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Abstract

Differences in speech prosody are a widely observed feature of Autism Spectrum Disorder

(ASD). However, it is unclear how prosodic differences in ASD manifest across different lan-

guages that demonstrate cross-linguistic variability in prosody. Using a supervised

machine-learning analytic approach, we examined acoustic features relevant to rhythmic

and intonational aspects of prosody derived from narrative samples elicited in English and

Cantonese, two typologically and prosodically distinct languages. Our models revealed suc-

cessful classification of ASD diagnosis using rhythm-relative features within and across

both languages. Classification with intonation-relevant features was significant for English

but not Cantonese. Results highlight differences in rhythm as a key prosodic feature

impacted in ASD, and also demonstrate important variability in other prosodic properties

that appear to be modulated by language-specific differences, such as intonation.

Introduction

Differences in prosody are observed in many individuals with autism spectrum disorder

(ASD) [1, 2]. Although they may manifest variably across individuals and across different lan-

guage contexts (e.g., [3–5], also see [2, 6] for reviews), prosodic differences have been consid-

ered a central feature of communication profile of ASD [7–10]. Speech prosody involves the

use of rhythm (i.e., variation of regularity in loudness and speed) and intonation (i.e., variation

of voice pitch) [6] to encode grammatical information, represent pragmatic information, as

well as to express speaker intent and emotion [11–13]. Differences in prosody can significantly

undermine social and communicative competence by disrupting communication of this lin-

guistic and meta-linguistic information and contrasts (e.g., parts of speech differences [e.g.,

CONtent vs. conTENT]; a sarcastic vs. sincere statement; joy vs. dislike), and is therefore
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highly clinically significant. Additionally, subtle differences in prosody have also been reported

among clinically unaffected first-degree relatives, and could constitute a marker of underlying

genetic liability to ASD [14].

Although a number of studies have provided important insights into the characteristics of

speech prosody in individuals with ASD, little is known concerning the underlying causes of

prosodic differences in ASD. Moreover, most studies have concentrated on studying prosody

in English-speaking groups [2, 6]. Language is fundamentally cultural, and how specific aspects

of prosody are used can vary substantially across languages [15]. Studying language compo-

nents, such as prosody, across typologically and prosodically distinct languages is therefore

critical to address the variability of ASD symptomatology, and its underlying mechanisms.

Since the earliest delineations of ASD [16], prosodic differences have been described in sub-

jective reports as a characteristic of ASD (see [1] for a review). Subsequent studies applied

more objective methodologies examining the physical (acoustic) profile of prosody in ASD,

including the fundamental frequency (f0), duration, and periodicity of speech sounds—acous-

tic properties which are correlates of fundamental aspects of prosody, namely intonation and

rhythm. Findings have largely converged, showing differences in intonational properties of

prosody (e.g., pitch), in ASD [2, 6]. Evidence suggests that individuals with ASD often demon-

strate overall higher f0 (the acoustic correlate of pitch) [17], and larger f0 range at the utterance

level [17–21], at the syllabic level [22], at the utterance final position [14], and specifically

when using focus to highlight new information [23]. In rhythmic aspects of prosody, speech

produced by individuals with ASD also demonstrated less of a distinction in duration between

stress and unstressed syllables [22], slower speech rate [14], as well as greater intensity and lon-

ger phrase durations [20]. Although these prosodic features do not usually result in unintelligi-

ble speech, they are nevertheless perceptible [14] and can contribute to an impression of

“oddness” reported by listeners [20, 24, 25].

Traditionally, speech prosody is categorized into affective and linguistic categories [26].

Affective prosody is used to express emotion and communicative intent, both central to social

interactions, through non-linguistic elements of speech [27]. Despite some cross-cultural vari-

abilities, fundamental emotions and basic communicative intents expressed through prosody

are typically similarly understood by listeners across different linguistic and cultural back-

grounds [28, 29], and may even have evolutionary homologies in other mammals [30–32]. In

contrast, linguistic prosody is used to represent lexical and grammatical elements of language,

and may vary drastically across languages [15, 33]. In particular, while pitch signifies sentence

intonation (e.g., to convey a statement vs. a question) in English, pitch also conveys lexical
meaning in tone languages such as Cantonese. For example, in Cantonese, a syllable /ji/ means

‘to cure’ when produced with a high-level pitch pattern but means ‘two’ when produced with a

low-level pitch pattern.

