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Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies
frequently applied the spatial normalization on fMRI time series before the calculation of
temporal features (here referred to as “Prenorm”). We hypothesized that calculating the
rs-fMRI features, for example, functional connectivity (FC), regional homogeneity (ReHo),
or amplitude of low-frequency fluctuation (ALFF) in individual space, before the spatial
normalization (referred to as “Postnorm”) can be an improvement to avoid artifacts and
increase the results’ reliability. We utilized two datasets: (1) simulated images where
temporal signal-to-noise ratio (tSNR) is kept a constant and (2) an empirical fMRI
dataset with 50 healthy young subjects. For simulated images, the tSNR is constant
as generated in individual space but increased after Prenorm and intersubject variability
of tSNR was induced. In contrast, tSNR was kept constant after Postnorm. Consistently,
for empirical images, higher tSNR, ReHo, and FC (default mode network, seed in
precuneus) and lower ALFF were found after Prenorm compared to those of Postnorm.
Coefficient of variability of tSNR and ALFF was higher after Prenorm compared to
those of Postnorm. Moreover, the significant correlation was found between simulated
tSNR after Prenorm and empirical tSNR, ALFF, and ReHo after Prenorm, indicating
algorithmic variation in empirical rs-fMRI features. Furthermore, comparing to Prenorm,
ALFF and ReHo showed higher intraclass correlation coefficients between two serial
scans after Postnorm. Our results indicated that Prenorm may induce algorithmic
intersubject variability on tSNR and reduce its reliability, which also significantly affected
ALFF and ReHo. We suggest using Postnorm instead of Prenorm for future rs-fMRI
studies using ALFF/ReHo.

Keywords: spatial normalization, resting-state fMRI, fMRI methods, reliability, fMRI preprocessing

Frontiers in Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 1249

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01249
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01249
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01249&domain=pdf&date_stamp=2019-11-26
https://www.frontiersin.org/articles/10.3389/fnins.2019.01249/full
http://loop.frontiersin.org/people/452387/overview
http://loop.frontiersin.org/people/55955/overview
http://loop.frontiersin.org/people/115128/overview
http://loop.frontiersin.org/people/445012/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01249 November 23, 2019 Time: 16:5 # 2

Qing et al. Spatial Normalization May Reduce Reliability

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI),
which uses blood oxygenation level-dependent (BOLD) signal
to measure spontaneous brain activity, has been developed
and widely applied in neuroscience and clinical research
studies (Raichle, 2010; Zhang and Raichle, 2010; Haak et al.,
2018). However, the reliability of rs-fMRI indices was recently
concerned and challenged (Xing, 2018; Zuo et al., 2019a,b). Low
reliability led to the demands for huge sample size or large
effect size to achieve enough statistical power, which were both
difficult for rs-fMRI studies. Therefore, it is important to find
an optimized data processing strategy that can give out higher
reliability of rs-fMRI features (Zuo et al., 2019b).

A typical data processing step in rs-fMRI is spatial
normalization, which achieves between-subject comparison in
voxel level but may also induce spatial–temporal correlation and
resampling errors (Worsley, 2005; Wu et al., 2011). To date,
how to estimate precise spatial transformation from an individual
space into standard space has been widely discussed (Collins
et al., 1994; Mazziotta et al., 2001; Tzourio-Mazoyer et al., 2002;
Calhoun et al., 2017). Besides, Wu et al. (2011) compared two
normalization strategies about its order in preprocessing. One is
“Prenorm,” which means performing the spatial normalization
on each fMRI image of each time point into standard space.
Then calculate the certain temporal feature of the time series,
for example, functional connectivity (FC) (Biswal et al., 1995;
Fox et al., 2005; Raichle, 2015), regional homogeneity (ReHo)
(Zang et al., 2004; Jiang and Zuo, 2016), or amplitude of low-
frequency fluctuation (ALFF) (Zang et al., 2007; Zuo et al., 2013).
This Prenorm strategy has been widely used in large portion of
fMRI studies from a decade ago until recently (Fox et al., 2005;
Cooper et al., 2017; Archer et al., 2018) and was the default option
in several popular pipeline tools like DPABI and GRENTA (Yan
and Zang, 2010; Wang et al., 2015; Yan et al., 2016). The other
is “Postnorm,” which is to first calculate these feature maps in
individual space, and then perform the normalization. Wu et al.
(2011) reported a slight difference of the value of FC and ALFF
between such two strategies, and notably, they also found that
Prenorm strategy may increase intersubject variability of ALFF
in individual space, but Postnorm did not. Putatively, larger
variability may lead to lower reliability and indicated that widely
used Prenorm may be a worse choice than Postnorm. However, it
is still unclear if this effect is an algorithmic bias and if and how it
may affect the reliability of rs-fMRI features.

