
In silico vaccine design and epitope 
mapping of New Delhi metallo‑beta‑lactamase 
(NDM): an immunoinformatics approach
Matin Fathollahi1, Anwar Fathollahi2, Hamid Motamedi1, Jale Moradi1, Amirhooshang Alvandi1,3 and 
Ramin Abiri1,4* 

Abstract 

Background:  Antibiotic resistance is a global health crisis. The adage that “preven-
tion is better than cure” is especially true regarding antibiotic resistance because the 
resistance appears and spreads much faster than the production of new antibiotics. 
Vaccination is an important strategy to fight infectious agents; however, this strategy 
has not attracted sufficient attention in antibiotic resistance prevention. New Delhi 
metallo-beta-lactamase (NDM) confers resistance to many beta-lactamases, including 
important carbapenems like imipenem. Our goal in this study is to use an immunoin-
formatics approach to develop a vaccine that can elicit strong and specific immune 
responses against NDMs that prevent the development of antibiotic-resistant bacteria.

Results:  In this study, 2194 NDM sequences were aligned to obtain a conserved 
sequence. One continuous B cell epitope and three T cell CD4+ epitopes were selected 
from NDMs conserved sequence. Epitope conservancy for B cell and HLA-DR, HLA-
DQ, and HLA-DP epitopes was 100.00%, 99.82%, 99.41%, and 99.86%, respectively, and 
population coverage of MHC II epitopes for the world was 99.91%. Permutation of the 
four epitope fragments resulted in 24 different peptides, of which 6 peptides were 
selected after toxicity, allergenicity, and antigenicity assessment. After primary vaccine 
design, only one vaccine sequence with the highest similarity with discontinuous B cell 
epitope in NDMs was selected. The final vaccine can bind to various Toll-like receptors 
(TLRs). The prediction implied that the vaccine would be stable with a good half-life. 
An immune simulation performed by the C-IMMSIM server predicted that two doses 
of vaccine injection can induce a strong immune response to NDMs. Finally, the GC-
Content of the vaccine was designed very similar to E. coli K12.

Conclusions:  In this study, immunoinformatics strategies were used to design a vac-
cine against different NDM variants that could produce an effective immune response 
against this antibiotic-resistant factor.
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Background
Antibiotic resistance that is a direct consequence of the overwhelming use of antibiotics 
is one of the biggest issues that threaten global health. The World Health Organization 
(WHO), the Food and Agriculture Organization (FAO), and the World Organization for 
Animal Health (OIE) have considered antibiotic resistance as one of the three declared 
priority issues for joint action [1]. The United Nations (UN) also reported that the death 
toll due to antibiotic resistance is at least 700,000 deaths a year in 2019, which will be 
raised to 10 million deaths by 2050. Furthermore, economic damage due to uncontrolled 
antimicrobial resistance may lead to an economic shock similar to the 2008–2009 global 
financial crisis, which can result in more poverty and inequality [2].

The currently available strategies to avoid or prevent antibiotics resistance suggested 
by the Centers for Disease Control and Prevention (CDC) as the “Four Core Actions 
to Prevent Antibiotic Resistance” includes preventing infections and preventing the 
spread of resistance, tracking antibiotic-resistant infections, avoiding unnecessary uses 
of antibiotics in humans and animals and developing new drugs and diagnostic tests [3]. 
Designing a vaccine to prevent antibiotic resistance falls into the first class of strategies 
suggested by the CDC.

As β-lactamases are very important in conferring resistance to many essential antibiot-
ics, there are numerous published papers about their prevalence, single nucleotide poly-
morphisms, and their inhibitors. These enzymes led to antibiotic resistance in a wide 
range of human pathogens through the inactivation of β-lactam antibiotics which posed 
serious challenges for the treatment of patients. The mechanism of action of beta-lacta-
mase is through hydrolysis of the β-lactam ring in the structure of β-lactam antibiotics. 
The β-lactam ring is the core structure of β-lactam antibiotics, therefore its hydrolysis 
leads to the inactivation of these antibiotics [4, 5]. Normally, β-lactamases are divided 
into two groups according to the characteristics of the active site. In the first group, the 
acyl-enzyme contains serine in the active site (classes A, C, and D) while in the second 
group the hydrolytic reaction is facilitated by one or two zinc ions (class B). The sec-
ond group is called metallo-β-lactamases (MBLs) [6, 7], and New Delhi metallo-beta-
lactamase (NDM) is categorized in this class. The first member of NDMs (NDM-1) was 
reported in 2009 from a Swedish patient traveling to New Delhi, India with the bacte-
rium Klebsiella pneumoniae. It hydrolyzes a wide range of β-lactam antibiotics includ-
ing penicillins, late-generation cephalosporins, and carbapenems, except monobactams 
[8]. These enzymes are found in a variety of bacterial pathogens including K. pneumo-
niae, Escherichia coli, Acinetobacter baumannii, Enterobacter cloacae, Providencia rett-
geri, and Morganella morganii. As different plasmids carrying the blaNDM gene, these 
enzymes can be transmitted between microorganisms in different ways including inter-
strain, inter-species, and inter-genus [9].

Immunoinformatics approaches have revolutionized vaccine design and development 
by increasing the quality of empirical studies. In-silico methods help to focus exclu-
sively on well-analyzed and rational vaccine candidates. For example, Immunoinformat-
ics approaches can help to determine conserved sequences. Conserved sequences are 
sequences that are similar or identical between different isoforms of a protein or nucleic 
acid sequences from various sources. The conserved sequences are important targets for 
vaccine design as they allow production vaccines effective against different isoforms of 
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the target protein to cover a large range of potential targets and reduce the probability of 
resistance occurrence [10].

Furthermore, another important consideration during the design of a vaccine is the 
determination of antigenicity, immunogenicity, and allergenicity of the candidate 
epitopes. An Antigen is a molecular structure that can bind specifically to antibodies, B 
cell receptors, or T cell receptors; while immunogens are antigens that can induce either 
or both humoral or cell-mediated immune responses. Some antigens cannot induce 
immune responses at the first encounter, therefore they are not immunogenic. Allergens 
are immunogens or antigens that induce a pathogenic immune response due to over-
activation of the immune system [11, 12]. Immunoinformatics approaches can predict 
the most available and immunogenic epitopes that have the minimum possibility of tox-
icity, allergenicity, and cross-reactivity to host antigens [13].

Another advantage of bioinformatics approaches is the possibility of “codon optimiza-
tion” Amino acids are commonly expressed by synonymous codons. In various organ-
isms, these synonymous codons are used with unequal frequency, which is called codon 
bias (CB). Codon optimization results in similar GC content. Each organism has its 
specific codons usage and therefore specific GC content; therefore, to have a maximum 
expression of a cloned protein sequence in an organism, the sequence must have syn-
onymous codons with the host [9, 10]. We used E. coli K12 as the host, so all the codons 
must be optimized according to the E. coli K12 genome.

The adage that “prevention is better than cure” is especially true regarding antibiotic 
resistance because the resistance is introduced and spread much faster than the produc-
tion of new antibiotics [14, 15]. Vaccination is an important strategy to fight infectious 
agents; however, this strategy has not attracted sufficient attention in antibiotics resist-
ance prevention. Our goal in this study is to use an immunoinformatics approach (Fig. 1) 
to develop a vaccine that can elicit strong and specific immune responses against NDMs 
that prevent the development of antibiotic-resistant bacteria.

