaborators showed that, despite that breast cancers frequently display
downregulation of AnxA1, this protein is upregulated in the triple-negative subtype [180].
Furthermore, AnxA1 has been associated with poorly differentiated breast cancers [167],
correlating with lower survival rates [181]. In line with these findings, our group has
previously demonstrated that AnxA1 is overexpressed in the triple-negative subtype and
lymph node metastasis, when compared to the corresponding primary tumors [168]. More-
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over, De Graauw and collaborators demonstrated the crucial role of AnxA1 in supporting
the epithelial–mesenchymal transition (EMT) event, promoting migration, invasion and
metastasis formation in breast cancer. By using the triple-negative cell line, MDA-MB-231,
the authors showed that AnxA1 is essential for the TGF-β signaling, resulting in increased
phosphorylation of the small mothers against decapentaplegic homolog 2 (Smad2) and
EMT activation [182]. Another study also showed that AnxA1 displays pro-angiogenic
functions in breast cancer by supporting the activation of the nuclear factor-kappa B
(NF-kB) transcriptional factor [183].

In gastric cancer, AnxA1 up-regulation correlates with advanced stages of the disease
and peritoneal dissemination [184], while, in nasopharyngeal cancer, AnxA1 has also
been described for promoting migration, invasion and metastasis formation, by mediating
autophagy suppression [185]. In lung cancer, a high expression of AnxA1 correlated with
the proliferation, invasion, migration and appearance of bone metastasis [157,186].

AnxA1 also exerts important pro-tumoral activities by triggering an FPR1-dependent
signaling pathway. In glioblastoma multiforme cells, several studies demonstrated that
FPR1 activation mediates tumor cells’ chemotaxis, invasion, proliferation and angiogene-
sis [187–191]. Huang’s and Zhou’s groups showed that AnxA1 or other ligands released by
glioblastoma multiforme necrotic cells would mediate FPR1 activation [189,192]. Beside
this, Huang and collaborators also described that FPR1 signaling pathway is responsible
for the transactivation of the epidermal growth factor receptor (EGFR) that would result in
cancer progression [191]. In colon cancer and hepatocellular carcinoma cells, FPR1 elicits
signaling pathways related to chronic inflammation that activate ERK, MAPK and the
transcriptional factors, NF-kB and the signal transducer and activator of transcription
3 (STAT3) [158,193–196]. FPR1 expression was also reported in breast cancer [197,198]
and it can be activated, in an autocrine manner, by the N-terminal peptide of AnxA1,
which is secreted by the triple-negative breast cancer cell line, MDA-MB-231. In these
cells, AnxA1/FPR1 autocrine signaling promotes proliferation, migration, invasion and
metastatic potential [168]. Nevertheless, it is worth noting that different studies sug-
gest that the role played by FPR1 in carcinogenesis is context-specific. In gastric cancer,
FPR1 overexpression was associated with disease progression, as well as lower survival
rates [199]. However, other results pointed to FPR1 as a tumor suppressor in this same
cancer type [200]. Since the role of FPR1 in carcinogenesis is not fully elucidated, it is
crucial to carry on new research in order to elucidate its contribution in different tumors.

In addition to AnxA1 expression and signaling pathways, its cellular localization
has been demonstrated to be relevant in the cancer context. Indeed, nuclear AnxA1
has been suggested as a negative prognostic factor of oral squamous cell carcinoma and
esophageal squamous cell carcinoma, being associated with lower overall survival [112,201].
In gastric cancer, the nuclear expression of AnxA1 is associated with advanced stages of
the disease and with peritoneal dissemination [202]. The involvement of nuclear AnxA1
in tumorigenesis seems to be mediated by a monoubiquitinated form of AnxA1 that is
able to introduce DNA mutations [105,203–205]. In this sense, insertional mutations can be
catalyzed by error-prone DNA polymerases, which are recruited by ubiquitinated nuclear
proteins [204,206]. Upon treating cells with mutagenic agents, it was possible to observe an
increase in the translocation of cytoplasmic AnxA1 to nuclei, which is likely occurring in
response to DNA damage [207]. Another study also demonstrated that upon treatment with
mutagenic agents, monoubiquitinated AnxA1 increased in nuclei, indicating the relevance
of this type of post-translational modifications during DNA damage response [208].