In the current study, we aim to systemically investigate and
compare the Prenorm and Postnorm strategies: (1) To verify
if it is a pure algorithmic effect, we investigate if and how
normalization can induce across-subject variation on a simulated
dataset, which has a constant temporal signal-to-noise ratio
(tSNR) in individual space for all subjects and all voxels. (2) To
investigate if and how the value and intersubject variability of
tSNR as well as commonly used rs-fMIR indices including ALFF,
FC, and ReHo were different under different normalizations.
Additionally, if the intersubject variability in empirical images
affected algorithmic effect. (3) To investigate the test–retest
reliability of ALFF, ReHo, and FC in an empirical fMRI dataset.

MATERIALS AND METHODS

Data Acquisition
Empirical Images
We downloaded one subset of the public database “Consortium
for Reliability and Reproducibility, CORR,” which is named
“BNU1” (Zuo et al., 2014). The downloading Web address can
be found at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/
_static/downloads.html. There were 57 healthy young subjects
(male/female: 30/27; age: 19–30 years) in this data cohort.
For each subject, there were two serial scans, which were
acquired within the interval of 40.94 ± 4.51 days. These
images were all scanned on a SIEMENS TRIO 3T scanner
in Beijing Normal University, all subjects signed an informed
consent, and the data were well-anonymized before uploading.
Structural MRI data were acquired using an MPRAGE sequence:
128 sagittal slices, repetition time (TR) = 2,530 ms, echo
time (TE) = 3.39 ms, inversion time (TI) = 1,100 ms, slice
thickness = 1.33 mm, field of view (FOV) = 256× 256 mm2, and
voxel size = 1.33× 1.00× 1.00 mm3. rs-fMRI data were obtained
using an echo-planar imaging (EPI) sequence: 33 axial slices,
TR = 2 s, TE = 30 ms, slice thickness = 3.5 mm, gap = 0.7 mm,
FOV = 200 × 200 mm2, and voxel size = 3.1 × 3.1 × 4.2 mm3,
with 200 dynamics in total. The current study only used fMRI
and T1 data, and seven subjects whose T1 or BOLD data are
incomplete were excluded. Therefore, 50 subjects were included
finally (23.05 ± 2.29 years, male/female: 30/20). In the current
study, the first scan was used for all of the analyses, and the second
scan was only used in the test-retest reliability analysis.

Simulated Images
A simulation was performed based on the empirical rs-fMRI.
The simulated images were generated from empirical rs-fMRI
in individual space by the following processes: (1) For each
voxel, a random white noise time course with same length
(190 time points after removing the first 10) of empirical
images was generated; (2) the signal intensity was normalized
to maintain the mean intensity of the time course as constant
value equal to 1,000, and tSNR equal to 100. These values
were comparable to those in the brain regions of our empirical
images. Therefore, the simulated images had constant tSNR
value across different voxels, different subjects in the individual
space, and in a same individual space to the corresponding
empirical images.

Data Processing
Preprocessing
The empirical fMRI images were preprocessed in DPABI (Yan
et al., 2016). The pipeline procedure included the following
steps: (1) discarding the first 10 volumes; (2) slice timing;
(3) head motion correction; (4) regressing out the nuisance
variables [including six head motion parameters and their
derivatives, the average cerebrospinal fluid (CSF), white matter
(WM) signal, and the linear term]. A band-pass filter (0.01–
0.08 Hz) was additionally added for FC and ReHo but not
for tSNR and ALFF.
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Spatial Normalization Parameters
The structural T1-weighted images were coregistered to fMRI
for each subject. Based on the coregistered structural images,
normalization parameters were estimated using the unified
segmentation (Ashburner and Friston, 2005) in SPM12 for each
subject and each scan. These normalization parameters were
used to normalize each fMRI image in each time point in
Prenorm strategy as well as normalize the ALFF, ReHo, and FC
maps calculated in individual space in Postnorm strategy. When
normalizing these fMRI images, the voxel size in MNI space was
set as 3 × 3 × 3 mm3, and the bounding box was set as [−90,
−126, −72; 90, 90, 108]. We use this default setting of DPABI
whose voxel size is comparable to those in individual space to
reduce the differences of the voxel number before and after
normalization. The interpolation was set as “Trilinear,” which is
the default option in DPABI and in SPM.