Results
Conserved protein sequence

The final conserved sequence contains 229 amino acids. The conserved sequence 
obtained from the multiple sequence alignment (MSA) is presented below (for more 
details regarding MSA methodology refer to the “1-Protein Sequence Retrieval” in the 
methods section).

GDQRFGDLVFRQLAPNVWQHTSYLDMPGFGAVASNGLIVRDGGRVLVVD-
TAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAGIATYA-
NALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNIT-
VGIDGTDIAFGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSH-
SAPDSRAAITHTARMADKLR.

Secondary structure

The secondary structure of the conserved sequence obtained from the NetSurfP-2.0 
Server has approximately 74.23% coil, 27.51% strand, and 25.76% helix. About the first 
six amino acids in the conserved sequence were disordered residues. Considering the 
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threshold at 25% for Relative Solvent Accessibility (RSA), approximately 45.41% of 
amino acids contain RSA (Fig. 2).

Fig. 1  Schematic workflow of in silico design of New Delhi metallo-beta-lactamase (NDM) vaccine

Fig. 2  The first line represents the amino acids constituting the conserved sequence. The second line 
represents the relative surface accessibility (RSA), in which a red curve at the top of the line denotes the 
residue is exposed and the blue at the bottom of the line indicates buried residues. The third line represents 
the Secondary Structure, including the strand (purple thick arrow), the coil (pink straight lines), and the helix 
(orange spiral shapes). The fourth line represents disordered residues in the structure; the thickened regions 
indicate the presence of disordered residues. The fifth line shows the sequence number of residues
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Continuous B cell epitope

Continuous B cell epitopes were detected from all three servers LBtope, ABCpred, and 
SVMtrip, and the top five epitopes are listed in Table 1. The antigenicity of these epitopes 
was also assessed by the VaxiJen v3.0 server. In the top five epitopes of the LBtope server, 
the peptide GGCLIKDSKAKSLGN (165–179) with a score of 0.95000785 is in the first 
rank and has an antigenicity with a probability of 66%. Although this peptide is not 
among the 5 top epitopes ranked by ABCpred, however, it has an acceptable score to be 
considered as a candidate epitope. Indeed, the calculated score for this epitope is 0.73, 
which is much higher than the defined threshold for this server that is 0.51.

T cell CD4+ epitope

The MHC-II alleles that are abundant in at least one European country were selected. 
Regarding this including criteria, twelve HLA-DR alleles, five HLA-DQ haplotypes, and 
two HLA-DP haplotypes were chosen (Table 2).

In the Consensus method (for more details regarding the IEDB Consensus method 
refer to the “4-T cell CD4 + epitope” in the methods section), the lower the adjusted 
rank epitope means the better binding of the epitopes to MHC alleles. The results of 
the Consensus method for HLA-DQ, and HLA-DP haplotypes, and HLA-DR alleles 
are depicted in Fig.  3, and the top five of each chart are summarized in Table  3. In 
addition, the antigenicity of each of the top five peptides was calculated by the Vaxi-
Jen v3.0 server and is depicted in the last column of Table 3. The epitopes that were 
identified by the VaxiJen v3.0 server as non-antigen was not selected as the final 
vaccine epitopes even if they are among the five top IEDB Consensus rank. Finally, 
PKASMIVMSHSAPDS (200–214) epitope for HLA-DR alleles, EHYAASARAF-
GAAFP (186–200) epitope for HLA-DQ haplotypes, and DQRFGDLVFRQLAPN 
(2–16) epitope for HLA-DP haplotypes were selected. The top five immunogenic 
epitopes predicted by the IEDB are listed in Table  4. The GDLVFRQLAPNVWQH 
epitope (6–20) with first rank immunogenicity with a score of 49.57 overlaps with 

Table 1  Continuous B cell epitope obtained from LBtope, SVMtrip and ABCpred servers

Rank Location Epitope Score Antigenicity (probability)

LBtope 1 165–179 GGCLIKDSKAKSLGN 0.95000785 Antigen (66%)

2 164–178 FGGCLIKDSKAKSLG 0.94638595 Antigen (66%)

3 168–182 LIKDSKAKSLGNLGD 0.76900064 Non-antigen (66%)

4 65–79 KQEINLPVALAVVTH 0.76639088 Non-antigen (66%)

5 166–180 GCLIKDSKAKSLGNL 0.74369164 Non-antigen (100%)

SVMTriP 1 174–189 AKSLGNLGDADTEHYA 1 Antigen (66%)

2 156–171 GIDGTDIAFGGCLIKD 0.949 Antigen (100%)

3 37–52 LIVRDGGRVLVVDTAW​ 0.763 Non-antigen (66%)

4 201–216 KASMIVMSHSAPDSRA 0.74 Non-antigen (100%)

5 62–77 NWIKQEINLPVALAVV 0.733 Non-antigen (66%)

ABCpred 1 20–35 HTSYLDMPGFGAVASN 0.91 Antigen (100%)

2 211–226 APDSRAAITHTARMAD 0.89 Non-antigen (66%)

3 203–218 SMIVMSHSAPDSRAAI 0.88 Antigen (66%)

4 79–94 HAHQDKMGGMDALHAA 0.85 Non-antigen (66%)

5 35–50 NGLIVRDGGRVLVVDT 0.84 Non-antigen (66%)
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Table 2  Haplotypes and alleles that were abundant in one or more European countries

HLA-DR HLA-DQ HLA-DP

DRB1*01:01 DQA1*01:01/DQB1*05:01 DPA1*01/DPB1*04:01

DRB1*03:01 DQA1*01:02/DQB1*06:02 DPA1*01:03/DPB1*02:01

DRB1*04:01 DQA1*03:01/DQB1*03:02

DRB1*04:04 DQA1*05:01/DQB1*02:01

DRB1*04:05 DQA1*05:01/DQB1*03:01

DRB1*07:01

DRB1*08:01

DRB1*09:01

DRB1*11:01

DRB1*11:04

DRB1*13:01

DRB1*15:01

Fig. 3  The results of prediction of HLA-DR, HLA-DQ, and HLA-DP epitopes by the IEDB Consensus method; 
the lower adjusted rank indicates good binder epitopes. The epitope length was defined as 15 residues 
(15 mer) and each peptide is named by a number equals to the median values of the respective peptide 
sequence number; e.g. the 1–15 peptide is named core of peptide 8. In HLA-DR epitopes, peptide cores 208, 
207, 210, 209, and 11, in HLA-DQ epitopes peptide cores 193, 98, 96, 192, and 97 and in HLA-DP epitopes 10, 
22, 8, 9, and 23 demonstrated the lowest adjusted rank which implies that they are top good binder epitopes
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the selective epitope HLA-DQP in 11 amino acids and the KASMIVMSHSAPDSR 
epitope (201–215) that sat at the fourth rank of immunogenicity with a score of 42.21 
in IEDB, overlaps with HLA-DR epitope in 14 amino acids.

