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Exercise interventions in chronic kidney disease (CKD) have received growing interest, with over 30 meta-

analyses published in the past 5 years. The potential benefits of exercise training in CKD range from

slowing disease progression to improving comorbidities and quality of life. Nevertheless, there is a lack of

large, randomized control trials in diverse populations, particularly regarding exercise in nondialysis-

dependent CKD (NDD). When exercise interventions are implemented, they often lack fundamental fea-

tures of exercise training such as progressive overload, personalization, and specificity. Furthermore, the

physiology of exercise and CKD-specific barriers appear poorly understood. This review explores the

potential benefits of exercise training in NDD, draws lessons from previous interventions and other fields,

and provides several basic tools that may help improve interventions in research and practice.
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S
tructured exercise is a promising form of inter-
vention in CKD (Figure 1)1-12 and has been added

to expert clinical care recommendations.13 Research on
the effects of exercise training in CKD has mainly
focused on patients on dialysis, with at least 20 meta-
analyses (Supplementary Table S1) and an umbrella
review14 published since 2018. Exercise training in
patients with NDD, who differ in both clinical care and
physiological status, has received relatively less atten-
tion. Nevertheless, there have been over a dozen recent
meta-analyses on the effects of exercise training on
various clinical outcomes in NDD (Table 1).15-27

Although systematic reviews represent the highest
quality of research on the evidence pyramid, these
analyses often report conflicting or null results, and
much remains to be learned from well-designed
interventional studies. This narrative review will
discuss the results of recent meta-analyses, draw les-
sons from the literature, and direct the reader to other
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relevant manuscripts and resources. For a similar re-
view in patients on dialysis, see the recent review by
Thompson et al.28 and for a quantitative review of
exercise across all stages of CKD the clinical practice
guidelines published in 2022 by Baker et al.13
Requirements for Inducing Exercise Training

Adaptations

Exercise as medicine is a paradigm that has been
around for hundreds if not thousands of years29;
however, implementation in clinical practice has lagged
behind.30 Basic requirements for inducing training
adaptations, such as progressive overload, personali-
zation, and specificity,31,32 are briefly covered here to
facilitate our discussion.

Exercise provides a stimulus to the body by stress-
ing a system (cardiovascular, musculoskeletal, etc.) to a
degree greater than it is accustomed to. Although there
is an acute response to this “overload” from a single
bout of exercise, adaptation requires consistently
repeated bouts, known as exercise training. The effects
of exercise training are then the sum of the responses to
single exercise bouts. As the body adapts, exercise
capacity improves, and the amount of stimulus needed
to overload the system increases. As a result, exercise
training must continually increase in frequency,
3097
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Figure 1. Exercise helps combat pathology in nondialysis chronic kidney disease. More than 1 in 7 US adults are estimated to have chronic
kidney disease (CKD) and as many as 9 in 10 are unaware of their condition.1 Comorbidities are extremely common in CKD, specifically high
blood pressure,2 cardiovascular disease,3 diabetes,4 dyslipidemia,5 muscle wasting,6 bone abnormalities,7 and potentially increased suscep-
tibility to tendon injury.8,9 The coincidence of such broad-ranging pathologies is likely due to the vast physiological roles of the renal system,
including the excretion of metabolic waste, termination of humoral signaling, regulation of blood pressure and volume, endocrine signaling,
preservation of acid-base and electrolyte balance, maintenance of hematocrit levels, and involvement in the calcium-parathyroid hormone-
vitamin D axis. Unsurprisingly, populations with CKD report lower health-related quality of life (HRQL)10 and have higher rates of hospitalization
and mortality compared to healthy populations.11 Although individuals with nondialysis dependent (NDD) CKD also often exhibit poor exercise
capacity,12 engagement in regular aerobic and resistance exercise can greatly improve health and well-being in this population as covered in
this review. Created with BioRender.com.
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intensity, volume, or duration (also known as “pro-
gressive overload”) until the desired physiological
outcome is attained.

Individuals with worse baseline status often show
the greatest improvements in response to exercise.33

However, the stimulus needed for large improve-
ments in low-fit individuals would be insufficient to
overload those with greater baseline fitness. Thus, a
one-size-fits-all intervention is not appropriate for ex-
ercise studies. Training programs must be personalized
to individuals by modulating frequency, intensity,
time, type, volume, and progression,34 ideally using
3098
the guidance of physiological35 or performance
markers.36 One approach to optimizing personalization
is the “needs analysis”. Borrowed from the field of
sports performance, a needs analysis is a systematic
process for determining the difference between the
current state and a goal state to guide intervention
design. In Figure 2, we present a needs analysis guide
adapted from Scroggs and Simonson37 for use with
patients with CKD.

Much like traditional medicine, the benefits of ex-
ercise are dependent on specific physiological mecha-
nisms; however, these are often overlooked. The
Kidney International Reports (2024) 9, 3097–3115
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Table 1. Significant effects of exercise interventions on clinical outcomes in CKD from recent meta-analyses

Study CKD stage Exercise types (Durations)
Evaluated outcomes with significant effectsa (effect size, 95% confidence

intervals, number of studies)

Baião et al.,15 2023 1–5 AT and/or RT (8–96 wk) IL-6 (�0.64 SMDb, �1.01 to �0.27, n ¼ 5)

Ferreira et al.,16 2021 1–3 and HD ATþRT, guided breathing, Pilates (8–48 wk) Depression (�0.66 SMDb, �1.00 to �0.33, n ¼ 3), anxiety (�0.78 SMDb,
�1.21 to �0.24, n ¼ 2)

Junqué-Jiménenz et al.,17 2022 3–5 Home-based AT or ATþRT (12–52 wk) 6MWT (44.8 mb, 30.6–59.0, n ¼ 5), sit-to-stand test time (�0.45 SMDb, �0.64
to �0.26, n ¼ 3), timed up-and-go (�0.77 sb, �1.38 to �0.16, n ¼ 2), SF-36
role physical (15.62b, 5.55–25.69, n ¼ 3), SF-36 general health (8.42b, 2.36–