tSNR, ALFF, and FC Calculations
We first calculated the tSNR, ALFF, ReHo, and FC in individual
space. In each individual space, tSNR, ALFF, ReHo, and seed-
based FC of default mode network (DMN) were calculated after
the preprocessing. Specifically, the rs-fMRI time series in an
individual space after preprocessing were translated to frequency
domain by a fast Fourier transform, and the ALFF value was
defined as the average square root across the low-frequency band
of 0.01–0.08 Hz (Zang et al., 2007). The ReHo value in one voxel
is defined as the Kendall coefficient of concordance among it and
its 26 neighbor voxels (Zang et al., 2004; Zuo et al., 2013). For
FC, the seed was defined as a 6-mm radius spherical region of
interest (ROI) centered at [−5, −49, 40] in MNI space, located
at precuneus (PCu), which is a classic seed ROI of DMN (Fox
et al., 2005). To calculate in individual space, the seed ROIs
were inversed normalized into each of the individual spaces, and
then the FC value of each voxel was defined as the correlation
between BOLD signal in this voxel and the average BOLD signal
within the seed ROI.

tSNR, ALFF, ReHo, and FC in MNI space under two different
strategies were then calculated. Under the Prenorm condition,
the spatial normalization was applied to both simulated images
and preprocessed empirical images. The tSNR, ALFF, ReHo, and
FC maps were calculated for each subject in MNI space. For
Postnorm, the tSNR, ALFF, ReHo, and FC in MNI space were
generated by performing spatial normalization directly on tSNR,
ALFF, ReHo, and FC maps in individual space.

For FC, a one-sample t-test was applied for both Prenorm
and Postnorm. The regions showed significant positive results in
either strategy (GRF correction by DPABI, voxel p < 0.01, cluster
p < 0.05, compared to zero) and were defined as a DMN mask
that is used to exclude the voxels with very low FC values, which
is often not interested in rs-fMRI studies.

For simulated images, it was generated by replacing the time
courses of the empirical fMRI. The spatial normalization of
each corresponding subject can also directly be applied on the
simulated images. Specifically, for Postnorm, the tSNR map was
calculated in individual space and then transformed into MNI
space. As expected, the tSNR value is constant among all voxels
and subjects both before and after normalization. For Prenorm,

the simulated images were first normalized and tSNR maps were
calculated based on these normalization images. We did not
calculate ALFF, FC, and ReHo for simulated images.

Statistical Analysis
Simulated Images
The tSNR has exactly constant value and no intersubject
variability in individual space. Therefore, we have
“golden standard” to compare Prenorm and Postnorm for
simulated images.

First, the mean tSNR value of the group for each voxel
was calculated in MNI space for both Prenorm and Postnorm.
A paired t-test was utilized to test the difference between these
two strategies (GRF corrected, voxel level p < 0.01, cluster
p < 0.05). However, it is worth to note that it is reasonable
to expect that after Postnorm, tSNR maps would be constant
maps as it is in individual space. In contrast, if Prenorm
ones showed different results, it would be putatively caused by
algorithmic effects.

Besides, we also focused on the intersubject variability. For
each voxel within the brain mask in MNI space, coefficient
of variation (CV, defined as STD divided by mean) across all
subjects was used to quantify the intersubject variability of the
tSNR. It can be expected that CV of Postnorm would be exactly
zero, and if non-zero results were found in Prenorm condition,
it may indicate that Prenorm can induce the algorithmic
intersubject variability.