Epitope conservancy

The selected B cell recognizing epitope, GGCLIKDSKAKSLGN (165–179) was 
conserved in all the 2194 retrieved initial sequences. The selected HLA-DR bind-
ing epitope, PKASMIVMSHSAPDS (200–214), was 100% identical in 2190 ini-
tial sequences, and only four sequences had identities less than 100%. These four 
sequences are WP_109791213.1 with a 93.33% identity, OES48450.1, BBE58699.1 
and APY22234.1 with 80% identity. The selected HLA-DQ binding epitope, 
EHYAASARAFGAAFP (186–200), was 100% identical with 2181 initial sequences 
and 93.33 identity with thirteen other sequences, including SYX53208.1, OES48450.1, 
AGS56768.1, QCQ28762.1, QCQ28543.1, WP_032495384.1, AWL48936.1, 
ASB81781.1, WP_063860858.1, AWM64865.1, AMO51458.1, WP_094009810.1 and 
WP_123002102.1. Selected HLA-DP recognizing epitope is DQRFGDLVFRQLAPN 
(2–16) with 100% identity with 2191 initial sequences and less identity for three other 

Table 3  Top five HLA-DR, HLA-DQ, and HLA-DP epitopes

Rank Location Epitope Antigenicity (probability)

HLA-DR 1 201–2015 KASMIVMSHSAPDSR Non-antigen (66%)

2 200–214 PKASMIVMSHSAPDS Antigen (66%)

3 203–217 SMIVMSHSAPDSRAA​ Non-antigen (66%)

4 202–216 ASMIVMSHSAPDSRA Non-antigen (66%)

5 4–18 RFGDLVFRQLAPNVW Non-antigen (66%)

HLA-DQ 1 186–200 EHYAASARAFGAAFP Antigen (100%)

2 91–105 LHAAGIATYANALSN Antigen (66%)

3 89–103 DALHAAGIATYANAL Antigen (66%)

4 185–199 TEHYAASARAFGAAF Antigen (100%)

5 90–104 ALHAAGIATYANALS Antigen (100%)

HLA-DP 1 3–17 QRFGDLVFRQLAPNV Non-antigen (66%)

2 15–29 PNVWQHTSYLDMPGF Non-antigen (66%)

3 1–15 GDQRFGDLVFRQLAP Non-antigen (66%)

4 2–16 DQRFGDLVFRQLAPN Antigen (66%)

5 16–30 NVWQHTSYLDMPGFG Antigen (66%)

Table 4  Top five peptide with immunogenicity for CD4+ T cells

*For more details regarding combined score refer to the “5-Prediction of antigenicity and immunogenicity of peptide 
fragments” in the methods section

Rank Peptide Location Combined score*

1 GDLVFRQLAPNVWQH 6–20 49.57224

2 LNWIKQEINLPVALA 61–75 46.54788

3 MPGFGAVASNGLIVR 26–40 45.15712

4 KASMIVMSHSAPDSR 201–215 42.21464

5 IATYANALSNQLAPQ 96–110 41.36456
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sequences including 93.33% identity with WP_152315467.1, and 26.67% identity with 
QID22101.1 and AQT38377.1 (Table 5).

Population coverage

World population coverage (for more details regarding Population coverage refer to the 
“7-Population coverage” in the methods section) was 99.91% for all selected alleles of 
HLA-DR, HLA-DQ, and HLA-DP, while the coverage rate was 100% for Europe and 
North America. Other regions (except South Africa) had more than 98.5% population 
coverage and only South Africa had population coverage of less than 50% (Table 6).

Toxicity, allergenicity and antigenicity of the peptides

Toxicity, allergenicity, and antigenicity of these 24 peptides were evaluated as it is 
required for any potential therapeutic protein.

Nine out of the initial 24 peptides were found to be non-toxic and 13 out of the 24 
peptides were identified with a 100% antigen probability. Eleven peptides were ignored 
due to inefficient antigenicity, of which 10 peptides were estimated with only a 66% anti-
gen probability, and one was estimated non-antigenic with a 66% probability (Table 7). 

Table 5  Epitope conservancy of B cell, HLA-DR, HLA-DQ, and HLA-DP epitopes

Epitope name Epitope sequence Epitope 
length

Percent of protein sequence 
matches at identity <  = 100%

Minimum 
identity 
(%)

Maximum 
identity (%)

B cell GGCLIKDSKAKSLGN 15 100.00% (2194/2194) 100.00 100.00

DR PKASMIVMSHSAPDS 15 99.82% (2190/2194) 80.00 100.00

DQ EHYAASARAFGAAFP 15 99.41% (2181/2194) 93.33 100.00

DP DQRFGDLVFRQLAPN 15 99.86% (2191/2194) 26.67 100.00

Table 6  Predicting population coverage of MHC II epitopes

Population/area Coverage (%)

Central Africa 99.86

Central America 99.90

East Africa 99.96

East Asia 98.84

Europe 100.00

North Africa 99.79

North America 100.00

Northeast Asia 99.78

Oceania 99.92

South Africa 47.29

South America 99.91

South Asia 99.94

Southeast Asia 98.68

Southwest Asia 99.55

West Africa 99.88

West Indies 98.68

World 99.91
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Finally, even though AllergenFP detected none of the peptides as an allergen, 10 out of 
the 24 peptides were identified as an allergen by AllerTOP v.2.0 server.

Collectively, 6 peptides out of the 24 primary peptides were identified to have 100% 
antigenicity without toxicity and allergenicity. These peptides were selected and named 
Pep1, Pep2, Pep3, Pep6, Pep8, and Pep9.

Vaccine‑structure modeling and validation

The Pep1, Pep2, Pep3, Pep6, Pep8, and Pep9 peptides were linked by EAAAK linker to 
Cholera toxin subunit B (CTB) adjuvant at their N-terminal to create vaccines named 1, 
2, 3, 4, 5 and, 6, respectively.

The RaptorX server predicts 5 structures with the lowest root-mean-square devia-
tion (RMSD) score for each peptide sequence. To further determine the best of those 5 
structures, the MolProbity server was used. MolProbity server utilizes 3 criteria to com-
pare the structures including favored rotamers, Ramachandran favored, and Rama-Z 
score. These 3 criteria were used to determine the best possible structure for the down-
stream steps in the study. In other words, for each one of the 6 candidate vaccines, one 
of the 5 structures was chosen as the optimum structure (Table  8). Favored rotamers 
and Ramachandran favored values are given as a percentage. The best structures were 

Table 7  Evaluation of toxicity, allergenicity and antigenicity 24 permutation-derived peptides

Rank Peptide names Combination 
of epitopes

Toxicity Antigenicity (%) Allergenicity 
(AllerTOP v. 
2.0)

Allergenicity 
(AllergenFP 
v.1.0)