Prosodic expression in individuals with ASD speaking a tone language has been scarcely

investigated. One study examined the f0 and duration of the five Thai lexical tones produced

by native speakers with ASD [34]. A separate study of Cantonese-speaking individuals with

ASD examined f0 measures of sentence final particles (SFPs), which are crucial linguistic

markers for conveying pragmatic information in the language [35]. Another study examined

lexical tone imitation of Cantonese- vs. Mandarin-speaking children with ASD [36]. These

studies revealed findings similar to those reported in English-speaking individuals with ASD,

such that the individuals with ASD exhibited higher f0 [34] and larger standard deviation (i.e.,

larger variability) of f0 [35, 36]. Some language-specific results were also observed, including

shorter lexical tone duration in the ASD group [34]. A positive correlation between the num-

ber of SFP types produced by individuals with ASD and the standard deviation of F0 was also

found [35], suggesting the more diverse the SFP type an individual produced, the more pitch
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variation could be realized at the utterance-final position which does not alter core sentential

content. Some language-specific findings were not consistent with those reported in studies of

English. Specifically, while larger f0 range has been repeatedly reported in English-speaking

ASD groups [17–19, 21, 22], Thongseitratch and colleagues [34] found a lower f0 range in the

Thai-speaking ASD group. A lower f0 range associated with ASD was also found in a study of

Japanese speakers [3]. These mixed results from languages other than English suggest that

while certain acoustic characteristics of speech may be impacted across languages, typological

differences across languages may also result in important language-specific prosodic character-

istics associated with ASD. Such differences are not only essential in informing the under-

standing of prosodic differences as a core feature of ASD, but may also help to optimize

culturally sensitive diagnostic and intervention practices.

Taking a cross-linguistic approach, the present study compared prosodic characteristics of

speech from individuals with and without ASD across English and Cantonese, two typologi-

cally and prosodically distinct languages. English is an Indo-European Germanic non-tone

language that belongs to the rhythmic group of stress-timed languages [33], whereas Canton-

ese is a Sino-Tibetan Sinitic tone language which is syllable-timed [37]. In the general popula-

tion, even in languages with such distinct properties, considerable cross-linguistic

commonalities have been demonstrated in prosody [28, 29, 38–40], particularly in the affective

aspect of prosody that is most reflective of differences in ASD (e.g., emotion and intention

expression and recognition). Important cross-linguistic variability has also been observed,

especially in linguistic prosody [15, 33]. Indeed, prior cross-linguistic comparisons between

prosodic characteristics of ASD have been reported in languages which are typologically and

prosodically related (e.g., English and Danish, both Germanic languages [41], and Cantonese

and Mandarin, both Sinitic languages [36]). However, studying prosody in ASD across lan-

guages with more distinct properties, such as English and Cantonese, may help to further

reveal core prosodic differences that are robustly expressed across languages, as well as those

that are differentially impacted, suggesting phenotypic malleability that could be important to

consider in speech and language interventions.

We implemented a series of novel machine learning (ML)-based analytics to examine pro-

sodic characteristics of ASD both within and across the two languages. ML capitalizes on the

multivariate nature of acoustics features (e.g., series of features that vary in time or frequency

domains rather than single summed or averaged values) that richly represents the dynamicity

of speech prosody, and have been proven to be able to delineate the acoustic characteristics of

the prosodic profile of ASD [6, 42–44]. We focused on two classes of acoustic features, namely

those relevant to 1) rhythm, and 2) intonation, considered to be the two core elements of

speech prosody [12]. A series of supervised ML models were trained to make classifications of

diagnosis (ASD vs. typical development [TD]) using a series of multivariate acoustic features

associated with intonation and rhythm, derived from utterance samples of a structured narra-

tive task elicited separately in English and Cantonese. [45–47]. ML classification models have

been used successfully to classify individuals with ASD from those with TD using a variety of

social-behavioral and neurocognitive measures (see [48] for a review). ML classification mod-

els have also proven to be effective in classifying diagnostic status of various psychiatric, cogni-

tive, and speech-language impairments using speech acoustic features [49–51]. In particular, a

recent ML study successfully classified ASD/TD using f0-based acoustic features derived from

recordings of individual words elicited in a picture-naming task [44]. Capitalizing on the

power of the ML classification approach, our ML models examined which class(es) of acoustic

features (rhythm and/or intonation) derived from larger temporal windows (i.e., from utter-

ances elicited in a more dynamic language narrative task) could reliably classify individuals

with ASD vs. individuals with TD, both within and across English and Cantonese.
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Materials and methods

Participants

This study included participants from two languages groups, consisting of native speakers of

American English (henceforth, English group) and Hong Kong Cantonese (henceforth, Can-

tonese group). The English group included 55 individuals with ASD (English ASD group) and

39 individuals with TD (English TD group). The Cantonese group included 28 individuals

with ASD (Cantonese ASD group) and 24 individuals with TD (Cantonese TD group).