Empirical Images
tSNR, ALFF, ReHo, and FC maps for empirical rs-fMRI data were
also compared between Prenorm and Postnorm. Similar to the
analysis for simulated images, the mean tSNR/ALFF/FC/ReHo
maps was calculated in MNI space for both Prenorm and
Postnorm. A paired t-test was utilized to test how much
difference is there between these two strategies (GRF corrected,
voxel level p < 0.01, cluster p < 0.05). CV maps of tSNR, ALFF,
ReHo, and FC were also generated and compared by a difference
map between Prenorm and Postnorm.

Unlike simulated images, it is hard to define a golden
standard for empirical images (e.g., larger CV is better or worse).
However, given that the simulated images were generated from
empirical images, we used a simulation–empirical correlation to
demonstrate if the possible bias that affected simulated images
can also explain the variation in empirical fMRI. Specifically,
a Pearson correlations analysis was applied between the tSNR
values of simulated images and rs-fMRI indices including tSNR,
ALFF, ReHo, and FC of empirical images in MNI space for each
voxel within the brain mask (GRF corrected, voxel level p < 0.01,
cluster p < 0.05).

Test–Retest Reliability
As mentioned, the two separate scans of empirical fMRI images
with the time interval 40.94 ± 4.51 days were acquired, which
enabled us to investigate how normalization strategies impact the
test–retest reliability. The between scans test–retest reliability of
tSNR, ALFF, ReHo, and FC was investigated, and the intraclass
correlation coefficients [ICC, defined as Eq. (1), where Vb and Vw
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are between-subject and within-subject variability, respectively]
were calculated in each voxel for tSNR, ALFF, ReHo, and FC maps
between two serial scans. Histogram was generated for the whole
brain as well as gray matter regions (generated by segmentation
and group mean gray matter probability larger than 0.4), and for
FC, also in DMN mask. A paired t-test was utilized to validate if
the ICC is different between the two normalization strategies for
each of the rs-fMRI indices.

ICC =
Vb− Vw
Vb+ Vw

. (1)

All of the statistical analyses in the current study were carried
out by Matlab and AFNI (Cox, 1996). Results were represented
by AFNI (Cox, 1996).

RESULTS

Simulated Images
The effects of normalization strategies on tSNR in simulated
images were shown in Figure 1. As expected, when using
Postnorm strategy, the tSNR in MNI space kept exactly 100
as it is generated in individual space. In contrast, the mean
tSNR values in each voxel is increased from 100 to near 200
after normalization for all voxels when Prenorm is utilized.
The whole brain mean is 194.26 ± 1.17 after normalization,
significantly larger than 100 according to a one-sample t-test,
t = 635.90, p < 10−97.

For intersubject variability, after Prenorm, CV was
consistently at a level above zero for all of the voxels
(0.195 ± 0.075, lowest 1% quantile 0.135). In contrast, for
Postnorm condition, CV across subject is exactly zero.

FIGURE 1 | Effect of normalization strategies on temporal signal-to-noise ratio
(tSNR) of simulated images. The group mean maps of tSNR and coefficient of
variation (CV) maps of tSNR were shown for both normalization strategies.
Both mean and CV maps for Postnorm are constant maps. For Prenorm, both
mean and CV of tSNR were larger than Postnorm condition and are not
constant but very limited spatial variation (so seem like constant maps too).

Empirical Images
The difference between Prenorm and Postnorm strategies on
tSNR, ALFF, ReHo, and FC in empirical images was shown in
Figure 2. Compared to Postnorm, Prenorm have significantly
lower ALFF but higher tSNR and ReHo values in all of the
brain voxels. For FC, Prenorm have higher FC value in most of
DMN regions and lower FC value in the regions of task-positive
networks compared to Postnorm (paired t-test, GRF correction,
voxel p < 0.01, cluster p < 0.05).

For intersubject variability, after Prenorm, CVs of tSNR and
ALFF were both larger compared to those of Postnorm. For
ReHo, the regions in WM showed that CV after Prenorm was
larger than that after Postnorm but an inverse result in gray
matter and edge of the brains. For FC, given that lots of brain
regions have very FC values near zero, the CV would tend to
be infinite and badly defined. Therefore, we only focused on the
voxel within the DMN mask. In this region, CV was low after
Prenorm compared to that after Postnorm.