1 Pep1 B-DQ-DP-DR 0.014561407 Antigen (100%) Non-allergen Non-allergen

2 Pep2 B-DP-DQ-DR 0.020762188 Antigen (100%) Non-allergen Non-allergen

3 Pep3 B-DQ-DR-DP 0.026229585 Antigen (100%) Non-allergen Non-allergen

4 Pep4 B-DR-DP-DQ 0.035163384 Antigen (66%) Non-allergen Non-allergen

5 Pep5 B-DR-DQ-DP 0.035222273 Antigen (66%) Non-allergen Non-allergen

6 Pep6 B-DP-DR-DQ 0.04321611 Antigen (100%) Non-allergen Non-allergen

7 Pep7 DQ-B-DP-DR 0.043704998 Antigen (66%) Allergen Non-Allergen

8 Pep8 DP-DQ-B-DR 0.044408895 Antigen (100%) Non-allergen Non-allergen

9 Pep9 DP-B-DQ-DR 0.04492618 Antigen (100%) Non-allergen Non-allergen

10 Pep10 DQ-B-DR-DP 0.07196537 Non-antigen (66%) Allergen Non-allergen

11 Pep11 DQ-DP-B-DR 0.07311195 Antigen (66%) Allergen Non-allergen

12 Pep12 DR-B-DQ-DP 0.07872102 Antigen (100%) Non-allergen Non-allergen

13 Pep13 DP-B-DR-DQ 0.089660764 Antigen (66%) Allergen Non-allergen

14 Pep14 DR-B-DP-DQ 0.0922846 Antigen (100%) Non-allergen Non-allergen

15 Pep15 DP-DR-B-DQ 0.09429422 Antigen (66%) Allergen Non-allergen

16 Pep16 DQ-DR-B-DP 0.096130505 Antigen (66%) Allergen Non-allergen

17 Pep17 DR-DQ-B-DP 0.09999384 Antigen (100%) Non-allergen Non-allergen

18 Pep18 DR-DP-B-DQ 0.1686433 Antigen (66%) Non-allergen Non-allergen

19 Pep19 DP-DR-DQ-B 0.33977464 Antigen (100%) Allergen Non-allergen

20 Pep20 DP-DQ-DR-B 0.35059118 Antigen (100%) Allergen Non-allergen

21 Pep21 DQ-DR-DP-B 0.39058733 Antigen (66%) Allergen Non-allergen

22 Pep22 DR-DQ-DP-B 0.40825927 Antigen (100%) Non-allergen Non-allergen

23 Pep23 DQ-DP-DR-B 0.45443133 Antigen (66%) Allergen Non-allergen

24 Pep24 DR-DP-DQ-B 0.5206262 Antigen (100%) Non-allergen Non-allergen
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given the highest percentages and the ideal value is usually higher than 98%. The Rama-
Z score value should be ideally between − 2 and + 2, i.e. abs (Z score) < 2. Finally, from 
the vaccine models listed in Table 8, vaccine 1 structure 2, vaccine 2 structure 3, vaccine 
3 structure 2, vaccine 4 structure 5, vaccine 5 structure 3, and vaccine 6 structure 3, were 
selected based on optimum scores in the following four values: RMSD, Favored rotam-
ers, Ramachandran favored and Rama-Z score.

Discontinuous B cell epitope

The discontinuous B cell epitopes of the six vaccine constructs and all of the existed 
chains of twelve NDM proteins retrieved from PDB were predicted by the ElliPro 
server (Table  9). Consequently, the discontinuous B cell epitopes from the vaccine 
constructs were compared with the twelve NDM proteins to identify discontinuous 
epitopes in the vaccine constructs that are identical or similar to the discontinuous 

Table 8  Evaluation of RMSD, favored rotamers, Ramachandran favored, and Z-score of six vaccine 
constructs

Rank RMSD (Å) Favored 
rotamers (%)

Ramachandran 
favored (%)

Z-score

Vaccine 1 1 7.5107 96.23 93.56  − 2.32 ± 0.49

2 6.9878 98.11 93.07  − 1.63 ± 0.53

3 7.2056 99.37 92.08 0.80 ± 0.58

4 8.2021 99.37 88.12  − 1.24 ± 0.57

5 10.122 95.60 92.57  − 1.72 ± 0.52

Vaccine 2 1 7.3 98.74 94.06 0.73 ± 0.61

2 8.1636 98.11 93.56  − 1.57 ± 0.54

3 7.9784 100.00 97.03 0.68 ± 0.58

4 8.018 97.48 94.55 0.05 ± 0.56

5 8.2166 98.74 94.55  − 0.86 ± 0.55

Vaccine 3 1 6.4034 100.00 90.59  − 1.99 ± 0.52

2 7.1167 100.00 94.55 0.49 ± 0.59

3 7.7406 98.11 93.56  − 1.90 ± 0.54

4 8.2312 98.74 95.05 0.22 ± 0.59

5 9.4755 97.48 94.55  − 1.14 ± 0.55

Vaccine 4 1 8.0477 94.34 90.10  − 1.95 ± 0.54

2 8.0874 98.74 94.55  − 2.82 ± 0.52

3 9.6278 96.86 95.05  − 1.12 ± 0.55

4 8.2284 96.86 95.05 0.71 ± 0.59

5 10.131 98.74 95.54  − 0.72 ± 0.56

Vaccine 5 1 6.8903 98.11 92.57 0.28 ± 0.59

2 7.2672 96.86 93.07 0.49 ± 0.60

3 7.6564 98.74 96.53  − 1.14 ± 0.54

4 8.7086 98.11 95.54  − 1.76 ± 0.55

5 7.7784 97.48 95.05 0.56 ± 0.59

Vaccine 6 1 6.5636 96.23 92.08  − 0.32 ± 0.60

2 7.2168 99.37 93.07  − 0.87 ± 0.55

3 7.3298 99.37 96.04 0.18 ± 0.61

4 7.4151 96.23 87.13  − 2.71 ± 0.52

5 8.1497 96.86 92.08  − 1.39 ± 0.50
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epitopes in the NDM proteins. The analysis detected one sequence that was pre-
sent only in vaccine construct 2 with high similarity to the DQRFGDLVFRQLAPN 
sequence in positions 42 to 57 of NDMs proteins. This common sequence had high-
scoring amino acids for discontinuous B cell epitopes (Fig. 4).

Table 9  PDB ID of twelve NDM proteins used in discontinuous epitope prediction

PDB ID Chains Sequence length Organism Protein

5ZR8 A, E 246 Escherichia coli NDM-1

6MH0 A, B 243 Escherichia coli NDM-3

4TZ9 A 231 Escherichia coli NDM-3

5WIG A, B 230 Klebsiella pneumoniae NDM-4

4TYF A 231 Escherichia coli NDM-4

6MGZ A, B 243 Klebsiella pneumoniae NDM-4

4TZE A, B 231 Escherichia coli NDM-5

6MGY A, B, C, D 243 Klebsiella pneumoniae NDM-5

4TZB A 231 Escherichia coli NDM-6

4TZF A 231 Escherichia coli NDM-8

6OGO A, B, C 243 Escherichia coli NDM-9

5WIH A 230 Escherichia coli NDM-12

Fig. 4  Heatmap visualization allows the comparison of the predicted discontinuous epitope in six candidate 
vaccine constructs with twelve selected NDM proteins. According to the heatmap gradient of colors scale, 
the vaccine 2 has the most similarity with the NDM proteins (Visualization was performed by R software, 
available from: https://​www.R-​proje​ct.​org)

https://www.R-project.org
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Molecular docking of multi‑epitope vaccine with TLR receptors

Molecular docking of vaccine 2 construct with Toll-like receptors (TLRs) was per-
formed by using the PatchDock server. The top ten vaccine 2 construct-TLRs docking 
results by this server was obtained. The Global Energy of the above-mentioned ten 
results was calculated by FireDock (Additional file  1: Table  1). Vaccine 2 construct 
interacted with TLR1 (PDB ID: 6nih) with a score of 15,210 and Global Energy − 34.76 
kilocalories per mole (kcal/mol), with TLR1-TLR2 (PDB ID: 2z80) with a score of 
14,090 and Global Energy − 39.00 kcal/mol and with two different states from TLR4 
(PDB ID: 2Z62) with 14,908 and 13,056 scores and Global Energies − 35.78 kcal/mol 
and − 45.30 kcal/mol, respectively. In addition, binding free energy of the complexes 
calculated by MM/GBSA, and resulted in − 70.89, − 45.08, − 47.7, and − 31.6  kcal/
mol, respectively. Hydrogen bonds, salt bridges, and hydrophobic interactions were 
obtained by the DIMPLOT program. The Vaccine complex with TLR1 (PDB ID: 6nih) 
is shown in Fig. 5 and the other complexes listed in Additional file 2: Fig. 1.