One of the main causes of cancer lethality relies on the capacity of cancer cells to
develop multiple drug resistance [209]. In this context, some studies are indicating the role
of AnxA1 in inducing resistance of cancer cells toward chemotherapies. The upregulation
of AnxA1 has been correlated with the resistance to adriamycin, melphalan and etoposide.
In order to confirm this finding, the authors induced the expression of AnxA1 in an
AnxA1-negative breast cancer cell line, MCF-7 and showed that such expression results
in resistance to several chemotherapeutic agents. In this same study, the inhibition of
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AnxA1 expression in an ovarian cancer cell line, SKOV-3, led to increased sensitivity to
anti-tumoral drugs [161]. On the other side, in chronic myeloid leukemia, resistance toward
chemotherapeutic agents has been associated with a lower expression of AnxA1. Indeed,
by suppressing AnxA1 expression in K562 cells, the authors showed that the resistance to
anti-tumoral drugs was significantly increased [210].

Worthy of mention, AnxA1 can be differentially phosphorylated in different tumors
by EGFR or by the hepatocyte growth factor receptor (HGFR) [211–214]. Intriguingly, the
phosphorylation mediated by EGFR has been described for inducing AnxA1 cleavage,
keeping PLA2 active in squamous carcinomas [126]. Hence, the differential phosphoryla-
tion and the possible subsequent cleavage could explain the effect of AnxA1 on the growth,
proliferation, metastasis formation and drug resistance of different tumors and stages of
progression [211].

Collectively, the information presented in this section emphasizes the essential role of
AnxA1 and its signaling pathway through FPRs in the aggressiveness of several cancers.
Indeed, its role in tumor growth, angiogenesis, DNA damage response and migration and
invasion of cancer cells have been reported. Besides its anti-inflammatory effect, AnxA1
is profoundly involved in the modulation of the immune system and in the promotion
of immune suppression, either in physiological or pathological conditions [148]. Indeed,
recently, its role in cancer immune escape has been described [215].

4.2. Immunosuppressive Functions of AnxA1 in Physiological and Cancer Contexts

In physiological conditions, it has been shown that AnxA1 promotes immune sup-
pression and resolves the inflammatory process. In this context, AnxA1 enhances the dif-
ferentiation into M2 macrophages and supports the expression of IL-10 by these cells [216].
When liver cells extracted from mice were treated with exogenous AnxA1, the macrophage
M1 phenotype was abolished and an increase in IL-10 expression was observed [217]. Ac-
cordingly, other studies demonstrated that treatment of macrophages with a recombinant
AnxA1 led to inhibition of iNOS expression, which is accompanied by increased IL-10 levels
and decreased IL-12 mRNA levels [218]. The increase in IL-10 expression seems to be due
to the FPRs downstream signaling activation of ERK mediated by AnxA1 [192] and may be
responsible for the decreased expression of IL-12 in macrophages [218]. Moreover, it has
been demonstrated that the tolerogenic nature of cells undergoing apoptosis depends on
AnxA1 translocation on the cell surface of these cells. Weyd and collaborators co-cultured
apoptotic primary human thymocyte, T cell and neutrophils with DC cells. They showed
that AnxA1 expressed on the cell surface of apoptotic cells prevented the activation of
toll-like receptors (TLRs) expressed on DCs. The resulting DCs displayed a tolerogenic
phenotype that, when it came in contact with CTLs, inhibited their activation, producing
IFN-γ and TNF-α [219]. On the other hand, it has been reported that the action of AnxA1
on T cells can vary, according to the environmental conditions and to the state of T cell
activation. Gold and others pointed that exogenous AnxA1 can suppress T cell prolifera-
tion and limits T cell response [220], but when T cells are stimulated with CD3 and CD28,
AnxA1 leads to proliferation and activation of T cells and prolonged activation of Akt,
ERK, AP1, NFAT and NF-kB [221]. Furthermore, in activated T cells, the absence of AnxA1
reduces the activation of the TCR downstream signaling pathway [222] and promotes the
differentiation into TH2 cells, while inhibiting TH1 response [221]. In another study, Kamal
and collaborators described that the mimetic peptide of the N-terminal domain of AnxA1
(Acetylated-AMVSEFLKQACYIEKQEQEYVQAVK; Ac2-26) inhibits the proliferation and
cytokine production of both TH1 and TH2 [223].

The immune-suppressive activities of AnxA1 can also depend on its presence in EVs.
Indeed, AnxA1 can either be secreted or released from the cell within MVs [224]. It is well
known that EVs contain cargo molecules such as lipids, proteins and nucleic acids and
promote intercellular communication either by binding to the cell surface or by fusing
with a specific cellular type [225,226]. Indeed, MVs containing AnxA1 of both normal and
cancer cells can alter immune cells’ phenotype [227]. Previously, it was demonstrated that
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neutrophils produce MVs that, at least in part, due to their AnxA1 content, are capable
of stimulating TGF-β expression [228,229]. In agreement with this study, another work
demonstrated the immunosuppressive function of neutrophils MVs enriched in AnxA1
and TGF-β. Moreover, these MVs interact with NK cells, decreasing the expression of
IFN-γ and TNF-α [230], and with macrophages, increasing TGF-β expression [231].