Correlation Between Simulated and
Empirical Images
The increase of tSNR as well as its CV in empirical data after
Prenorm compared to those after Postnorm was consistent with
the simulation. Further correlation analysis investigated how and
if the effect that Prenorm can induce intersubject variation found
in simulation can explain the results from empirical images.

As illustrated in Figure 3, tSNR in simulated images was
significantly correlated with tSNR, ALFF, and ReHo of empirical
images when Prenorm strategy is used. The empirical tSNR
showed positive correlation (GRF corrected, voxel level p < 0.01,
cluster p < 0.05) with simulated tSNR in all of the brain regions,
especially in WM. The regions that showed lower correlation
were on the edge regions and the base of the brain. Similar
patterns were found for the correlation maps between empirical
ALFF and simulated tSNR, except that the correlation is negative.
For ReHo, there are large regions showing significant correlation
with simulated tSNR in WM. For FC, only a small region near
the seed ROI showed a significant positive correlation, and voxels
around the left insula regions showed a significant negative
correlation between FC and simulated tSNR (GRF corrected,
voxel level p < 0.01, cluster p < 0.05).

Test–Retest Reliability
The test–retest reliability of the rs-fMRI features between the two
scans was measured using ICC, and the results were illustrated in
Figure 4. Generally, tSNR, ReHo, and ALFF showed quite similar
results: ICC is higher when Postnorm is utilized compared to
Prenorm. Some of the WM and subcortical regions have quite
poor reliability (ICC < 0.2) when Prenorm was applied compared
to those at least fair (ICC > 0.2) when applying Postnorm. The
histogram showed that the ICC distribution within the whole
brain and within gray matter regions of tSNR for Postnorm is
skewed to the higher end compared to those of Prenorm. Similar
results were found for ALFF and ReHo. Paired t-test showed that
Prenorm ICC values were significantly higher than Postnorm
ICC for tSNR, ALFF, and ReHo (p < 0.00001, note sample size
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FIGURE 2 | Effect of normalization strategies on temporal signal-to-noise ratio (tSNR), amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo),
and seed-based functional connectivity (FC) of empirical images. The group mean maps of four rs-fMRI indices including tSNR, ALFF, ReHo, and seed-based FC
[seed coordinate (–5, –49, 40)] were shown for both normalization strategies. A paired t-test (GRF corrected, voxel p < 0.01, cluster p < 0.05) was utilized to
compare them between Prenorm and Postnorm. The coefficient of variation (CV) of each index under each normalization strategy was also shown and compared by
the difference map. For FC, given that a lot of regions have negative or very small FC values, CV is not well defined, therefore we only show the CV within a default
mode network (DMN) mask and the histogram for FC is within the DMN mask. The bottom part showed the histogram of tSNR, ALFF, ReHo, and FC as well as their
CV for both normalization strategies. Again, the histograms of tSNR, ALFF, and ReHo were for whole brain, but the histogram of FC is for the DMN mask.

is voxel number and therefore very huge). In contrast, the FC
showed very similar ICC values and distributions between the
two normalization strategies.

DISCUSSION

In the current study, we have demonstrated: (1) Prenorm
strategy can change the tSNR values and induce intersubject

variability from simulated images with constant tSNR. (2)
The features of empirical fMRI including tSNR, ALFF,
ReHo, and FC would be different between Prenorm and
Postnorm. Furthermore, the intersubject variability of
these were also different between normalization strategies.
(3) Importantly, the algorithmically induced intersubject
variation of tSNR under Prenorm in simulated images
can explain the intersubject variation in empirical results
of tSNR, ALFF, and ReHo. (4) The ICC values of tSNR,
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FIGURE 3 | The correlation between temporal signal-to-noise ratio (tSNR) of
simulated images and fMRI indices of empirical images. The across-subject
correlation between tSNR of simulated images and empirical fMRI indices,
including tSNR, amplitude of low-frequency fluctuation (ALFF), regional
homogeneity (ReHo), and functional connectivity (FC) (GRF corrected, voxel
p < 0.01, cluster p < 0.05).

ALFF, and ReHo for Prenorm are significantly lower than
those of Postnorm.