Normal mode analysis (NMA)

Normal mode analysis (for more details regarding Normal mode analysis refer to the 
“13-Normal mode analysis” in the methods section) of the TLR1 vaccine complex 
(PDB ID: 6nih) is shown in Fig.  6, and the vaccine complex with TLR1-TLR2 (PDB 
ID: 2z80) and TLR4 (PDB ID: 2Z62) are also shown in the Additional file  3: Fig.  2. 
Areas of protein that have deformability are peaked in Fig.  6a. The B-factor graph 
shows the divergence of the complex in the PDB file with NMA that is depicted in 
Fig. 6b. The eigenvalue graph is also shown in Fig. 6c and its numerical value is equal 
to 2.129046e-05. Furthermore, the variance graph corresponding to the normal mode 
is shown in Fig. 6d. The covariance map in Fig. 6e shows pairs of residues with cor-
related motions in red, uncorrelated motions in white and anti-correlated motions 
in blue. Finally, the darker grays in Fig. 6f show rigid regions (stiffer springs) in the 
elastic network.

Physiochemical evaluation of vaccine

Physicochemical properties obtained by the ProtParam tool. The simulation of the 
half-life in mammalian reticulocytes as in  vitro environment was estimated to be 
30  h, and in yeast and Escherichia coli, as in  vivo environment, was estimated to 
be more than 20 and 10  h, respectively. Other calculated physicochemical proper-
ties included 21,842.04 Daltons for molecular weight, 9.08 for theoretical isoelectric 
point (pI), 75.74 for aliphatic index, −  0.195 for a grand average of hydropathicity 
(GRAVY), 32.32 for instability index. Furthermore, the number of residues with a 
negative charge (Asp + Glu) and positive charge (Arg + Lys) were determined 17 
and 22, respectively. Finally, C975H1531N267O285S9 was obtained as the vaccine 
formula.

Immune simulation

The immune simulation was performed by the C-ImmSim server which predicted 
that two doses of vaccine injection can induce a strong immune response to NDMs. 
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Based on the evaluation of the immune response by the C-ImmSim server; a specific 
response regarding antibody titer after exposure to the specific antigen was much 
higher than the non-specific antigen (Fig. 7a). B-cell subpopulations including B-cell 
memory and Plasma B lymphocytes (PLB cells) also had a higher peak on the 100th 
day (Fig. 7b–d). In addition, the T helper cell population demonstrated a higher peak 
in the specific antigen group compared to the nonspecific antigen on the 100th day 
after injection of specific antigen (Fig. 7e–f ).

Fig. 5  Interacting residues between docked vaccine (Chain V) with TLR1 (Chain A and Chain B). The green, 
red, and brick red dashed lines represent hydrogen bonds, salt bridges, and hydrophobic interactions, 
respectively. The hydrogen bonds and salt bridges are more important interactions in the complex. The 
Leu157 and Ser139 residues from chain A of TLR1 were bound to Lys55 and Glu72 residues of the vaccine 
by hydrogen bonds with bond lengths of 1.95 angstroms (Ǻ) and 2.61 Ǻ, respectively. The Asp291, His270, 
Gln241, Thr242 and Ser235 residues from the chain B of TLR1 are bound to the Ser200, Gln70, Phe46, Thr49 
and Lys44 residues of the vaccine with hydrogen bonds with bond lengths of 2.09 Ǻ, 2.18 Ǻ, 3.23 Ǻ, 2.59 
Ǻ and 1.81 Ǻ, respectively. In addition, the Arg263 residue from the chain B of TLR1 is bound to the Asp43 
residue of the vaccine with the salt bridges interaction vaccine
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Codon‑optimization and cloning

The final vaccine was codon-optimized for E. coli strain K12 using the JCAT server. 
Finally, a DNA sequence of 612 nucleotides with CAI-Value of 1.0 and GC-Content 
of 51.14 was obtained, which is very close to the GC-Content of E. coli strain K12 
with 50.73. In addition, the Restriction sites SacI (GAG​CTC​) and NheI (GCT​AGC​) 
were added to the N and C terminals of the final vaccine codon sequence, then this 
sequence was added into the pET-28a (+) vector by the SnapGene tool (Fig. 8).

Fig. 6  Normal mode analysis of the vaccine-TLR1 complex. The graphs represent a Deformability, b B-factor, 
c Eigenvalues, d Variance, e Covariance map f Elastic network (for more details regarding Normal mode 
analysis refer to the “13-Normal mode analysis” in the methods section)

Fig. 7  Immune simulation after two doses of vaccine introduction at first and 30th days and exposure 
to specific (ai-fi) or nonspecific (aii-fii) antigen on the 100th day. a antibody titer b B lymphocytes and 
sub-populations c B lymphocytes per state d Plasma B lymphocytes e T-helper lymphocytes f T-helper 
lymphocytes per state (for more details regarding Immune simulation refer to the “15-Immune simulation” in 
the methods section)
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Discussion
Due to the widespread use of antibiotics, antibiotic-resistant bacteria are on the rise, 
and many of previously used antibiotics are ineffective now. The discovery of new anti-
biotics has failed to keep pace with the emergence of antibiotic-resistant pathogens. We 
are moving forward to a stage where we are no longer able to cure a large number of 
bacterial infections. NDMs are one of the most important antibiotic resistance-con-
ferring enzymes that present in a wide range of human pathogens and their prevalence 
is increasing worldwide [16, 17]. Although vaccination is one of the best preventive 
approaches to fight infectious agents, no vaccine has yet been developed to prevent anti-
biotics resistance. We believe that producing a vaccine against bacterial resistance can 
provide a solution to reduce the burden of this global health crisis.

Numerous studies have used immunoinformatics methods to design vaccines 
against various agents such as SARS CoV 2, Lassa virus (LASV), Type A influenza 
viruses, Saint Louis Encephalitis Virus, Echinococcus granulosus, and Sarcoptes sca-
biei [13, 18–26]. In this study, we aimed to design an in silico multi-epitope vaccine 

Fig. 8  In silico cloning simulation. Schematic representation of the codon-optimized multi-epitope vaccine 
sequence (Red) insertion into pET-28a (+) expression vector (black) between Restriction sites SacI and NheI
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that affects a wide range of different bacterial NDMs. We used bioinformatics tools 
to find epitopes for appropriate and specific stimulation of the immune system 
against NDMs. An efficient vaccine should be able to stimulate CD4 + T cells and 
B cells, so in the current study, the vaccine candidate was designed to contain linear 
and discontinuous epitopes to stimulate both CD4+ T cells and B cells. As NDMs 
are active enzymes, the natural form of these proteins cannot be used due to their 
adverse effects on β-lactam antibiotics. On the other hand, using denatured or par-
tially degraded forms can damage the discontinuous epitopes and hide or damage 
continuous epitopes. Therefore, we used a multi-epitope vaccine construct without 
any adverse enzymatic activity while providing the main discontinuous and continu-
ous epitopes of the original protein.