We acknowledge the variability in preferences related to person-first and identity-first ter-

minology (i.e., individuals with ASD versus autistic individuals). We do not endorse one style

over the other. For the purpose of this manuscript, to ensure that language is parallel when

referencing both participant groups, we remain consistent with the following terminology:

individuals with autism spectrum disorder (ASD) and individuals with typical development

(TD).

Participants from the English group were recruited in the United States through a larger

family-genetic study of ASD, which included individuals with ASD, their parents, and respec-

tive controls. Participants from the Cantonese group were recruited in Hong Kong using

advertisements posted on social media platforms (e.g., Facebook) and directly sent to schools

and organizations with existing populations of individuals with ASD, as well as from employ-

ment programs particularly designed for adults previously diagnosed with Asperger syndrome

or high-functioning Autism. Informed assent/consent was obtained from all participants and

guardians (as applicable), and procedures were approved by the respective institution’s ethics

committee. All procedures were in accordance with ethical standards of the institutional and/

or national research committee and with the 1964 Helsinki declaration and its later amend-

ments or comparable ethical standards.

Only participants having no reported history of brain injury, major psychiatric disorder,

known genetic syndrome, or neurodevelopmental disorder (other than ASD) were included.

Participants with TD in both language groups were screened for personal or family history of

ASD or related genetic disorders (e.g., fragile X syndrome). ASD status was confirmed with

research reliable administration and scoring of the Autism Diagnostic Observation Schedule

2nd Edition (ADOS-2). ADOS-2 Overall, Social Affect, and Restricted and Repetitive Behav-

iors (RRB) calibrated severity scores were used to determine ASD severity [52].

To assess IQ, the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler 1999),

Wechsler Adult Intelligence Scale-Third or Fourth Editions (WAIS; Wechsler 1997, 2008), or

the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV; Wechsler 2003) were

administered to participants in the English group. The Test of Nonverbal Intelligence, Fourth

Edition (TONI-4) was administered to participants in the Cantonese group.

Narrative elicitation

Participants were asked to narrate (in their respective languages) the 24-page wordless picture

book, Frog, Where Are You? [53]. The book presents a story about a boy and his dog, who are

searching for the boy’s missing pet frog. This book has been used extensively in studies of nar-

rative discourse in ASD and other neurodevelopmental disabilities [14, 54–58] and in cross-

linguistic work [59]. Participants were asked to narrate the story as each page of the book was

presented to participants on a computer monitor, while their narrations were audio recorded.

No examples were provided to the participant. The recordings were first transcribed and seg-

mented into individual utterances, defined by natural pauses. Twenty utterances from partici-

pants (English ASD n = 33; English TD n = 33; Cantonese ASD n = 24; Cantonese TD n = 24,
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Table 1) were selected for subsequent analyses (see §1.1 in S1 File for further description of

acoustic data collection and processing).

The narrative data elicited from the English group were the focus of a prior published study

[14], examining syllable-level acoustic measures that were not included in the present analyses.

The English participant narrative speech samples were included in this study for cross-linguis-

tic comparison only focused on utterance-level acoustic measures that have not been previ-

ously studied. In contrast to recent studies in both English [14] and Cantonese [35] reporting

prosodic differences associated with ASD at language-specific syllabic-level units (final-syllable

excursion for English; SFP for Cantonese), the current study focused on the utterance level. In

contrast to syllabic-level units, the utterance is associated with the intonational phrase, the

most fundamental unit of prosody argued to be universal across all languages [60–63]. The ML

approach allowed us to perform classifications using multivariate acoustic features represent-

ing the prosodic dynamics over the entire duration of utterances (described in the following

section), therefore enabling us to examine, at the most fundamental prosodic unit common

among English and Cantonese, the extent to which patterns of speech prosodic differences in

ASD similarly manifest across different languages.

Acoustic feature extraction

Two classes of multivariate acoustic features were extracted from utterances in the narrative

samples utilizing the MATLAB Audio Toolbox and MATLAB scripts provided by prior studies

[45–47, 64].