14.47, n ¼ 3), HAD scale depression (�1.88b, �3.05 to �0.71, n ¼ 1)

Nakamura et al.,18 2020 1–5 AT and/or RT (8–78 wk) Aerobic capacityc (2.75 ml/kg/minb, 1.73–3.76, n ¼ 4), timed up-and-go
(�0.72 sb, �1.21 to �0.24, n ¼ 3)

Neale et al.,19 2023 1–5 Unspecified (12–78 wk) None

Pei et al.,20 2019 2–5 AT (10–52 wk) Aerobic capacity (2.08 ml/kg/mind, 1.1–3.05, n ¼ 17), exercise duration
(155 sd, 86–225, n ¼ 6), HDL (3.54 mg/dld, 0.43–6.65, n ¼ 6), SF-36 pain

(5.94d, 1.65–10.23, n ¼ 6)

Thompson et al.,21 2019 NDD 3–5 AT, ATþRT, or Tai Chi (12–156 wk) Resting SBP after 12–16 weeks (�4.9 mm Hgb, �8.8 to �1.0, n ¼ 8), after 24–
26 weeks (�10.9 mm Hgb, �15.8 to �6.1, n ¼ 4), resting DBP after 24–26
weeks (�6.2 mm Hgb, �10.9 to �1.5, n ¼ 4), 24 h ambulatory SBP (�18.0
mm Hgb, �29.9 to �6.1, n ¼ 1), 24 h ambulatory DBP (�9.0 mm Hgb, �17.7

to �0.29, n ¼ 1)

Villanego et al.,22 2020 NDD 1–5 AT and/or RT (12–52 wk) Hemoglobin (0.3 SMDd, 0.1–0.5, n ¼ 4), aerobic capacity (2.66 ml/kg/mind,
1.61–3.71, n ¼ 9), 6MWT (56.6md, 28.9–84.3, n ¼ 6), bicep curl repetitions
(6.8d, 4.9–8.6, n ¼ 2), BMI (�0.89 kg/m2d, �1.47 to �0.31, n ¼ 10), waist

circumference (�3.33 cmd, �5.95 to �0.72, n ¼ 5)

Wu et al.,23 2020 NDD 1–5 AT þ RT (5–52 wk) eGFR (5.01 ml/min per 1.73 m2b, 2.37–7.65, n ¼ 6; 3.01 ml/min per 1.73 m2e,
0.86–5.16, n ¼ 9), serum creatinine (�8.57 mmol/lb, �13.71 to �3.43, n ¼ 3;
�6.33 mmol/le, �10.23 to �2.44, n ¼ 5), aerobic capacity (0.55 l/minb, 0.31–
0.80, n ¼ 2), SBP (�5.2 mm Hge, �7.9 to �2.5, n ¼ 7), DBP (�3.6 mm Hge,

�5.4 to �1.9, n ¼ 6)

Wu et al.,24 2022 NDD 1–5 AT and/or RT (12–52 wk) BMI (�0.77 kg/m2d, �1.31 to �0.23, n ¼ 14), waist circumference (�3.11
cmd, �5.25 to �0.97, n ¼ 5), body weight when BMI > 25 (�2.18 kgd, �3.81
to �0.54, n ¼ 9), when intervention > 48 wk (�2.52 kgd, �4.28 to �0.77,

n ¼ 5)

Vanden Wyngaert et al.,25 2018 3–4 AT or ATþRT (12–52 wk) eGFR (2.16 ml/min per 1.73 m2d, 0.18–4.13, n ¼ 10), SBP (�5.2 mm Hge,
�9.4 to �1.0, n ¼ 8), aerobic capacity (2.39 ml/kg/minb, 0.99–3.79, n ¼ 11;

1.70 ml/kg/mine, 0.65–2.74, n ¼ 11)

Yang et al.,26 2020 1–5 AT or ATþRT (12–56 wk) Urinary albumin-to-creatinine ratio (0.21 SMDe, 0.04–0.38, n ¼ 7)

Zhang et al.,27 2019 NDD 2–5 AT and/or RT (6–52 wk) eGFR (2.62 ml/min per 1.73 m2d, 0.42–4.82, n ¼ 12), SBP (�5.6 mm Hgd, �9
to �2.2, n ¼ 9), DBP (�2.9 mm Hgd, �3.7 to �2.1, n ¼ 8), total cholesterol
after interventionsf < 6 mo (14.6 mg/dld, 3.8–25.5, n ¼ 7), triglycerides after

interventions < 3 mo (�94.8 mg/dlb, �148.8 to �40.9, n ¼ 2), after
interventions > 3 mof (45.9 mg/dlb, 17.8–73.9, n ¼ 4), BMI (�1.32 kg/m2b,

�2.39 to �0.25, n ¼ 9),

6MWT, 6-minute walk test; AT, aerobic training; BMI, body mass index; CKD, chronic kidney disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HAD,
hospital anxiety and depression; HD, hemodialysis; HDL, high-density lipoprotein; IL, interleukin; NDD, non-dialysis-dependent CKD; RT, resistance training; SBP, systolic blood pressure;
SF-36, Short Form Health Survey for evaluating health-related quality of life; SMD, standard mean difference.
aP # 0.05 and a heterogeneity I2 # 50% when reported.
bBetween group analysis of post-intervention values,
cBy subgroup analysis including only center-based exercise studies.
dBetween group analysis of the change elicited by intervention.
eWithin group analysis of the change elicited by intervention.
fEffect in a detrimental direction.
Analyses differed in methodology such as comparison type (e.g., within-group vs. between-group), modeling (fixed vs. random effects), etc. Please see corresponding studies for
caveats, estimates of clinical significance, and further information when interpreting.
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principle of specificity, states that training adaptations
are specific to the elicited stimulus.38 On a macro-scale,
specificity can be very simple; if improved sit-to-stand
performance is desired, then the muscles involved in
sit-to-stand should be exercised in a similar pattern and
duration as required by the test. However, specificity
becomes more complicated when trying to elicit adap-
tations such as decreasing chronic inflammation in
NDD. It is thus imperative to know the physiological
signals, adaptive mechanisms, best training stimulus,
and CKD-related pathological barriers that may impede
these processes. With this in mind, we have created a
Kidney International Reports (2024) 9, 3097–3115
specificity chart for several commonly desired adapta-
tions (Figure 3,39-41 Supplementary Table S2).