In this study, 2194 sequences of NDM variants expressed in different pathogens 
were used to obtain a conserved sequence. The purpose of obtaining a conserved 
sequence was to have common epitopes between the NDMs of all pathogenic bac-
teria to have a vaccine construct with a wide range of potential applications. Con-
tinuous B cell epitope and T cell CD4 + epitopes were predicted by several servers 
or several algorithms and also the antigenicity and immunogenicity of these epitopes 
were calculated. Finally, four epitopes were selected, one for continuous B cell and 
three for CD4+ T cell (HLA-DR, HLA-DP, and HLA-DQ alleles). Also, the epitope 
conservancy of these four epitopes was obtained among 2194 initial sequences which 
demonstrated a very high conservancy of selected epitopes. Furthermore, population 
coverage was obtained for CD4+ T cell epitopes that showed a high percentage of 
coverage for most of the world regions including Europe, North America and, Asia.

According to the permutation of the final four epitopes, 24 different peptides were 
obtained that had different toxicity, allergenicity, and antigenicity. Six out of 24 primary 
peptides which demonstrated very high antigenicity, low toxicity, and lack of allergenic-
ity were selected. The third structure of the six peptides was modeled after adding CTB 
adjuvants with an EAAAK linker and creating six different vaccines, and the discontinu-
ous B cell epitope of all six vaccines was compared to different NDM proteins. Finally, it 
was observed that only in the second vaccine, there was a sequence with high similarity 
to a conserved discontinuous B cell epitope in original NDM proteins.

To stimulate innate immunity and prevent tolerance, the vaccine must be able to 
bind to innate immune receptors. Toll-like receptors (TLRs) activate innate immune 
cells such as neutrophils, monocytes, and dendritic cells (DCs), that lead to responses 
including expression of cell surface molecules and the production of cytokines. These 
responses contribute to the activation of the acquired immune system cells and pre-
vent tolerance. Herein, three extracellular TLRs including TLR1, TLR1-TLR2, and 
TLR4 have been evaluated in the docking analysis. These TLRs detect pathogen-asso-
ciated molecular patterns (PAMPs) in the vaccine adjuvant in the extracellular space. 
The docking of the vaccine construct with these TLRs demonstrated that they can 
bind through strong interactions. The predicted vaccine-TLRs complex eigenvalue 
was 2.129046e-05 which implies the stability of the vaccine-TLRs complex. Amino 
acids with correlated motions and rigid regions (stiffer springs) are present in the 
covariance and elastic network graphs, respectively. The presence of these amino 
acids implies a stable vaccine-TLR complex.



Page 17 of 24Fathollahi et al. BMC Bioinformatics          (2021) 22:458 	

The half-life of the vaccine was estimated in both in vitro and in vivo simulations using 
the ProtParam tool. For example, the stability in E. coli was predicted to be more than 
10 h, which provides the time required to extract the vaccine protein during the induc-
tion process. In addition, the vaccine construct was shown to be stable.

The results of immune simulation using the C-IMMSIM server showed that 70 days 
after the second dose of the NDM vaccine a much higher immune response against the 
NDM antigen was induced compared to a nonspecific antigen control group. In other 
words, the titer of antibodies increases rapidly after exposure to the specific antigen, and 
also the population of memory B cells, PLB cells, and T helper (Th) cells increased.

Finally, the protein sequence was Codon optimized for E. coli K12. The GC-Content 
vaccine (51.14) was very similar to the GC-Content E. coli K12 (50.73), which results in 
high-level protein expression in E. coli. The simulation results using the SnapGene tool 
confirmed that the recombinant vaccine construct can be expressed following cloning in 
the bacterium.

In the current study, immunoinformatic methods were used to find epitopes to design 
a vaccine construct with high antigenicity to specifically stimulate the immune system 
to prevent the NDMs adverse effects. In the current study, epitopes from several shared 
regions of the enzyme (NDM) were used simultaneously. The selected epitopes are highly 
conserved as we demonstrated their presence in all members of a collection of avail-
able sequences of NDMs including a large number of isoforms and possible mutations. 
Therefore, the appearance of mutations in these regions is improbable. Furthermore, as 
we used multiple epitopes simultaneously, the immune system of the immunized organ-
ism produces multiple antibodies against the vaccine candidate. The multiple antibodies 
prevent resistance even in case of mutation occurs in some of the epitopes. Indeed, this 
vaccine candidate mimics the combination therapy strategy regarding its resistance to 
antibiotics resistance. The current study demonstrated that designing a vaccine based on 
a conserved sequence of NDMs can stimulate immune responses efficiently. However, it 
is crucial to test the vaccine construct in animal and human studies to verify the results. 
Furthermore, the immune stimulation is not enough to approve a vaccine. It should be 
considered that even if the vaccine stimulates the immune system effectively, it does not 
necessarily mean that it can be effective in the human model. Therefore, it is obligatory 
to assess the efficacy and efficiency of the vaccine in both animal models and human vol-
unteers for a long duration of time.

Conclusion
Antibiotics resistance, especially through NDMs, is on the rise today and is referred to 
as a global health crisis. Although the efforts have so far focused only on developing new 
antibiotics, one of the best ways to avoid antibiotic resistance is preclusion through pre-
venting excess antibiotic use or designing a resistance inhibiting vaccine. In this study, 
immunoinformatics strategies were used to design a vaccine against different variants 
of NDMs that could produce a favorable response in CD4+ T cells and B cells. The vac-
cine has also been shown to be able to bind to TLRs stably to ensure eliciting immune 
responses. The vaccine was also predicted to be stable and had a good half-life. The 
immune simulation showed that with two doses of vaccine injection a strong immune 
response to NDMs can be induced. Finally, the expression potential of the vaccine in the 
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bacterial host was confirmed by simulation methods. The implementation of multiple 
highly conserved epitopes in the NDMs makes the vaccine candidate resistant to anti-
biotics resistance. However, in vivo and community-level studies are required to ensure 
the efficacy and efficiency of the vaccine construct.

Methods
Protein sequence retrieval

The complete amino acid sequences of NDM-1 to NDM-29 were retrieved from the 
NCBI database (https://​www.​ncbi.​nlm.​nih.​gov/​prote​in) in May 2020. The search con-
tained enzymes with the same name but a different structure that was expressed by 
non-pathogenic bacteria. These non-pathogenic bacteria, namely Kocuria rhizophila, 
Planctomycetes bacterium Pan265, Sphingomonadales bacterium, and Acinetobacter 
nosocomialis were removed from the search. Furthermore, the word “cloning vector” 
was also removed due to the existence of a cloning vector with the same name. Finally, 
2201 sequences were obtained and were aligned using Clustal Omega software by mul-
tiple sequence alignment (MSA). Furthermore, seven sequences with a large gap at the 
beginning or the end of the sequence were considered as partial sequences and removed 
from the MSA results. The NCBI accession numbers of removed partial sequences were 
AQT38377.1, WP_063860857.1, QID22101.1, PIL86686.1, PIL65196.1, APY22234.1, and 
BBE58699.1. Finally, the 2194 remaining sequences were re-aligned to obtain the con-
served regions by Clustal Omega software.

Secondary structure

Protein secondary structure including surface accessibility, Alpha helix, beta-strand, 
Coil, and disorder in an amino acid sequence was obtained using NetSurfP-2.0 Server 
(https://​servi​ces.​healt​htech.​dtu.​dk/​servi​ce.​php?​NetSu​rfP-2.0). NetSurfP-2.0 is a 
sequence-based server meaning that it can predict local structural features of proteins 
from the initial sequence, and “uses an architecture composed of convolutional and long 
short-term memory neural networks trained on solved protein structures”. The Net-
SurfP-2.0 server calculates second structures including helix, strand, and coil, as well as 
relative solvent accessibility (RSA) and disorder.