1. Speech Rhythm: Speech rhythm is traditionally considered as durational variations across

syllables in an utterance that signal linguistic and affective properties [12]. The temporal

envelope of speech signals, in general, represents the evolution of the speech signal waveform

amplitude over time that displays temporal regularities correlating to the syllabic rhythm of

the signal [64]. Such rhythmicity, especially those of 2–8 Hz, is crucial in the neural process-

ing of intelligible speech as it aligns with in brain areas in the spoken language processing

pathway that oscillate at a similar rate [65]. Three measures, namely 1) envelop spectrum

(ENV), 2) intrinsic mode functions (IMF), and 3) temporal modulation spectrum (TMS)

[45–47] were derived from all utterances of each participant to comprehensively capture

aspects of speech rhythm represented in the temporal envelope. An overall of 8640 these

rhythm-relevant features were extracted across the 20 utterances from each participant.

Table 1. Demographic information.

ASD (Cantonese) TD (Cantonese) ASD (English) TD (English)

M (S.D.)

Range

M (S.D.)

Range

M (S.D.)

Range

M (S.D.)

Range

Males: females (Count) 19:9 17:7 29:4 15:18

Chronological age 17.83 (9.24)

8–32

18.88 (8.70)

8–31

15.96 (7.38)

6–35

19.31 (5.35)

12–32

IQ 108.54 (10.92)

84–127

115.08 (10.13)

92–128

104.13 (14.34)
73–131

111.03 (13.79)
79–143

ADOS-2 Total Severity Score 6.00 (2.33)

3–10

7.02 (1.85)

3–9.5

Bold: Significant differences as per t-tests (p< 0.05) between the ASD and TD groups within the respective language group. Italics: Marginal differences as per t-tests

(0.05 > p< 0.1) between the ASD and TD groups within the respective language group. ASD: Autism Spectrum Disorder, M: Mean, S.D.: standard deviation, TD:

typical development

https://doi.org/10.1371/journal.pone.0269637.t001
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2. Intonation: Speech intonation, by definition [61], refers to the variation of voice pitch

across time. The major acoustic correlate of pitch is the fundamental frequency (f0), which

is a simple yet robust index of speech intonation that has repeatedly been implicated in the

prosodic characteristics of ASD [17–21, 44]. In contrast to univariate measures (single val-

ues) of f0 used in prior studies [17–21], often computed by taking the mean or variance

over multiple temporal windows or across speech samples, we focused on entire f0 con-

tours, i.e., a series of time varying f0 values (i.e., multivariate) across the entire duration of

each individual utterance. The f0 contour represents essential elements of both linguistic

prosody and affective prosody at the sentence/utterance level [11, 61, 66]. In particular, the

f0 contour has been the target of study in both empirical and theoretical work of intona-

tional phonology [61, 63], as it encompasses the dynamicity of speech intonation which var-

ies across time within the most fundamental utterance-sized linguistic unit known as the

intonational phrase. Therefore, intonation-relevant features examined in this study were

comprised of time-varying f0 values derived from narrative utterances. From each utter-

ance, 20 f0 values from a time-normalized f0 contour were extracted and further

concatenated across all 20 utterances of a participant, resulting in 400 features for each par-

ticipant.

Further technical descriptions of the acoustic feature extraction procedures are presented

in §1.2 in S1 File.

Machine learning classification

In two sets of ML models, we trained a series of linear support vector machine (SVM) classifi-

ers to classify participants with ASD from those with TD using principal components derived

from the multivariate acoustic features extracted from participants’ narrative samples. The

SVM performed classifications by finding a hyperplane from a multidimensional space that

divided data points from the principal components according to participants’ diagnosis.

The SVM was chosen because it is well suited to handle data of high-dimension, and the

types of speech acoustic features implicated in ASD (e.g., f0-based features) in particular [44].

The linear kernel was chosen due to its effectiveness in handling datasets with a small sample

size [67]. Widely chosen in studies with datasets where the number of features often even

exceeds that of samples (e.g., neuroimaging [68] and gene expression studies [69]), the linear

SVM is preferable to non-linear kernels because theoretically it is always possible to find a lin-

ear decision boundary that separates data, in spite of high data dimensionality and small sam-

ple size [68].