Challenges to Successful Exercise Interventions

Exercise adaptations are notoriously variable in healthy
individuals.42 Although these varied responses can be
due to genetic differences, they are often the result of
inadequate consistency in effort, intensity, and
adherence across individuals or differences in baseline
status.33,43,44 The pathological state that accompanies
CKD, however, clearly creates further physical, phys-
iological, and practical hurdles to exercise adaptations.
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Figure 2. Needs analysis guide for developing exercise interventions for chronic kidney disease patients. Interventions should start with a
comprehensive evaluation of patient status. This is followed by the determination of what optimal health looks like, incorporating the desires
of both the practitioner and the patient. Next, “needs” can be identified, where a need is the gap between the patient’s status and the goal
state. Needs should then be prioritized because it may not be possible to give each one equal attention. Finally, the patient and practitioner
should work together to evaluate potential constraints and resources that will impact progress. With this needs analysis, the practitioner can
then design an intervention that targets an individual’s deficits while accounting for their physical limitations and constraints and leveraging
their resources. 6MWT, 6-minute walk test; CKD, chronic kidney disease; CPET, cardiopulmonary exercise test; STS, sit-to-stand; TUG, timed
up-and-go.
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Physical Challenges

Physical challenges are defined here as factors that
make the act of regularly exercising more difficult.
Individuals with CKD are afflicted with muscle
wasting,6,45-47 neurocirculatory dysregulation,48 pul-
monary dysfunction,49 and a lower aerobic capac-
ity,50,51 all likely leading to decreased physical
function52 and exercise intolerance.53 In focus groups
of nonexercising patients with stage 3–4 CKD, fatigue is
the most common self-reported barrier to exercise.54

Perceived fatigue is higher in patients with NDD
than in healthy controls even in the absence of greater
muscle fatigue (i.e., a decline in strength with pro-
longed contractions).55 Nevertheless, there is growing
evidence of impaired muscle energetic function in
CKD56 that may contribute to physical limitations. This
impairment is evident even during submaximal exer-
cise whether57,58 or not59,60 an oxygen (O2) delivery
limitation also exists and may be due to a build-up of
harmful serum metabolites such as kynurenine.61,62

Compared to healthy controls, individuals with NDD
demonstrate a lower muscle oxidative capacity, which
is strongly associated with poorer 6-minute walk test
(6MWT) performance.63,64 NDD also leads to greater
mitochondrial uncoupling at rest,64,65 which increases
3100
the amount of O2 needed to generate energy. Greater
uncoupling during exercise would cause increased O2

consumption, which has been associated with slower
walking speeds and greater fatigability in older
adults.66,67

Across patients with CKD, decrements in muscle
mass,68 physical function,69 aerobic70 and exercise ca-
pacity71 increase with disease severity. Other factors
such as the degree of bicarbonate deficiency or meta-
bolic acidosis further contribute to impairments in
muscle oxidative capacity,64 muscle endurance, and
exercise blood pressure (BP) regulation.72 Mobility
impairment73 and musculoskeletal pain74 are also
common, which may make certain exercises more
difficult. Thus, many disease-related complications may
contribute to decreased physical capacity in CKD.
Designing interventions that stimulate exercise adap-
tation with minimal duration may help limit fatigue-
related deterrence. For example, just two 14-minute
sessions of high-intensity interval training per week
for 12 weeks was sufficient to increase absolute aerobic
capacity by approximately 10% in severely obese non-
CKD individuals.75 Due to the significant heterogeneity
of CKD symptoms,76 blanket implementation of exer-
cise programs will likely lead to inconsistent adherence
Kidney International Reports (2024) 9, 3097–3115



Figure 3. Specificity chart template for organizing important factors for exercise prescription in chronic kidney disease. This chart is not meant
to be absolute or comprehensive but can serve as a template that can be edited and added to in conjunction with the needs analysis. For more
information regarding exercise adaptations and their molecular signals, see recent reviews by Dent et al.,39 Egan and Sharples,40 and McGee
and Hargreaves.41 ACE, angiotensin-converting enzyme; AMP, adenosine mono-phosphate; ARBs, angiotensin receptor blockers; ATP, aden-
osine tri-phosphate; CRP, C-reactive protein; IGF, insulin-like growth factor; IL, interleukin; LVH, left ventricular hypertrophy; mTORC, mammalian
target of rapamycin complex; NAD, nicotinamide adenine dinucleotide; NO, nitric oxide; PTH, parathyroid hormone; RAAS, renin angiotensin
aldosterone system; ROS, reactive oxygen species; SNS, sympathetic nervous system; TNF, tumor necrosis factor; VEGF, vascular endothelial
growth factor. Additional resources can be found in Supplementary Table S2.
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and personalization may need to be valued over
standardization. Providing modified or alternative
exercises and pain management strategies may keep
this from impeding participation. Because the physical
capacity to perform exercise is an inherent prerequi-
site for training, interventions in CKD may need to be
initiated at intensities that would normally be
considered suboptimal for health benefits and pro-
gressed over time.