Continuous B cell epitope

Sequential linear amino acid sequences are called continuous epitopes. Continuous B 
cell epitopes were retrieved from LBtope (https://​webs.​iiitd.​edu.​in/​ragha​va/​lbtope/), 
ABCpred (https://​webs.​iiitd.​edu.​in/​ragha​va/​abcpr​ed/) and SVMTriP (http://​sysbio.​unl.​
edu/​SVMTr​iP/). These three Servers work based on different algorithms. The LBtope 
server contains three models in three different datasets, including Fixed, Variable, and 
Confirm models. The Fixed model predicts only linear B-cell epitopes of 20 residues, 
while the Variable-model, which was used in this study, predicts variable-length B-cell 
epitopes. Finally, Confirm model predicts the desired continuous B cell epitopes based 
on experimentally validated data by two or more studies [27]. The ABCpred server uses 
an artificial neural network based on machine-learning technique and predicts fixed 
lengths of 10, 12, 14, 16, and 20 residues [28], that in the current study epitopes with 
16 residues were selected. SVMTriP is based on Support Vector Machine (SVM) which 

https://www.ncbi.nlm.nih.gov/protein
https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0
https://webs.iiitd.edu.in/raghava/lbtope/
https://webs.iiitd.edu.in/raghava/abcpred/
http://sysbio.unl.edu/SVMTriP/
http://sysbio.unl.edu/SVMTriP/
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works by combining Tri-peptide similarity and Propensity scores (SVMTriP) [29]. This 
server can also predict epitopes with lengths of 10, 12, 14, 16, and 20 residues. Herein, 
epitopes with a length of 16 residues were selected. The optimum epitopes were consid-
ered as the amino acid sequences standing among the top five scoring epitopes in at least 
one of the servers, and, the related scores stand higher than the threshold in at least one 
of the other two servers.

T cell CD4+ epitope

The Allele Frequency Net Database (AFND) (http://​www.​allel​efreq​uenci​es.​net/​hla.​asp) 
was used to determine the frequent HLA-DP and HLA-DQ haplotypes and the HLA-DR 
alleles in Iran and European countries.

The T cell epitopes were predicted using the IEDB MHC II prediction tool (http://​
tools.​immun​eepit​ope.​org/​mhcii/). Consensus method was used which combines NN-
align (NetMHCII 2.2), SMM-align (NetMHCII 1.1), CombLib, and Sturniolo [30]. 
Fifteen amino-acids length epitopes were selected. Finally, the scores obtained by the 
Consensus method were retrieved and the stacked column chart was drawn for HLA-
DR, HLA-DP, and HLA-DQ. The length of peptides binding to MHC class II is usually 
between 13 and 17 amino acids, although shorter or longer length peptides can also bind 
to the groove of the MHC class II [31, 32], in the current study we adopted the server 
default length of 15 amino acids.

Prediction of antigenicity and immunogenicity of peptide fragments

The antigenicity of epitopes obtained from B cell and T cell prediction servers was cal-
culated by the VaxiJen v3.0 server (https://​www.​ddg-​pharm​fac.​net/​vaxij​en3/). Unlike 
most methods, the VaxiJen v3.0 server uses an alignment-free approach and is based on 
auto-cross covariance (ACC) transformation of protein sequences into uniform equal-
length vectors [33]. The T cell immunogenicity was predicted by the IEDB server (http://​
tools.​immun​eepit​ope.​org/​CD4ep​iscore/). The IEDB recommended algorithm is a com-
bination of the 7-allele method and the immunogenicity method, which is more accurate 
comparing to single methods [34].

Epitope conservancy

The percentage of the protein sequences identity was calculated by the Epitope Con-
servancy tool (http://​tools.​iedb.​org/​conse​rvancy/) to obtain identity or the degree of 
correspondence (similarity) of the final epitopes to the 2194 initial sequences. “Epitope 
linear sequence conservancy” analysis type was selected and other parameters were kept 
in default.

Population coverage

T cells are only able to detect the peptide-MHC complex and therefore they only 
respond to the antigens when the MHC molecule can bind to fragments of antigen-
related epitopes. The IEDB population coverage analysis tool (http://​tools.​iedb.​org/​
popul​ation/) was used to examine the population coverage of selected T cell epitopes in 
the world population as well as in Iran. The selected MHC alleles were the same alleles 
used in T cell epitope prediction servers.

http://www.allelefrequencies.net/hla.asp
http://tools.immuneepitope.org/mhcii/
http://tools.immuneepitope.org/mhcii/
https://www.ddg-pharmfac.net/vaxijen3/
http://tools.immuneepitope.org/CD4episcore/
http://tools.immuneepitope.org/CD4episcore/
http://tools.iedb.org/conservancy/
http://tools.iedb.org/population/
http://tools.iedb.org/population/
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Toxicity, allergenicity, and antigenicity of peptides

Four selected epitope fragments were permutated to obtain all possible states of the final 
peptide. These epitope fragments were joined by glycine-proline-rich GPGPG linkers. 
All permutation-derived peptides were evaluated for toxicity using the ToxDL server 
(http://​www.​csbio.​sjtu.​edu.​cn/​bioinf/​ToxDL/), Allergenicity was assessed by AllerTOP 
v.2.0 (http://​www.​ddg-​pharm​fac.​net/​Aller​TOP/) and AllergenFP v.1.0 (http://​www.​ddg-​
pharm​fac.​net/​Aller​genFP/) servers, and antigenicity was assessed by VaxiJen v3.0 server. 
ToxDL server is based on interpretable deep learning which is consists of two main com-
ponents, one component is based on CNNs and the other based on multilayer percep-
tron with domain information [35]. Toxicity less than 0.05 was considered as a threshold. 
AllerTOP v.2.0 and AllergenFP v.1.0 based on auto-cross covariance (ACC) transforma-
tion of protein sequences into uniform equal-length vectors, that 2427 known allergens 
and 2427 non-allergens classified by the k-nearest neighbor algorithm (kNN, k = 1).

Adjuvant and vaccine construct

Adjuvant improves immune system responses and thus leads to a strong and long-lasting 
response and prevents tolerance. Cholera toxin subunit B (CTB) is a non-toxic compo-
nent of cholera toxin that has a high tendency to bind to the monosialotetrahexosyl-
ganglioside (GM1) receptor on immune cells such as macrophages, dendritic cells, and 
B cells, thereby stimulating these cells. The CTB sequence was retrieved from the Uni-
prot database with an entry identifier as P01556. Finally, CTB was added by the EAAAK 
linker to the N-terminal of peptides.

Vaccine‑structure modeling and validation

The three-dimensional (3D) structure of final vaccine candidates was modeled by the 
RaptorX server (http://​rapto​rx.​uchic​ago.​edu/​Conta​ctMap/), which is a distance-based 
protein folding server powered by deep learning. RaptorX server provides root-mean-
square deviation (RMSD) for each proposed structure in angstroms (Å), which is the 
measure of the average distance between the atoms for each proposed structure. The 
six vaccine constructs were loaded on the RaptorX server and resulted in five proposed 
models. Validation of the five proposed RaptorX models of each vaccine construct was 
performed using the MolProbity server (http://​molpr​obity.​bioch​em.​duke.​edu/), which 
calculated the values of favored rotamers, Ramachandran favored and Rama-Z score, 
and also designed the Ramachandran plot. Consequently, the top model based on Mol-
Probity was selected for each one of the vaccine constructs.

