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Abstract: Food security and biodiversity conservation are threatened by the emergence and spread
of pest and pathogens, and thus there is a current need to develop pest management strategies that
are sustainable and friendly to the environment and human health. Here, we performed laboratory
and field bioassays to evaluate the insecticidal effects of several concentrations of capsaicinoids and
glucosinolates (separately and mixed) on an aphid pest (Aphis cytisorum). The capsaicinoids were
extracted from the fruits of Capsicum chinense and glucosinolates from the tubers of native Andean
crop Tropaeolum tuberosum. We found that both capsaicinoids and glucosinolates have a biocidal
effect on A. cytisorum, acting within a fairly short time. Under laboratory conditions, the toxicity of
the compounds increased in relation to their concentrations, causing a high percentage of mortality
(83–99%) when the aphids were exposed to dilutions of 10% capsaicinoids, 75–100% glucosinolates,
or a mixture of 10% capsaicinoids and 90% glucosinolates. The mortality of aphids sprayed in
the field with 5% capsaicinoids, 50% glucosinolates, or with a mixture of 5% capsaicinoids and
45% glucosinolates reached 87–97%. Results obtained from laboratory and field experiments were
consistent. Our results suggest the potential use of bioinsecticides based on capsaicinoids and/or
glucosinolates as an effective alternative to synthetic pesticides.

Keywords: aphid pests; bioinsecticide; climate change; eco-friendly products; natural insecticides;
natural products; pest control

1. Introduction

The predicted increase in the abundance and distribution of pests and pathogens in response to
climate change threatens to cause a severe impact on both wild and agricultural plant species [1,2].
For instance, a recent field experimental study showed that pests and diseases will be one of the main
causes of crop production loss under future climate change conditions [3]. Chemicals are commonly
used to counteract the impact of phytophagous, mainly on crops. In fact, the use of pesticides has
increased in recent decades, and this rising trend will likely accelerate in the coming decades [4,5].
However, it is widely known that synthetic pesticides affect non-target organisms as well as the
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environment e.g., [6]. In addition, the inappropriate use of chemicals facilitates the acquisition of pest
resistance to common chemicals [4], which in turn leads to an increase in the use of even more potent
pesticides. Therefore, proper pest control management should be prioritized to maintain a reasonably
healthy condition for human health and the environment [7]. There are several pieces of evidence that
show that the use of plants with insecticidal properties is one of the main ecologically friendly and
economically feasible alternatives to synthetic pesticides [8,9].

Previous studies showed evidence that capsaicinoids and glucosinolates have biocidal activity
against phytophagous insects [10,11]. Glucosinolates are amino acid-derived natural plant compounds
that act as a defense against herbivores. They are found in several plant species, including in
the genus Tropaeolum [12,13]. Under natural conditions, glucosinolates can be hydrolyzed by
myrosinases to (primarily) benzyl isothiocyanates upon tissue damage [14]. On the other hand,
capsaicinoids are a group of secondary metabolites found only in the genus Capsicum [15]. Among the
capsaicinoid components, capsaicin and dihydrocapsaicin are responsible for approximately 90% of
the total pungency [16,17].

Aphids are one of the largest and most important pests in wild and agricultural plant species [18],
and their population is expected to increase due to climate change—elevated temperatures accelerate
aphid reproduction and increase their fecundity [19,20]. Aphids are specialized insects that feed on
the phloem sap of vascular plants. Therefore, aphids have a direct impact on the host plant fitness,
mainly due to the loss of sugars and defense compounds (secondary metabolites) that are abundant
resources in the sap [21,22]. Aphids are also disease vectors—due to their feeding mechanism (i.e.,
sap-sucking herbivore), they can transmit pathogens to the interior of the host plant tissue [23,24].
In addition, the intestinal tract of aphids has evolved to exude the excess of sugars consumed in the
form of honeydew, a sugary substance that facilitates the development of pathogens such as sooty
mold fungus, which can cover the surface of the plant and alter its photosynthetic and respiratory
processes [25]. These indirect effects often become more significant to the survival of the plant than the
direct effects caused by aphids [22,26].

In the Andes, one of the most biodiverse ecosystems in the world [27], the invasive exotic plant
Spartium junceum L. (Fabaceae, commonly called Spanish broom or retama) has been massively infested
by Aphis cytisorum Hartig (Homoptera: Aphididae) since 2005 [26]. As expected, the infestation of
aphids facilitated the rapid proliferation of sooty mold fungus. This aphid–fungus damage led to the
high mortality of S. junceum populations [26]. Despite that, in the Andes, A. cytisorum is currently
reported to infest only S. junceum [26,28], but there is a risk that this polyphagous aphid [29–31] will
infest other Andean plant species (agricultural as well as wild plants) [26]. Therefore, there is a real
need to carry out adequate control management to avoid the possible ecological and economic impact
of this and other pests.