Physiological Challenges

Physiological challenges include CKD features that
have the potential to impair the adaptative responses to
exercise training. These include chronic uremia,
metabolic acidosis, inflammation, insulin resistance,
electrolyte imbalance, volume overload, endothelial
dysfunction, low hematocrit, acid-base and mineral
disturbances, etc. In general, these can be separated
into mechanisms that may inhibit aerobic or resistance
training adaptations.

Currently, there is insufficient evidence to determine
whether CKD blunts aerobic training adaptations,
Kidney International Reports (2024) 9, 3097–3115
though cardiovascular limitations seem likely (see the
Aerobic Capacity section). Kirkman et al. 77 found that
patients with NDD (mean � SD estimated glomerular
filtration rate, eGFR ¼ 44 � 12 ml/min per 1.73 m2) ob-
tained only half of the increase in aerobic capacity re-
ported in the general aging population in response to 12
weeks of aerobic training. However, this trial used
control data from separate studies and thus could not
account for training effort, intensity, adherence, or
baseline status and medication use. Evidence of blunted
molecular responses to aerobic exercise that may impact
adaptation is scarce. One study of muscle gene expres-
sion responses to a single bout of cycling found similar,
but less pronounced, mRNA changes in patients with
end-stage CKD compared to healthy individuals (r ¼
0.79; P < 0.01). However, this was a small study (n¼ 5)
that also relied on external control data, making consis-
tency hard to verify.78 Another study found 1 micro-
RNA (miR-146a; associated with inflammation) that
exhibited a varying response to maximal exercise be-
tween healthy and CKD (eGFR ¼ 46 � 23) subjects;
however, the relevance of this finding remains unclear.79
3101
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Limited data suggest that muscle hypertrophic
signaling may be blunted by CKD; however, impaired
muscular adaptation has not been directly shown in
humans. Aberrant molecular signaling in CKD leads to
altered protein turnover and muscle wasting, pur-
portedly due to chronic inflammation, metabolic
acidosis, elevated glucocorticoids, and other mecha-
nisms that have been extensively reviewed.45-47,80-82

Many proposed mechanisms involve insulin/IGF-1
resistance and impaired IRS-1/PI3K/Akt signaling,
which are upstream of one of the main muscle hyper-
trophy pathways, mTORC1.83,84 In animal models of
CKD, basal deficiencies in IRS-1/PI3K/Akt signaling,
increased protein degradation, and decreased protein
synthesis have been reported.85,86 However, 7 days of
chronic muscle overload in 5 of 6 nephrectomized rats
has been reported to fully activate IRS-1/PI3K/Akt
pathways, resulting in hypertrophy similar to con-
trols.85 Although a deeper evaluation of these data re-
veals remaining deficiencies in mTORC1 and IRS-1
phosphorylation and questionable responses of total
IRS-1 compared to other reports.87 A similar study by
Wang et al. 86 found that chronic muscle overload
improved but did not completely rescue muscle size
and hypertrophy signaling in 5 of 6 nephrectomized
mice. Although these data demonstrate the potential for
impaired resistance training adaptation, one of the only
human training studies that compared NDD (GFR ¼ 17
� 5) to healthy controls found similar increases in
quadriceps strength (w2.4-fold) and endurance (w1.5-
fold) between groups.88

Practical Challenges

Practical barriers to exercise in CKD include insuffi-
cient funding for renal exercise programs, a lack of
renal education opportunities for the public and prac-
titioners, and poor accessibility of exercise equip-
ment.89 Patients with NDD in particular do not benefit
from the greater presence of exercise professionals and
programs that have fortunately been implemented in
many hemodialysis clinics.90 Well-designed home-
based exercise programs may help circumvent some of
these challenges. For example, Sian et al. 91 elicited
improvements in cardiorespiratory fitness, exercise
tolerance, BP, and cholesterol through just 4 weeks of
unsupervised home-based high-intensity interval
training in a general older adult population.91 In
addition, a small meta-analysis (n ¼ 8 trials) of home-
based exercise in CKD shows limited but consistent
evidence of improvements in physical function and
self-reported health metrics.17 Given the complexities
of exercise prescription in special populations, many
kidney health providers feel inadequately trained to
advise patients on physical exercise.92 The Global
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Renal Exercise Network (https://grexercise.kch.illinois.
edu/) suggests that increasing the number of exercise
professionals in renal care programs is the most effective
strategy for removing exercise barriers in CKD.89 In
addition, there is a disproportionate burden of CKD on
low-resourced and minority communities,93 requiring
investigators and practitioners to address disparities in
access to education, nutrition, exercise equipment, and
health care to improve outcomes equitably. This in-
cludes a special emphasis on enrolling participants from
these underrepresented groups into clinical trials to
ensure the generalizability of findings.

Results and Lessons From Previous

Interventions

Despite the growing acceptance of exercise as an
effective intervention in CKD94 and over 20 years of
related research,95 there is still a lack of large, ran-
domized control trials investigating the benefits of
exercise in NDD. The 13 meta-analyses in Table 1
collectively cited only approximately 47 unique trials
in NDD, most of which involved fewer than 50 par-
ticipants. Therefore, there is a paucity of data to draw
strong conclusions from. Furthermore, across meta-
analyses, there is inconsistent use of postintervention
values versus change from baseline for calculating ef-
fect size (ES), thereby likely increasing variability in
the findings. Given the challenges of exercise research,
it may be advantageous to view even inconsistently
demonstrated outcomes as potential benefits that can be
obtained with adequate interventional design. With
this in mind, we herein present a range of the pur-
ported benefits of exercise in NDD, though they differ
in strength of evidence.