It is not a surprise that spatial normalization can increase
the tSNR compared to it in individual space. A previous study
indicated that resampling and interpolation in both Prenorm and
Postnorm may superimpose spatial autocorrelation on fMRI data
(Wu et al., 2011). This “additional smoothing” may suppress the
noise contribution in fMRI signal (Krüger and Glover, 2001) and
directly lead to increased tSNR. In our simulation, we use white
noise with constant tSNR and found that Prenorm increased
tSNR value while Postnorm did not. This result indicated that
Postnorm, which does interpolation on scalar values, may have
less effect than Prenorm, which interpolated the time courses.
The results in empirical images were very consistent with this
assumption. Prenorm has higher tSNR, therefore less total
variation, which leads to smaller ALFF, but higher correlation
both among local voxels (ReHo) and between distinct regions
(FC), as illustrated in Figure 2.

However, most rs-fMRI studies are interested in the
intersubject difference rather than the value of rs-fMRI indices.
Given that there is no individual difference and no neural
signals in our simulated images, the intersubject variability
after Prenorm in simulated images was putatively induced by
algorithmic reasons. We suspected that it may be induced
by the fact that the extent of the deformation during spatial
normalization varied across subjects, which can determine
the extent of resampling and interpolation. Interpolation
can increase tSNR, and therefore intersubject difference of

interpolation directly leads to intersubject variability of tSNR.
Again, this effect in Postnorm seems weaker, which has no
effect in simulation (resampling would not change constant),
and smaller effect in empirical images (CV of tSNR is less in
Postnorm than that in Prenorm). Consistent result was found for
CV of ALFF, which is larger in Prenorm. However, ReHo and FC
showed different results. This is possibly caused by increased FC
and ReHo values in Prenorm compared to those in Postnorm,
especially in DMN for FC and in all gray matter regions for ReHo.
This effect may overwhelm the effect of increased intersubject
variability of the noise level. Therefore, when in WM where
there may be less neural signals, ReHo showed increased CV
in Prenorm than that in Postnorm, which is consistent with
tSNR. It is also worth to note that ReHo is differently defined in
Prenorm and Postnorm given the range of “neighbor voxels” that
are actually different; this may lead to these complex differences
(Zuo et al., 2013).

Furthermore, Prenorm tSNR in empirical images is highly
correlated across subjects with Prenorm tSNR in simulated
images, indicating that the algorithmic effect in simulated images
can also explain the intersubject variability of tSNR in empirical
fMRI. Moreover, similar widespread significant correlation was
found between simulated tSNR and empirical ALFF and ReHo.
The negative correlation for ALFF is expected since higher tSNR
means lower total variation, which can be reflected by ALFF
(Garrett et al., 2013). These results further indicated that there
is a significant portion (for the significant regions in Figure 3,
R2 > 0.1) of the intersubject variability of ALFF and ReHo that
can be explained by pure algorithmic effect of resampling and
interpolation during normalization if Prenorm is used. Given that
most rs-fMRI studies focused on between-subject differences, this
indicated that for ALFF and ReHo, the Prenorm strategy may
need to be avoided.