Here, we evaluated the potential bioinsecticidal activity of glucosinolates and capsaicinoids
on A. cytisorum. We performed laboratory and field experiments to test the toxicity of different
concentrations of glucosinolates and capsaicinoids, separately or mixed. The results of this study can
help to promote the use of natural compounds with biocidal effects for pest management, thus reducing
the risks of chemical pollution. The glucosinolates were extracted from tubers of the Andean plant
Tropaeolum tuberosum (Tropaeolaceae, locally known as mashua or isaño) and the capsaicinoids from
the placentas of the fruits of Capsicum chinense (Solanaceae, locally called as ají panca). Tropaeolum
tuberosum is cultivated throughout the Andes (from Colombia to Argentina) between 2100 and 4000 m
of elevation, and the Andes of Peru are the largest producing region [32,33]. On the other hand,
C. chinense is cultivated in tropical ecosystems from sea level to the high elevations of the Andes [34].
These two species are widely produced and used as food and in the food-processing industry. In the
case of C. chinense, consumers prefer the pericarp of the fruit and the placenta is discarded [35], and this
resource was used in this study to extract the capsaicinoids.
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2. Materials and Methods

2.1. Compound Extraction and Quantification

The fruits of Capsicum chinense were obtained from the local chili industry (Sazon Lopesa, Peru).
The fruits were produced on the Peruvian coast (Tacna; 18◦00′52” S, 70◦15′13” W) during the 2013/2014
sowing period. On the other hand, tubers of Tropaeolum tuberosum were obtained from the farmers of
the Pampas district of the Huancavelica region, Peru (12◦23′53” S; 74◦52′04” W) and grown during
the 2014/2015 sowing period. Both species were grown free of synthetic agrochemicals. In the case of
C. chinense fruits, the placentas and interlocular septa (the structure that divides the internal cavity of
the fruit) were used, since these structures contain approximately 5–10 times more capsaicinoids in
comparison to the pericarp and seeds [35,36]. The capsaicinoids are secondary metabolites derived
from benzylamides [36,37].

The extraction of glucosinolates and capsaicinoids was performed in the food chemistry laboratory
at the Universidad Nacional del Centro del Perú. Each sample of tubers of T. tuberosum and placentas
of C. chinense were dried at 45 ◦C until its moisture content reached 10–12%. In the case of T. tuberosum,
prior to drying, the tubers were immersed into hot water (70 ◦C) for five minutes in order to
inhibit the myrosinase enzymes and thus avoid hydrolysis. Dry samples were crushed and sieved
in order to obtain uniform particle sizes (0.43–1.0 mm). These particles were pretreated under
supercritical CO2 at a pressure of 300 bar at 60 ◦C and 400 bar at 40 ◦C for T. tuberosum and C. chinense,
respectively. This procedure was carried out to improve the extraction of the focal compounds. Then,
the glucosinolates were obtained from crushed and pretreated samples of tubers of T. tuberosum
using 70% methanol at 75 ◦C and agitating constantly for 20 minutes [38]. The mixture was filtered,
centrifuged at 4500 rpm for 15 min, and then stored at 4 ◦C. On the other hand, the capsaicinoids were
extracted from crushed and pretreated samples of placentas of C. chinense using absolute ethanol at
60 ◦C and stirring at 270 rpm for 12 h, following the procedures commonly used in the literature [39,40].
The extracted compounds were used to perform the toxicity tests on aphids in the laboratory and in
the field.

The capsaicinoids and glucosinolates were quantified by high-performance liquid chromatography
(HPLC) using an ultra-fast liquid chromatograph (UFLC) system(Shimadzu, Tokyo, Japan) with a
pinnacle II column (C18, 250 mm, 5 µm x 4.6 mm). The capsaicinoids were separated at 30 ◦C and
glucosinolates at 28 ◦C with a flow speed of the mobile phase of 1.5 mL min−1 and 0.8 mLmin−1,
respectively. The mobile phase for capsaicinoids was prepared with water at 1% of acetic acid
and acetonitrile (50:50 v/v), while for glucosinolates with 0.01% trifluoroacetic acid and methanol
(20:80 v/v). The elution of capsaicinoids was performed under isocratic conditions for 20 min and
the elution of glucosinolates under gradient conditions for 40 min. Capsaicinoids were recorded at a
280 nm wavelength and glucosinolates at 229 nm. The calibration curves were previously elaborated
using capsaicinoid (capsaicin, dihydrocapsaicin, and nordihydrocapsaicin) and glucosinolate (sinigrin,
glucotropaeoline, and gluconasturtine) standards.