Physical Function

Impaired physical function is common in CKD and is
associated with worse clinical outcomes, including
increased risk of cardiovascular disease and mortal-
ity.52,73,96-98 In NDD specifically, a meta-analysis by
Ribeiro et al. 99 found that low physical performance in
NDD results in a mortality hazard ratio of 2.04. Of the
meta-analyses in Table 1, exercise training was found
to improve 6MWT distance in 2 of 4 analyses (ES ¼
44.8 m and 56.6 m), timed up-and-go in 2 of 2
(ES ¼ �0.77s and �0.72s), and sit-to-stand in 1 of 3
(�0.45 standardized mean difference, SMD). When the
trials used in these meta-analyses are evaluated indi-
vidually, improvements in 6MWT, sit-to-stand, and
timed up-and-go are more consistently shown.100-105 At
least 7 studies100-106 have demonstrated changes in
6MWT distances greater than the minimally clinically
significant change of approximately 30 m suggested for
older adults with pathologies or pulmonary hyperten-
sion.107,108 Two of these studies also found significant
Kidney International Reports (2024) 9, 3097–3115
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improvements in self-reported physical function and
perception of energy or fatigue,100,103 supporting the
use of these tests as metrics of overall physical well-
being. Furthermore, in a retrospective longitudinal
study of patients with CKD (eGFR ¼ 30 � 27),
improvement in an incremental shuttle walking test
greater than 50 m was related to a significantly lower
risk of morbidity and mortality compared to “nonim-
provers” and unexercised controls.109 Together, the
currently available data suggest that exercise can
improve physical function, which may lead to better
long-term patient outcomes, and thus is a worthwhile
target for intervention.

Aerobic Capacity

Aerobic capacity is the maximal amount of O2 an in-
dividual can intake, deliver, and utilize during exer-
cise. Individuals with CKD have lower aerobic capacity
than healthy controls51 which worsens with disease
progression50 and is associated with increased cardio-
vascular burden110 and mortality.111 Five of 5 meta-
analyses in Table 1 found a significant effect of exer-
cise training on aerobic capacity (ES ¼ 2.08–2.75 ml/
kg/min).18,20,22,23,25 Improvements in aerobic capacity
as little as 6% have been suggested to be clinically
significant25,112,113 and a critical cut point of 17.5 ml/
kg/min has been shown to predict mortality.111 One of
the more impressive improvements in aerobic capacity
in NDD (eGFR ¼ 38 � 13), an increase of 5.8 ml/kg/
min, was elicited by Van Craenenbroeck et al. 114

through 3 months of cycling for 4 daily 10-minute
sessions at 90% of anaerobic threshold heart rate.
The volume of this intervention (40 minutes daily) is
significantly greater than most other interventions (30
minutes 2–3 d/wk), likely leading to a greater effect.
Whether the use of multiple shorter exercise sessions
across the day in this study impacted the results is not
clear; however, the efficacy of similar, brief albeit
vigorous exercise has been explored in other trials and
warrants consideration.115,116 No specific aerobic ex-
ercise program has demonstrated superiority for
increasing aerobic capacity, and several meta-analyses
suggest practically equivocal effects of moderate-
intensity continuous and high-intensity interval
training in general and overweight or obese pop-
ulations.117,118 Due to its complexity and interaction
with kidney disease, we discuss the physiology of
aerobic capacity in more detail here.

Aerobic capacity is generally considered to be limited
by cardiovascular function (O2 delivery) and improve-
ments with training are attributed to increases in
maximal cardiac output.119,120 This is because in healthy
individuals, the oxidative capacity (maximal O2 con-
sumption) of muscle normally exceeds O2 delivery
Kidney International Reports (2024) 9, 3097–3115
during whole-body exercise.120,121 In order to improve
aerobic capacity in NDD, it is important to understand
how the disease could impair both O2 delivery and use.

30

In a cross-sectional study, Wallin et al. 71 found that
stroke volume, peak heart rate, and hemoglobin con-
centration are lower in NDD compared to controls and
concluded that O2 delivery is the main determinant of
aerobic capacity decline with disease progression.
Wallin et al.71 study, however, did not include measures
of O2 utilization needed to evaluate the role of peripheral
O2 use, such as arterial venous O2 difference. In a similar
evaluation, Chinnappa et al. 122 found that arterial
venous O2 difference was a better predictor of aerobic
capacity in NDD (R ¼ 0.78) compared to cardiac output
(R¼ 0.74). They further suggested that in NDD, aerobic
capacity reflects the ability of skeletal muscle to extract
O2 and not cardiovascular function. This claim is sur-
prising given that in their data, peak cardiac output
mirrored the aerobic capacity decline with disease sta-
tus. In addition, their study showed no difference in
peak arterial venous O2 difference between the NDD and
healthy control groups, which does not support a
muscular impairment. Although arterial venous O2 dif-
ference did explain more of the variance in aerobic ca-
pacity in NDD (R2 ¼ 0.61) compared to healthy controls
(R2 ¼ 0.38) or heart failure patients (R2 ¼ 0.32), this
difference may instead be attributed to the varying de-
grees of anemia in CKD.

Several factors contribute to O2 delivery limitations
in NDD. Maximal heart rate, which is generally not
modifiable through exercise training, is classically
decreased in CKD.123 This deficit resolves within 2
months of kidney transplant,124 suggesting that the
uremic milieu may blunt the cardiac adrenergic
response.125 Training-induced increases in plasma
volume and hematocrit are 2 major adaptations that
improve cardiac output and O2 delivery and thus aer-
obic capacity.43,126 Patients with CKD, however,
commonly suffer from chronic plasma volume expan-
sion without compensatory increases in hematocrit,127

which could restrict their adaptive ability. The prev-
alence of low hematocrit progressively increases from
8% to 53% across CKD stages,13,14,28-30,128 likely due to
declines in erythropoietin production. In patients on
dialysis, normalizing hematocrit (increasing the O2–
carrying capacity of the blood) improves aerobic ca-
pacity, both alone58,129 and when combined with ex-
ercise.58,95 However, improvement in hematocrit even
to normal levels with these agents does not restore
aerobic capacity to the level of healthy controls.58,95

Furthermore, caution must be taken with the use of
exogenous erythropoiesis-stimulating agents to
improve hematocrit because they significantly increase
the risk of thrombovascular events and mortality.130
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In summary, impaired O2 delivery in NDD likely
limits aerobic capacity; however, the impact of
impaired muscle O2 use is unclear.71,122 Furthermore,
several physiological factors in NDD may prevent ex-
ercise training-induced improvements in aerobic ca-
pacity, and methods for overcoming these are limited.
Nevertheless, there is consistent evidence that exercise
training can lead to clinically meaningful improve-
ments in aerobic capacity in NDD18,20,22,23,25 and
further research on optimizing interventions is war-
ranted. Of note, evaluating changes in absolute (l/min)
along with relative (ml/kg/min) values will help re-
searchers isolate the effects of changes in physiological
function from those of altered body composition.