Several procedures were performed in the classification pipeline to further avoid overfitting

and optimistic bias due to limited sample size and the high-dimensionality of data [70] (see

§1.3 in S1 File for technical details of procedures in the machine learning classification pipe-

line). Classifications were performed using a repeated 10-fold cross-validation procedure, in

which data reduction (into principal components) and hyperparameter tuning were per-

formed in a nested fashion. Classification performance was quantified as the Area Under the

Curve (AUC) of a receiver operating characteristics (ROC) curve computed based on the

probability vector of the predicted labels across all cross-validation folds. The accuracy, sensi-

tivity, and specificity values of the classification were also recorded. A permutation approach

was used to estimate the statistical significance of each series of classification with the AUC

values.

In Model 1, classifications were performed separately on English and Cantonese samples.

The comparison between classification performance patterns across the English and Canton-

ese classifications allowed us to both identify the specific acoustic characteristics associated
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with prosody in ASD within these two languages, as well as determine whether such character-

istics were consistent or different between the two languages. In Model 2, ASD vs. TD classifi-

cations were performed on an English and Cantonese-combined dataset in order to identify

aspects of prosody that were present in ASD narrative samples across the two languages. In

each model, two sets of SVM classifications were performed using the principal components

derived from rhythm- and intonation-relevant features respectively.

Results

Model 1 performed classifications between ASD and TD diagnosis using rhythm- (ENV, IMF,

and TMS) or intonation-relevant (f0 contours) features, on English and Cantonese samples

respectively. Model statistics of all classifications are presented in Table 2. The AUC values of

all SVM classifications in Model 1 are presented in Fig 1 (left and middle). The classifications

with rhythm-relevant features were significant for both English (median AUC = 0.900,

p< 0.001—the median AUC corresponded to an accuracy [ACC] of 0.819, sensitivity [SENS]

of 0.788, and specificity [SPEC] of 0.849), and Cantonese (median AUC = 0.962, p< 0.001;

ACC = 0.880, SENS = 0.917, SPEC = 0.833). In contrast, classifications with intonation-rele-

vant features were significant only for English (median AUC = 0.695, p = 0.007; ACC = 0.683,

SENS = 0.758, SPEC = 0.606) but not Cantonese (median AUC = 0.620, p = 0.507;

ACC = 0.605, SENS = 0.667, SPEC = 0.542). A post-hoc analysis (presented in §2 in S1 File)

was further performed to rule out gender and age as potential confounding factors in the

f0-based classification in English, given differences in gender and age observed between the

English (but not Cantonese) groups.

Model 2 further examined the classifications between ASD and TD diagnosis using rhythm-

or intonation-relevant features, using a dataset combining both English and Cantonese sam-

ples. The AUC values of all SVM classifications in Model 2 are presented in Fig 1 (right). The

classifications using rhythm-relevant features was significant (median AUC = 0.886, p< 0.001;

ACC = 0.835, SENS = 0.790, SPEC = 0.877), whereas the classification using intonation-rele-

vant features was near chance level (median AUC = 0.559, p = 0.509; ACC = 0.566,

SENS = 0.632, SPEC = 0.509).

Confusion matrices of all classifications are presented in Fig 2. In general, all classifications

using rhythmic features showed comparably high SENS (accuracy in predicting ASD cases)

and SPEC (accuracy in predicting TD cases) rate. SPEC is higher in Model 1 on English and

Model 2, whereas SENS was higher for Model 1 on Cantonese. In contrast, although SPEC was

low in the statistically significant Model 1 on English using intonational features, good SENS

was observed. The non-significant classifications using intonational features had generally low

SENS and SPEC.

Table 2. Model statistics.

Model Language Features Median AUC ACC SENS SPEC

1 English Rhythm 0.900��� 0.819 0.788 0.849

Intonation 0.695�� 0.683 0.758 0.606

Cantonese Rhythm 0.962��� 0.880 0.917 0.833

Intonation 0.620 0.605 0.667 0.542

2 English & Cantonese Rhythm 0.886��� 0.835 0.790 0.877

Intonation 0.559 0.566 0.632 0.509

Model median area-under-the-curve (AUC) and associated accuracy (ACC), sensitivity (SENS), and specificity (SPEC)

���Permutation p<.001.

https://doi.org/10.1371/journal.pone.0269637.t002
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Discussion

The present study applied machine learning (ML)-based analyses to acoustic features of speech

in ASD, in an attempt to identify prosodic differences in ASD that span two typologically dis-

tinct languages, as well as those that may be shaped by specific linguistic and cultural influ-

ences. Capitalizing on the power of ML algorithms for performing classifications using high

dimensional data [6, 42–44], we examined acoustic features representing intonational and

rhythmic aspects of prosody across time or frequency domains. Findings from ML-based algo-

rithms demonstrated that acoustic features can be used to reliably classify ASD vs. TD group

status in both English and Cantonese. Results demonstrate the value of moving beyond more

reductionist approaches (e.g., averaging or picking extreme values) often used in traditional

univariate acoustic analyses on pitch, stress, and speech rate [2], to capture the dynamicity of

speech prosodic profiles, and point to differences in prosodic features that may be robust char-

acteristics of the ASD speech and language phenotype in multiple languages.