2.2. Laboratory and Field Bioassays

The sampling of aphids and field experiments were carried out in the central Peruvian Andes
(Mantaro Valley, 12◦15′46” S, 73◦58′44” W) in May 2017. For the first laboratory experiment, a total of
1000 aphids were randomly collected from 10 adult plants of S. junceum. Immediately after collection,
the insects were carefully transported (in polyethylene containers) to the laboratory (Integrated Pest
Management Laboratory at the Instituto Nacional de Innovación Agraria in Peru) to perform the
toxicity tests on the same day that they were collected. To this end, capsaicinoid and glucosinolate
extracts were diluted using distilled water to obtain four different concentrations of each compound and
a mixture of the two compounds (mg/10 mL). Specifically, the concentrations (v/v) were capsaicinoids
at 1%, 2.5%, 5%, and 10%; glucosinolates at 25%, 50%, 75%, and 100%; and a mixture of capsaicinoids
and glucosinolates in proportions of 1:24%, 2.5: 47.5%, 5:70%, and 10:90%. In order to test insecticidal
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activity, 50 adults of A. cytisorum were exposed to each of these bioinsecticide dilutions in Petri dishes
(10 cm in diameter and 15 mm deep). Each treatment was replicated three times. The bioinsecticides
were administered only once, by spraying the dilutions equivalent to 2 mL per Petri dish. The number
of dead insects in each Petri dish was recorded 30 minutes after spraying.

The second experiment was conducted in the field. Nine adult plants of S. junceum (~2 m height
and ~1.2 m canopy diameter) infested by A. cytisorum were randomly chosen, >5 m apart from each
other. The total number of alive aphids in the apical part of 12 randomly selected branches per plant was
recorded. The apical part of the branches is where aphids tend to agglomerate (Figure 1). In three of these
12 randomly selected branches (where the aphids were quantified), one of the following four treatments
was sprayed: dilution of (1) 5% capsaicinoids, (2) 50% glucosinolates, (3) mixture of 5% capsaicinoids
and 45% glucosinolates, and (4) distilled water (control). In other words, the four treatments were
sprayed three times (i.e., on three branches) on each plant. Compound concentrations were chosen
based on the results from our first laboratory experiment. The administration of bioinsecticides was
carried out in the morning (7 am), using a sprinkler that allowed homogeneous spray. After 24 and
168 h of administration, the number of dead aphids was recorded (i.e., field experimentation lasted
seven days). At the time of setting up the experiment, a white blanket was spread at the base of the
plant to check the dead aphids that fell off the branches.
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Figure 1. Images of Spartium junceum L. infested by Aphis cytisorum in the Peruvian Andes. (A) Apical
branches, the tender region of the branch where a massive infestation of aphids can be observed.
(B) Adult plant of S. junceum infested by A. cytisorum and sooty mold fungus Capnodium sp. (black
powder that has blackened the green stems of the plant). Photos by Richard Tito.

2.3. Statistical Analysis

The effect of the different concentrations of the bioinsecticides on the mortality of A. cytisorum
was tested using analysis of variance (ANOVA): Two-way ANOVA was used for the results from the
laboratory experiments and repeated-measures ANOVA in the case of field experiments. The Tukey
test was used to conduct multiple comparisons between treatments. The assumptions for performing
parametric analyses were verified by means of residue exploration.

3. Results

3.1. Content of Capsaicinoids and Glucosinolates

The total concentration of capsaicinoids (capsaicin, dihydrocapsaicin, and nordihydrocapsaicin)
in the extracts of the placentas of Capsicum chinense was 1.48 mg.mL−1, and the concentration of
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glucosinolates (gluconasturtin, glucotropaoelin, and glucoaubrietin) in the extracts of tubers of
Tropaeolum tuberosum was 1.62 mg.mL−1.

3.2. Toxicity under Laboratory Conditions

The level of toxicity of the bioinsecticides sprayed on Aphis cytisorum depended on the compounds
(i.e., capsaicinoids, glucosinolates, or the mixture of these two compounds) and their concentrations
(F2.6 = 61.6; P < 0.001). When aphids were sprayed with dilutions of capsaicinoids, aphid mortality
increased in direct proportion to the increase in concentration (F3.8 = 215.9; P < 0.001; Figure 2A).
Aphids sprayed with 10% capsaicinoids experienced high percentages of mortality (~82%; Figure 2A).
The toxicity of glucosinolates also varied according to the concentration, with higher lethality at higher
concentrations (F3,8 = 1095.5; P < 0.001; Figure 2B). Glucosinolates at 75% and 100% caused a high
and similar percentage of mortality (~92%) of aphids (Figure 2B). The mixture of capsaicinoids and
glucosinolates significantly increased the toxicity effects compared to the activity of each compound
separately (F3,8 = 1067.8; P < 0.001; Figure 2C), and toxicity also increased with compound concentration
(Figure 2C). The mixture of 10% capsaicinoids and 90% glucosinolates caused the highest percentage
of mortality (99%) of aphids (Figure 2C).
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Figure 2. Percentage of mortality of Aphis cytisorum exposed (in the laboratory) to different
concentrations of (A) capsaicinoids, (B) glucosinolates, and (C) a mixture of these two compounds.
Different letters above error bars indicate significant statistical difference (P < 0.05) in mean values
between treatments.