BP

Hypertension is prevalent in CKD and is considered one
of its main causes.1 Of the 7 meta-analyses in Table 1
evaluating BP, 4 found significant benefits of exercise
training on resting systolic BP (ES ¼ �4.9 to �10.9
mm Hg), and 3 on resting diastolic BP (ES ¼ �2.9
to �6.2 mm Hg).21,23,25,27 Although the effects of ex-
ercise training on BP are inconsistent and may vary
with intervention duration,21 several of the analyzed
studies demonstrate impressive BP reductions.100,101,131

Aoike et al. 100,101 found that home-based or center-
based walking exercise 3 times per week for 24
weeks reduced systolic BP by approximately 13 to 14
mm Hg, versus no change in the control group (eGFR ¼
w28 � 11). The intensity of this intervention was
personalized using a heart rate monitor and cardio-
pulmonary exercise test results. Further, the workouts
were progressed by increasing duration at weeks 4 and
8, potentially adding to their effectiveness. A study by
Leehey et al.131 utilized similar intervention methods
resulting in a 17 mm Hg reduction in mean systolic BP
(eGFR ¼ 44 � 36); however, the nonexercise group saw
a similar change, highlighting the importance of study
run-ins to normalize standard of care. Other pitfalls
that may lead to null findings include well-controlled
BP at baseline,132,133 confounding medications, the
use of an automated sphygmomanometer, and low
study power.134,135 Exercise as a means to improve BP
is well-documented in other populations, with 2 meta-
analyses of 93 and 270 trials concluding that isometric
resistance training is the most effective mode.136,137

The Edwards et al. 136 analysis found mean re-
ductions from baseline in resting systolic BP of 4.1, 4.5,
4.6, 6., and 8.2 mm Hg following high-intensity in-
terval, aerobic, dynamic resistance, combined, and
isometric resistance training respectively. Both ana-
lyses also found greater effects in individuals with
higher baseline BP. Thus, exercise training has the
potential to improve BP in NDD; however, baseline BP
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and medication should be controlled for and the use of
isometric exercises should be explored in exercise
studies targeting BP.

Muscle Strength, Endurance, and Size

Muscle strength is the maximal capacity to generate
force and muscle endurance is the ability to sustain
force. Low muscle strength and mass are prevalent in
approximately 20% of patients with NDD138 and are
associated with increased mortality (hazard ratio ¼ 1.46
and 1.38).99 Handgrip strength, knee extensor
strength, and bicep curl repetitions were the only
muscle-specific outcomes evaluated in the analyses in
Table 1.17,18,22 Maximal bicep curl repetitions (in 30s)
alone was found to improve with training (ES ¼ 6.8
repetitions)22 and was used as an indicator of muscle
endurance in 2 studies.100,101 However, unless partici-
pants were reaching failure prior to 30s, this measure
may more accurately reflect contraction speed and not
endurance. Although this difference may seem trivial,
the training methods for increasing endurance and
contraction speed are different and such discrepancies
in training or testing could lead to erroneous null
findings. In the meta-analyses of knee extensor18 and
handgrip strength,17 3 of the 5 analyzed trials found
significant improvements from baseline that were not
seen in controls.139-141 The 2 trials that failed to in-
crease strength had a brief period (8–12 weeks) of su-
pervised resistance training, followed by a much longer
period of at-home training without a standardized plan
or progression110,142 (a fundamental component of
training31). In contrast, 1 of the positive trials elicited
29% to 47% increases in upper and lower body
strength through 12 weeks of progressive resistance
training, despite patients (GFR ¼ 25) being on a low-
protein diet.,141 A major difference here was that all
training was supervised by an exercise physiologist.
Another study found that 8 weeks of supervised pro-
gressive resistance training resulted in an approxi-
mately 13% increase in isokinetic strength as well as
significant increases in rectus femoris cross-sectional
area and volume (eGFR ¼ 29, range: 19–32).140 We
found 5 resistance training studies with muscle out-
comes not included in the analyses in Table 1. The 3
that implemented supervised in-center progressive
resistance training showed robust changes in muscle
size and strength in just 12 weeks.88,143,144 The other 2
studies145,146 used 12-month home-based interventions
and only the one that was progressed remotely by a
physiotherapist elicited significant (though modest)
improvements in strength.145

Muscle adaptations reflect the demands imposed by
training. For example, to improve muscle endurance,
exercise should involve repetitive or prolonged
Kidney International Reports (2024) 9, 3097–3115
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contractions to produce metabolic stress in the target
muscle, a stimulus for endurance adaptations.147,148

Cycling then, may be more effective than running at
increasing leg muscle endurance because the muscles
are used as a motor as opposed to a strut149 imposing a
greater energy demand. Although exercise training
improves muscle strength, endurance, and size, each
involves a different combination of stimuli and adap-
tations that can be targeted through specific ap-
proaches. Collective analysis of resistance training
interventions suggests that if muscle growth (hyper-
trophy) is the goal, then the volume of work near
failure should be maximized; and, if increases in muscle
strength are desired, training at higher loads is bene-
ficial.150 An important caveat regarding resistance
training is that muscular adaptation only occurs in the
utilized tissue (knee extension exercise will not in-
crease handgrip strength).151 Factors released into
serum during exercise, such as growth hormone and
insulin-like growth factor, have not been shown to
elicit hypertrophy or strength changes in unexercised
muscle.152,153