In the tumor landscape, one of the first indications that AnxA1 could promote immune
escape came from experiments in which AnxA1 was knocked down in a glioblastoma
multiforme animal model and caused decreased tumor growth and myeloid infiltration.
In this work, the authors suggested that AnxA1 acts in highly malignant and actively
growing glioblastomas as a chemoattractant for tumor-promoting myeloid cells, especially
granulocytes and macrophages [232]. Link and collaborators also described the activity
of AnxA1-coated particles in inducing antigen-specific immunosuppression. Indeed, DCs
treated with AnxA1-coated particles displayed a tolerogenic phenotype that, in co-culture
experiments, promotes an anergic phenotype in T cells, inducing a decrease in proliferation
and cytokine secretion [233]. Moraes and collaborators demonstrated, in breast cancer,
that, in the absence of AnxA1, macrophages were less sensitive to the polarization toward
an M2 phenotype induced by IL-4. Moreover, they showed that macrophages treated
with the N-terminal peptide of AnxA1 increased the expression of Arg-1, while they
decreased the expression of IL-12 [188]. The decrease in IL-12 correlates with cancer
progression and metastasis and is probably dependent on the upregulation of IL-10 induced
by AnxA1 [215–218,234]. The role of AnxA1 in polarizing macrophages towards the M2
phenotype in hepatocellular carcinoma has also been described. In this type of cancer, the
N-terminal peptide of AnxA1 induces a signaling cascade through FPR2 that activates
ERK, Akt and NF-kB. Accordingly, a deficiency in FPR2 has been related to a sustained
polarization toward an M1 phenotype in hepatocellular carcinoma [216]. Moreover, the role
of AnxA1 in inducing TH2 cells infiltration in pancreatic cancer [235] and in inducing the
differentiation and expansion of Tregs in the TME of triple-negative breast cancer models
has also been described [100]. Bai and collaborators showed that the proliferation of effector
T cells, when treated with Ac2-26, was lower and that the function of Tregs was impaired
when these cells were treated with the FPR inhibitor Boc1. Boc1 decreased the expression
of markers of Tregs, including Granzyme A, IL-2 receptor (CD25) and CCR8. The authors
concluded that the AnxA1 signaling regulates the function of Tregs [100]; hence, this could
be an ideal target for innovative therapies against breast cancer. A summary of these
finding is provided in Figure 4.

Finally, the activity of AnxA1 in promoting immune suppression in the TME could
be related to its interaction with the EGFR [236]. Existing evidence showed that EGFR
activation upregulates PD-L1 in lung cancer [237,238], that, in turn, induces the apoptosis of
T cells [239]. Confirming this finding, another work showed that the increased expression
of PD-L1 is activated by the EGFR through its interaction with STAT3 in nuclei [240].
Moreover, another work described that the EGFR/STAT3 interaction in nuclei is responsible
for the expression of iNOS, whose levels correlate with poor overall survival [241]. The
role of iNOS expression in cancer cells had been already associated with reduced tumor-
infiltrating lymphocytes and with the suppression of anti-tumor immune response [242].
Hence, current evidence suggests that the EGFR/STAT3 interaction induces immune
suppression by regulating either PD-L1 or iNOS expression. Indeed, it has been shown
that EGFR at the nuclear level functions as a co-transcriptional factor that favors disease
progression and resistance to therapies [243]. In the cancer context, it has been shown
that AnxA1 promotes the stabilization and the constitutive activation of EGFR [105], as
well as the nuclear localization of this receptor [175]. Furthermore, reports showed that,
in head and neck cancers, AnxA1 regulates the formation of exosomes and the release of
EGFR in these EVs [236,244]. Interestingly, Huang and collaborators demonstrated that, in
lung cancer, EGFR-enriched exosomes induce tDCs; tDCs, in turn, induce tumor specific
Tregs, which inhibit the specific anti-tumor CTL response. They showed that exosomes
containing EGFR are formed thanks to the activity of AnxA1, inducing tumor specific
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Tregs [236,244]. Based on this, the AnxA1/EGFR interaction seems to play a relevant role
in immune suppression in the cancer context. In addition, it has been described that AnxA1
induces STAT3 activation in cancer [245]. Hence, the immune-suppressive properties of
AnxA1 also rely on its activities in supporting EGFR signaling and nuclear localization and
in promoting STAT3 activation. In this scenario, by inducing the nuclear localization of
EGFR, AnxA1 can promote the interaction of this receptor with STAT3 and, subsequently,
can induce immune suppression (Figure 5).
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Figure 4. Mechanism of immune escape induced by AnxA1 in the TME. AnxA1 expressed by cancer
cells promotes the expansion of Tregs, tDCs and TH17. Moreover, AnxA1 can activate FPR2 on the
cell surface of macrophages, supporting the polarization toward an M2 phenotype. In turn, M2
macrophages induce MDSC activity and inhibit the maturation of DCs by producing IL-10.