Discontinuous B cell epitope

Discontinuous B cell epitope Vaccines were evaluated by the ElliPro server (http://​tools.​
iedb.​org/​ellip​ro/). Also, protein data bank (PDB) IDs of twelve different NDM proteins 
were extracted from the PDB database (https://​www.​rcsb.​org/) and examined regarding 
Discontinuous epitopes by ElliPro server. Finally, the epitope sharing between vaccines 
and primary proteins was investigated and a heatmap of the final sequence was designed 
by R software [36].

http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/
http://www.ddg-pharmfac.net/AllerTOP/
http://www.ddg-pharmfac.net/AllergenFP/
http://www.ddg-pharmfac.net/AllergenFP/
http://raptorx.uchicago.edu/ContactMap/
http://molprobity.biochem.duke.edu/
http://tools.iedb.org/ellipro/
http://tools.iedb.org/ellipro/
https://www.rcsb.org/
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Molecular docking of multi‑epitope vaccine with TLR receptors

To test whether the final vaccine was capable of inducing innate immunity, the innate 
immune receptors Toll-like receptor 1 (TLR1), TLR1-TLR2 heterodimer, TLR2, 
TLR4, and TLR4 / MD-2 heterodimer were docked with the vaccine candidate by 
PatchDock server (https://​bioin​fo3d.​cs.​tau.​ac.​il/​Patch​Dock/). The docking algorithm 
of this server is based on Shape Complementarity Principles [37, 38]. Global binding 
energy that consists of attractive and repulsive van der Waals (VdW) forces, atomic 
contact energy (ACE), and hydrogen bond (HB) were calculated by FireDock server 
(https://​bioin​fo3d.​cs.​tau.​ac.​il/​FireD​ock/) [39]. The top 10 results of the PatchDock 
server were refined by the FireDock server to rank the receptor-ligand complex based 
on global energy. To better verify the results, the protein-receptor complexes which 
were identified by FireDock as the complexes with the lowest global energy were re-
checked by Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) which 
is provided by the HawkDock server (http://​cadd.​zju.​edu.​cn/​hawkd​ock/). Further-
more, to observe the vaccine-TLR complex interactions, the DIMPLOT program in 
LigPlot + software was used for visualization.

Normal mode analysis

The iMODS server (http://​imods.​chaco​nlab.​org/) was used to evaluate the stability of 
the vaccine-receptor complex. This server is based on Normal mode analysis (NMA) 
in internal (dihedral) coordinates, which can predict collective motions of macromol-
ecules, including proteins. This server calculates deformability, B-factor, eigenval-
ues, variance, covariance map, and elastic network for the vaccine-receptor complex. 
Deformability is the ability of a molecule to deform each of its residues. The B-factors 
in PDB files are used to measure mobility in macromolecules, including proteins. In 
this server, B-factors are also derived from NMA by multiplying the NMA mobility. 
Eigenvalue indicates motion stiffness and its value is directly related to the deforma-
tion of the structure, i.e. the lower the value, the easier it is to deform the structure of 
the macromolecule. The variance is related to normal mode and is inversely related to 
the eigenvalue. The covariance matrix represents the bond between pairs of residues 
and determines the correlated, uncorrelated, or anti-correlated motions. The elastic 
network identifies pairs of atoms connected by a spring [40–42]. The vaccine-TLR 
complexes were introduced to the iMODS server. The server predicted the stability or 
un-stability of the complex by calculation of deformability, B-factor, eigenvalues, vari-
ance, covariance map, and elastic network for the vaccine-receptor complex and gave 
the results in the form of graphs.

Two main factors are required to predict the stability of molecular complex using 
iMODS server; coarse-grained atomic modeling and Elastic Network Mode (ENM). 
The coarse-grained atomic modeling has three types including CA, C5, and HA 
atomic models. In the current study, the CA atomic model has been used in which 
Cα atoms are considered as a representative of the whole residue mass. Furthermore, 
there are four types of ENM among which we used the edNMA model that is a molec-
ular dynamics (MD) based ENM to predict the Cα-Cα interactions. In the edNMA 
model, it is not required to set any user-specified cut-off values.

https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://bioinfo3d.cs.tau.ac.il/FireDock/
http://cadd.zju.edu.cn/hawkdock/
http://imods.chaconlab.org/
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Physiochemical evaluation of vaccine

Physicochemical properties were calculated by the ProtParam tool (https://​web.​expasy.​
org/​protp​aram/). The most important characteristic that the ProtParam tool calculates 
is the final vaccine construct half-live in mammalian reticulocytes and yeast and Escheri-
chia coli. It also calculates other characteristics including Molecular weight, chemical 
formula, the total number of negatively (Asp + Glu) and positively (Arg + Lys) charged 
residues, theoretical isoelectric point (pI), Instability index, aliphatic index, and grand 
average of hydropathicity (GRAVY).

Immune simulation

C-IMMSIM server (http://​kraken.​iac.​rm.​cnr.​it/C-​IMMSIM/​index.​php?​page=1) was 
used to evaluate the immune stimulation and obtain immune response profile by in sil-
ico simulation. This server uses the Celada-Seiden model to obtain the immune response 
profile of the vaccine in the mammalian immune system [43]. Vaccine injection without 
LPS was selected and two doses of the vaccine were adjusted at 90 eight-hour-long steps 
that equal to a 30 days interval. In addition, the exposure to the NDM antigen was simu-
lated by introducing a dose of NDM-1 300 eight-hour-long steps equals 100 days after 
the first dose of the final vaccine construct. Furthermore, the “RNA polymerase sigma-
70 factor” was used as a non-specific antigen in a control group. The specific antigen 
for the vaccine was “subclass B1 metallo-beta-lactamase NDM-1” with QIV52529 acces-
sion number in the NCBI database that is expressed by the gram-negative bacterium 
Klebsiella pneumoniae. The nonspecific antigen was “RNA polymerase sigma-70 factor” 
which is accessible by the entry identifier A0A016CK04 in the UniProt database. This 
protein is expressed in the Bacteroides fragilis gram-negative bacterium. The Simulation 
period was set on 1100 eight-hour-long steps (i.e. about one year). Other parameters 
were set on default settings.

Codon‑optimization and cloning

The Java Codon Adaptation Tool (JCat) for codon optimization and reverse translation 
was used to build the cDNA sequence, which improves translation efficiency in E. coli 
K12. To express the optimized sequence of the final vaccine construct, it was inserted 
into the ET-28a (+) vector by the SnapGene tool (https://​www.​snapg​ene.​com/​try-​snapg​
ene/).
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base; ACC​: Auto-cross covariance; CTB: Cholera toxin subunit B; GM1: Monosialotetrahexosylganglioside; VdW: Van der 
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NMA: Normal mode analysis; GRAVY: Grand average of hydropathicity.
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Additional file 2: Figure 1. Interacting residues between docked Chain V from vaccine with chain A or chain B (or 
both) from TLR1-TLR2 (a) and TLR4 (b, c). The green, red, and brick red dashed lines represent hydrogen bonds, salt 
bridges, and hydrophobic interactions, respectively.

Additional file 3: Figure 2. Molecular dynamics simulation of the vaccine with TLR1-TLR2 (a) and TLR4 (b, c) com-
plex. The graphs represent (I) Deformability, (II) B-factor, (III) Eigenvalues, (IV) Variance, (V) Covariance map (VI) Elastic 
network.
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