Overall, there is a shortage of resistance exercise
research in the NDD population. Although available
meta-analyses do not identify a strong effect of exercise
training on muscle function in NDD, a careful reading
raises questions as to the validity of this conclusion.
Results from a number of studies have shown that well-
designed interventions can increase muscle strength
and size in NDD in as few as 12 weeks.88,139-141,143,144

Therefore, the design of a resistance training program
(e.g., supervision and progression) appears more
important than duration for eliciting adaptations.
Training should be specifically chosen based on the
desired adaptation and target muscles, as adaptations
demonstrate mode154 and location specificity.152,153 In
terms of muscle testing, most physical function tests
involve multiple nonmuscular components (balance,
coordination, cardiovascular fitness, etc.) making them
nonideal for evaluating muscle function. Thus, care
should be taken when selecting muscle outcome mea-
sures, suggestions for which can be found in articles
from Beaudart155 and Buckinx.156

Inflammation and Oxidative Stress

Chronic inflammation is a well-accepted component of
CKD157 and is associated with mortality across all stages
of the disease.158 Exercise training has well-
demonstrated antiinflammatory effects in other pop-
ulations,159 and although there is an acute proin-
flammatory response to unaccustomed exercise in NDD,
8 weeks of training alleviates this response.160 Only 2
meta-analyses15,24 in Table 1 evaluated the effects of
exercise training on inflammatory markers. One found
Kidney International Reports (2024) 9, 3097–3115
no effect of exercise on interleukin (IL)-6 or C-reactive
protein (CRP) levels in NDD24 and the other found
changes in IL-6 (ES ¼ �0.64 standardized mean dif-
ference) but not C-reactive protein, IL-10 (antiin-
flammatory), or tumor necrosis factor-a in a subgroup
analysis of NDD.15 The latter study also found that
resistance, but not aerobic or combined exercise,
significantly decreased C-reactive protein and tumor
necrosis factor-a and increased IL-10 in an analysis that
pooled results from dialysis and NDD.15 Interestingly,
one of the main suggested mechanisms for the antiin-
flammatory effect of exercise is the transient elevation
in IL-6 it causes, which purportedly triggers a post-
exercise increase in IL-10 and suppression of tumor
necrosis factor-a.159,161,162 Muscle is responsible for the
majority of this IL-6 spike during exercise, rising 1 to
100-fold depending on exercise type163 and it is
believed to be stimulated by sensors of a low-energy
state.161,164 It is thus unsurprising that exercise of
greater intensity and duration is associated with
greater IL-6 responses.163 At least 4 exercise studies in
NDD have shown convincing reductions in basal IL-6
(w2.2–4.2 pg/ml) using resistance165,166 or aerobic
training.167,168 In a similar vein, acute increases in
oxidative stress with exercise are an important signal
for exercise adaptions, and chronic exercise training
can decrease oxidative stress.169 Available studies in
stage 3–4 CKD measuring the effects of exercise on
oxidative stress in NDD show conflicting results with
one finding a reduction in F2-isoprostane levels168 and
the other finding no effect.170 Nevertheless, a recent
meta-analysis containing mostly hemodialysis studies
found that exercise training improves oxidative stress
markers, including malondialdehyde, advanced oxida-
tion protein products, superoxide dismutase, and F2-
isoprostanes, making this an area worthy of further
research.

Kidney Function

Four of 9 meta-analyses in Table 1 found a significant
effect of exercise training on at least 1 metric of kidney
function.23,25-27 The variation in methods of calculating
ES, study weighting, and grouping, and the large
number of different metrics used do not instill confi-
dence in these collective results. For example, the
impact of exercise training on eGFR from a study by
Leehey et al.131 in stage 2–4 CKD is assigned an ES of 1
by 2 analyses22,27 and �2.41 by another.25 The clinical
relevance of these findings is also difficult to determine
because it is dependent on the length of intervention
and the expected rate of kidney function decline. Many
individual studies have suggested that exercise can
improve or slow kidney function decline in patients
with NDD.102,134,141,166,171-176 Unfortunately, most
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studies do not evaluate the rate of renal function
decline before intervention and lack the sample size to
account for baseline variation. This makes it difficult to
determine whether the observed improvement is real or
an artifact of insufficient randomization. Furthermore,
GFR is typically estimated, introducing other con-
founders such as the independent effects of exercise
and muscle mass on creatinine levels; an issue which
may be remedied through the use of cystatin C-based
estimates.177 More potentially convincing evidence
comes from an ancillary analysis of the LIFE study,
which included 1199 older adults, 66% of whom had
an eGFR of <60 ml/min per 1.73 m2 (mean, 54 � 17).178

This analysis found that a 2-year exercise intervention
led to approximately 0.5 ml/min per 1.73 m2 per year
slower decline in eGFR compared to health education
alone.178 Mechanistically, it is easy to postulate that
exercise may benefit kidney function indirectly by
decreasing BP and inflammation or improving diabetic
symptoms. Another potential mechanism is muscle-
kidney crosstalk via muscle-secreted extracellular
vesicles, growth factors, and myokines or exercise-
induced cytokines (“exerkines”).179,180 To date,
studies interrogating muscle-kidney crosstalk have
only taken place in animal models, where such path-
ways are easier to observe,181-183 but this area warrants
further attention. Thus, though mechanistically plau-
sible, the strength of the evidence for exercise-induced
improvements in kidney function is modest due to
limitations in the sample size and methodology of
current studies. This sentiment is echoed and greatly
expanded upon in a recent review by Davies et al., 184

to which we refer the reader.