Taken together, these findings point towards an important role of AnxA1 in the induc-
tion of immune suppression in the cancer context. Therefore, it is possible to draw some
future perspectives for cancer treatment that involve the inhibition of AnxA1 signaling. In
this scenario, the inhibition of FPRs achieved by Boc1, Boc2, or Cyclosporin H [245] could
represent an interesting strategy to induce an anti-tumor immune response. This approach
could be used as an isolated therapy, or in association with gold standard immunotherapies,
in order to improve the clinical outcome of refractory patients.
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Figure 5. Mechanisms of immune escape mediated by the AnxA1/EGFR interaction. AnxA1 interacts
with EGFR (1) and promotes its internalization (2 and 3) and its retrograde transport to nuclei (4 and
5). Once in nuclei, EGFR interacts with STAT3 and induces the expression of PD-L1 (6), thus resulting
in immune suppression.

5. Concluding Remarks

AnxA1 has attracted much attention due to its pleiotropic functions and its involve-
ment in tumor growth and progression. Indeed, its expression and signaling through
FPRs are tightly involved in the aggressive behavior of some types of cancer. Recently, the
role of AnxA1 in the TME has also emerged and particular effort has been devoted to the
description of its immunomodulatory and immune suppressive properties. In this review,
we focused on the immune response regulated by AnxA1, which favors M2 macrophages
polarization, by increasing the function and proliferation of MDSCs and Tregs and by
promoting the enrichment in tDCs and TH17. Therefore, AnxA1 manipulates the TME.
Moreover, it is known that AnxA1 regulates the nuclear localization of EGFR and, as a
consequence, it can promote immune evasion by favoring the EGFR/STAT3 transcrip-
tional activities in cancer cells. Through these mechanisms, AnxA1 would significantly
promote T cell dysfunction and, as a consequence, would enhance immune evasion and
tumor progression.

Unraveling the mechanisms by which cancer cells evade the immune system is crucial
for the development of new possible therapeutic approaches. Based on the information
presented in this review, it is possible to suggest that the inhibition of the AnxA1/FPRs
signaling could represent an important and innovative immunotherapy strategy.
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ABC A1 ATP A1 binding cassette transport system
Ala alanine
AnxA1 Annexin A1
APC antigen-presenting cell
Asn asparagine
Bad death promoter associated with Bcl-2
Bcl2 B cell lymphoma 2
Bregs regulatory B lymphocytes
AP-1 activating protein-1
APC antigen presenting cell
Arg-1 arginase-1
CAF cancer-associated fibroblast
CCR8 C-C motif chemokine receptor 8
CD cluster of differentiation
CTL cytotoxic T lymphocytes
CTLA4 cytotoxic T-lymphocyte antigen 4
DC dendritic cell
ECM extracellular matrix
EGFR epidermal growth factor receptor
EMT epithelial–mesenchymal transition
ERK extracellular signal-regulated kinases
EV extracellular vesicle
FOXP3 factor forkhead box P3
FPR formylated peptide receptor
Gly glycine
HGFR hepatocyte growth factor receptor
ICAM intracellular adhesion molecule
iDC immature DC
IFN-γ interferon-gamma
IL interleukin Ile, isoleucine
iNOS inducible nitric oxide synthase
Lys lysine
MDSC myeloid-derived suppressor cells
MHC major histocompatibility complex
MV microvesicle
NFAT nuclear factor of activated T-cells
NF-kB nuclear factor kappa B
NK natural killer cell
NO nitric oxide
PD-L1 programmed death-ligand 1
PLA2 phospholipase A2
ROS reactive oxygen species
Ser serine
Smad2 small mothers against decapentaplegic homolog 2
STAT3 signal transducer and activator of transcription 3
TAM tumor-associated macrophages
TCR T cell receptor
tDC tolerogenic DC
TGF-β transforming growth factor-β
TH T helper cell
TME tumor microenvironment
TNF-α tumor necrosis factor α
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Treg regulatory T cell
Trp tryptophane
VCAM 1 vascular cell adhesion molecule 1
VEGF vascular endothelial growth factor
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