Consistent with the algorithmic induced intersubject
variability, ICC between two serial scans further suggested
that using Prenorm would decrease the test–retest reliability of
rs-fMRI features compared to Postnorm. Less reliability may
lead to less statistical power, low reproducibility, and demand
of big data size (Button et al., 2013; Poldrack et al., 2017; Hedge
et al., 2018) and has been recently highlighted as a challenge in
fMRI field (Bennett and Miller, 2010; Xing and Zuo, 2018; Zuo
et al., 2019a,b). Therefore, our findings strongly suggested that
all of the rs-fMRI studies using ALFF and ReHo in the future use
Postnorm instead of Prenorm. Although ICC of FC seems to be
not sensitive to the normalization strategy compared to ALFF and
ReHo, given that the Prenorm can induce variability of tSNR and
the fact that noise level can affect FC values (Duff et al., 2018), FC
studies also should choose normalization strategies with caution.
Also, given that the increased variability of fMRI features may
be caused by the geometrical difference during normalization,
special caution should be taken with spatial normalization when
investigating the functional–structural relationship (Di et al.,
2013; Qing and Gong, 2016) or investigating the population
that may have various degrees of brain atrophy, like dementia
(Qing et al., 2017; De Vos et al., 2018). It is also worth noting
that the effect of Prenorm is more severe in subcortical and WM
regions. Therefore, studies that focus on WM BOLD signal and
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FIGURE 4 | Effect of normalization strategies on intraclass correlation coefficients (ICCs) of the amplitude of low-frequency fluctuation (ALFF), regional homogeneity
(ReHo), and functional connectivity (FC). (Upper) The left column showed the ICC values in each voxel after Prenorm and the right column for Postnorm. Each row
for temporal signal-to-noise ratio (tSNR), ALFF, ReHo, and FC, respectively. The “fair reliability” mean means 0.2 < ICC < 0.4, “moderate” means 0.4 < ICC < 0.6,
“substantial” means 0.6 < ICC < 0.8, and “almost perfect” means ICC > 0.8. (Bottom) Histogram of ICC. For each rs-fMRI index, the histograms of ICC for both
normalization strategies were shown. For tSNR, ALFF, and ReHo, histograms within whole brain and gray matter regions were illustrated. For FC, besides whole
brain, we focused on default mode network (DMN) regions to exclude regions with the very small FC values, as well as the controversial negative FC regions.
According to a paired t-test, ICC of tSNR, ALFF, and ReHo is significantly higher when Postnorm is used compared to those when Prenorm is used. In contrast, FC
showed no significant difference.
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subcortical spontaneous activity should be more cautious with
choice of spatial normalization strategy or just avoid spatial
normalization (Makedonov et al., 2013, 2016; Ji et al., 2017;
Qing et al., 2017).

It is worth to note that the effect of normalization may
be related to the interpolation methods. In the current study,
we use the “trilinear” interpolation because it is the default
setting of most fMRI data processing toolboxes, such as FSL
(“fnirt”), SPM (Normalization-Write), and AFNI (“3dAllineate”),
and therefore has been widely applied. We also repeated our
analysis using “nearest neighbor,” fourth and seventh B-spline
interpolation options, which were provided in SPM. When using
“nearest neighbor,” exactly the same ALFF and tSNR would
be found for Prenorm and Postnorm, but there were slight
differences for ReHo and FC, which may be caused by different
definitions of neighbor voxels and seed time course in different
strategies (details can be found in the Supplementary Material).
This validated that difference effects of interpolation on time
course and scalar values lead to our finding of the difference
between Prenorm and Postnorm. For higher order interpolation,
such as fourth or seventh B-spline, most of our findings still
showed similar and significant results compared to “trilinear”
but with more conservative effect size (however, some results
were inversed, see the Supplementary Material). However,
using nearest neighbor may decrease smoothness of the results,
and it is time-consuming to use higher order interpolation,
especially when treating large data cohorts. Additionally, other
type of interpolation like using sinc function instead of linear
may also have an impact but was more rarely be used during
spatial normalization (Strother et al., 2004). At last, when large
kernel spatial smoothing was done, the additional interpolation
among voxels would attenuate the effect of interpolation during
normalization, and therefore we did not include and discuss this
step for simplicity.

There are some limitations of the current study. First, we
only use the unified segmentation (Ashburner and Friston,
2005) to perform the normalization. Although we believe that
the effect of Prenorm on temporal features is independent to
the different estimating methods of spatial transformation, the
finding in the current study still need to be validated against other
normalization algorithms, such as DARTEL in SPM (Ashburner,
2007), utilization of the EPI templates instead of structural
templates (Calhoun et al., 2017), and also other toolboxes, such as
FSL (Jenkinson et al., 2012). Moreover, our results were based on
a relatively small publicly available dataset that only included 50
subjects, which all have the same scanning parameters and using
the same scanner. The current findings need further validation
across various types of scanners, various image resolutions, and a
larger dataset in the future.

CONCLUSION

In conclusion, the current study demonstrated that the
commonly used spatial normalization, Prenorm, may induce
an artificial variability across subjects on tSNR of rs-fMRI and

significantly contribute to the intersubject variability of ALFF and
ReHo and reduce their reliability compared to Postnorm. These
results suggest that future fMRI studies using ALFF and ReHo
should perform spatial normalization with caution and suggest
Postnorm as an improvement.
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