3.3. Toxicity under Field Conditions

All treatments (i.e., 5% capsaicinoids, 50% glucosinolates, and a mixture of 5% capsaicinoids
and 45% glucosinolates) caused a high percentage of mortality of aphids (F3,32 = 22.6; P < 0.001;
Figure 3). When the aphids were sprayed with distilled water, however, mortality was insignificant
(Figure 3), suggesting that the manipulation in our study system did not influence the results.
In all treatments, a high mortality of aphids (87–97%) was recorded within 24 h after spraying with
bioinsecticides (Figure 3).
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Figure 3. Percentage of mortality of Aphis cytisorum exposed (in the field) to dilutions of capsaicinoids
at 5%, glucosinolates at 50%, and a mixture of 5% capsaicinoids and 45% glucosinolates. The results are
shown for a period of 168 h after the aphids were sprayed with the bioinsecticides. Asterisks above
error bars indicate significant difference (P < 0.05) between treatments.

4. Discussion

Consistent results found in the laboratory and the field experiments strongly suggest that
capsaicinoids and glucosinolates can be an ecofriendly alternative to synthetic pesticides. Our results
clearly reveal that dilutions of capsaicinoids (from 5% in concentration) and glucosinolates (from 50%
in concentration) can effectively control Aphis cytisorum. In addition, the rapid biocidal activity of
compounds (within 30 minutes) is important for application in the field, where some abiotic factors
(e.g., rain) can influence the effectiveness of pesticides. Aphis cytisorum has been reported as an
aggressive pest of Spartium junceum in the Andes and threatens other Andean plant species [26],
which could lead to serious ecological and economic consequences. In other regions, A. cytisorum
is a pest that affects several plant species [30,31]. Our results are also consistent with results from
several previous studies that have shown clear evidence that capsaicinoids and glucosinolates are
efficient bioinsecticides for controlling several other species of herbivores. The capsaicin extracted
from Capsicum annum (a species related to C. chinese) caused the mortality of approximately 97% of A.
myzus [37]. The toxicity of capsaicin dilutions has been previously verified on potato beetle larvae
(Leptinotarsa decemlineata) [41] and on Tenebrio molitor [11]. Similarly, glucosinolates have been shown
to be an effective bioinsecticide against aphids [42] and larvae that attack corn root (Diabrotica virgifera)
and grain (Oryzeaphilus surinamensis, Tribolium castaneum, Rhyzopertha domínica) [10,43]. Furthermore,
it was shown that glucosinolates are toxic to Aedes aegypti larvae [10], a mosquito that transmits multiple
diseases (dengue, Chikungunya, and zika) that affect millions of people [44,45].

As expected, the mixture of capsaicinoids and glucosinolates increased the biocidal effect of
these compounds in laboratory conditions, although that effect was not as obvious in the field
experiments. Previous studies that tested the effect of a mixture of two bioinsecticides also showed
a significant increase in biocidal activity. For example, Edelson et al. [46] showed that capsaicinoids
administered as the only biocidal component caused low percentages of mortality of A. persicae,
but acting simultaneously with other insecticides, generated a synergistic effect that caused higher
levels of mortality. Likewise, Olszewska et al. [11] showed that capsaicin intensifies the effect of
pyrethroids, since their simultaneous administration increased the metabolic rate of Tenebrio molitor
larvae and caused intoxication. Therefore, a mixture of bioinsecticides can increase effectiveness, but if
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this is not feasible, our results indicate that the application of capsaicinoids or glucosinolates alone is
also highly effective.

The concentrations of capsaicinoids and glucosinolates found in the placentas of C. chinense
and tubers of T. tuberosum were relatively high, indicating that these plant structures are valuable
resources for the extraction of these compounds. Nevertheless, it is important to note that the content
of capsaicinoids in C. chinense fruits and glucosinolates in T. tuberosum tubers varies depending on the
varieties and several other abiotic factors, such as temperature, humidity, and soil properties [15,38,47].
On the other hand, the placentas of the fruits of C. chinense that are commonly discarded would be low
cost raw materials [35].

5. Conclusions

Our results strongly suggest that bioinsecticides (particularly capsaicinoids and glucosinolates)
can be used for pest management. This may represent a viable, effective, and ecofriendly alternative
to synthetic pesticides. In addition, the use of raw material discarded in industry or gastronomy
(such as the placentas of C. chinense) is essential to achieve this goal, considering that the land
and climatic conditions required for agricultural production to meet the growing food demand are
also threatened [3,48].
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