Adverse Events

Five of the meta-analyses in Table 1 aggregated data on
adverse events in analyzed trials.16-18,23,26 Only 1 re-
ported finding any adverse events related to exercise18

and all reported events were from a singular trial
(including several cases of hypotension due to weight
loss, and 1 case each of chest pain while exercising,
knee pain, Achilles pain, joint pain while exercising,
and rapid atrial fibrillation with hospitalization).168 We
have found no citations of exercise safety concerns
specific to NDD and various forms of exercise,
including aerobic, resistance, and high-intensity in-
terval training have been directly assessed by various
literature and found to be safe.13,105,106,185,186 Resources
for performing exercise safely are provided by the
Global Renal Exercise Network187,188 and the American
College of Sports Medicine.34

Gaps in Knowledge

Gaps exist in understanding exercise’s effect on bone
health, optimal exercise dosing, and the use of
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nutritional and pharmacologic therapeutics to improve
exercise adaptation. We found only 1 study on exercise
and bone health in NDD (eGFR ¼ 27 � 11), which
showed no benefit of a 24-week walking program on
serum bone metabolism markers, likely due to the low
mechanical load.189 Nevertheless, exercise represents a
promising therapy for combating bone dysfunction when
impact exercise or resistance training is used.190-193

Another interesting area that needs evaluation is the
minimum effective dose of exercise, because decreasing
exercise frequency or duration may help increase
adherence. One of the few studies on exercise dosing
showed that after 12 weeks, resistance training for 1
versus 3 sessions per week resulted in equal improve-
ments in isometric strength, physical function, and self-
reported uremic symptoms in stage 3 CKD.143 Only
muscle cross-sectional area and pennation increased with
greater frequency. Larger, longer-duration interventions
are needed.

Strategies to enhance the effect of limited protein
intake on exercise-induced anabolism such as maxi-
mizing essential amino acid content,194 supplementing
with surplus ketoanalogues,195 and optimizing protein
timing196 lack evidence in NDD and warrant investi-
gation. Supplementing with sodium bicarbonate (to
decrease acidosis197,198), dietary nitrate (to improve
exercise efficiency199), iron (to improve muscle func-
tion200), vitamin D (to promote musculoskeletal201 and
cardiovascular function202), and coenzyme-Q and
nicotinamide riboside (to combat mitochondrial
dysfunction203) has received some attention in the CKD
literature; however, it requires further research. Crea-
tine, which may become a conditionally essential
nutrient in CKD,204 is one of the best-evidenced sup-
plements for exercise performance205,206 and could help
combat sarcopenia, osteoporosis, and frailty.207 Crea-
tine supplementation does not damage healthy kid-
neys.208 If creatine supplementation is shown to be safe
for diseased kidneys, exploration of its use may be
beneficial, although this treatment may necessitate
substituting cystatin-C for serum creatinine in GFR
calculations.

Incretin-mimetics may improve physical function
and have gained popularity as weight loss drugs,209 but
their efficacy in conjunction with exercise remains to
be tested in patients with CKD. A recent study in obese
patients with heart failure with preserved ejection
fraction demonstrated improvements in 6MWT per-
formance.210 Given the high prevalence of diastolic
heart failure and obesity in patients with CKD these
treatments appear promising. Semaglutide has been
shown to improve renal end points211 and lead to
substantial weight loss; however, its impact on exercise
adaptation remains to be explored. However, caution is
Kidney International Reports (2024) 9, 3097–3115
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advised because potential adverse responses have been
reported,212 and induction of weight loss may not
benefit some patients with CKD.

Further Considerations for Research and

Practice

Optimizing interventional studies is crucial for
increasing the use and efficacy of exercise in CKD. The
expanding use of smart devices could be leveraged to
collect physical activity data, administer surveys, and
encourage adherence.213 A group from the UK recently
developed a free digital platform for physical activity
and emotional well-being intervention in CKD pop-
ulations (“Kidney Beam”, https://beamfeelgood.com/
kidney-disease) which significantly improved mental
health and sit-to-stand test performance in just 12
weeks.214-216 Although clinical trials using these plat-
forms in regions with a universal health care system
hold promise, they require validation in regions with
alternative health care systems and racially and socio-
economically diverse patient populations to determine
the generalizability and identify barriers to imple-
mentation. Furthermore, trials may benefit from the
inclusion of attention control groups (with health ed-
ucation similar to the AWARD study106) to identify
benefits attributable to exercise alone. The use of
healthy control groups may also help delineate the ef-
fects of CKD pathophysiology from the efficacy of the
intervention and potentially identify new therapeutic
targets.

Concluding Remarks

Despite significant physical, physiological, and prac-
tical barriers, exercise training has been shown to
consistently improve physical function and aerobic
capacity; frequently improve BP and muscle function;
and occasionally have beneficial effects on inflamma-
tion, oxidative stress, and kidney function. In addition,
meta-analyses have suggested several benefits of exer-
cise training not discussed here (Table 1). Other po-
tential benefits such as improved bone health remain
underexplored. To date, exercise interventions have
often lacked the basic requirements for inducing
adaptation, namely progressive overload, personaliza-
tion, and specificity. We present here several resources
(Figures 2 and 3, and references throughout) to aid in
avoiding these pitfalls. Future interventions may also
benefit from including exercise supervision, greater
sample sizes, and better control of participant baseline
status. Although the number of well-designed studies
of exercise training in NDD is growing, we must not
wait to implement personalized progressive exercise
programs into patient care. In general, the risk of ex-
ercise is low and its inclusion in practice and policy has
Kidney International Reports (2024) 9, 3097–3115
the potential to immediately affect the health and
quality of life of the patient population. There is an
urgent need to ensure programs are effective in limited-
resource environments and underrepresented groups,
which represent a disproportionately large and un-
derserved portion of the patient population.
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