Specifically, results of Model 1 indicated that prosodic features in the rhythm of speech(i.e.,

the envelop spectrum [ENV], intrinsic mode functions [IMF], and temporal modulation spec-

trum [TMS]—representations of temporal regularities of speech signal waveforms correlating

to the syllabic rhythm) contained crucial information captured by the ML algorithm to differ-

entiate individuals with ASD from controls. Such findings complement the many rich,

descriptive studies of prosody conducted previously, that described differences in stress pat-

tern, speech rate, and loudness that could be attributed to ASD [4, 71–75]. It is notable that the

ML algorithms identified in this study appeared to capture patterns from acoustic features that

were representative of these prosodic characteristics, paralleling such descriptive observations

by clinicians and researchers. Results of Model 1 also converge with using objective acoustic

measures to characterize speech rhythm in ASD, which have strongly implicated that acoustic

Fig 1. Machine learning classification results. Machine learning classification results displayed in boxplots of Area-Under-the-Curve values across 5001 iterations

and permutations.

https://doi.org/10.1371/journal.pone.0269637.g001
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measures of speech rate and lexical stress based on stressed syllable duration, f0, as well as

cross-syllabic durational variability (e.g., the Normalized Pairwise Variability Index) varied as

a function of ASD diagnosis [14, 22].

Perhaps a more revealing aspect of Model 1 is its cross-linguistic design, examining both

English and Cantonese utterance samples. Relatively few studies [3, 34–36] have examined

prosody in ASD in languages prosodically and typologically distinct from English [41]. All of

these studies focused only on pitch, and only one [36] applied a cross-linguistic design to allow

direct comparisons of prosody across multiple languages, in the same speech sampling context.

The ML algorithm employed in Model 1 was able to classify ASD diagnosis using rhythm-rele-

vant acoustic features (ENV, IMF, and TMS) derived from both English and Cantonese,

revealing strong performance for classification (median AUCs * 0.9) in both languages

respectively. Given the considerable typological differences between English and Cantonese, it

is notable that the same type of acoustic features derived from English and Cantonese pro-

duced reliable ASD/TD classifications, suggesting that speech rhythm is an important feature

of the prosodic profile of ASD that is evident in multiple languages. In Model 2, with datasets

combined, the classification only using the rhythm-relevant acoustic features was also robust

(median AUC > 0.8), particularly considering the large linguistic and acoustic variability

introduced to the dataset by collapsing the two languages (see §3 in S1 File for a supplementary

ML analysis demonstration of systematic cross-linguistic differences present in our rhythm-

relevant features). These results suggest that there are rhythmic characteristics of prosody asso-

ciated with ASD in both English and Cantonese, that potentially represent aspects of a mean-

ingful prosodic profile in ASD that is robustly expressed across the two typologically distinct

languages. These results also complement prior cross-linguistic work reporting common

rhythmic-related characteristics (i.e., pause length) across languages, i.e., English and Danish

[41]. Identification of such a constellation of acoustic features that can reliably predict ASD

diagnostic status, across different languages, may hold significant potential for contributing to

diagnostic and intervention practices, as well as studies to understand the basis of potential

language-related impairments in ASD.

Fig 2. Confusion matrices. Confusion Matrices of machine learning classifications in Model 1 (English and Cantonese) and Model 2

(Combined), aggregated across all 5001 iterations of cross-validation in each classification. Blue hues: correct predictions; Red hues: incorrect

predictions.

https://doi.org/10.1371/journal.pone.0269637.g002
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Such cross-linguistic commonalities in rhythmic characteristics of prosody associated with

ASD may partly stem from the crucial role of prosody in social communication that is partly

invariant across cultures. Speech prosody, in general, demonstrates strong similarities across

cultures and languages in terms of the ability to recognize emotion from prosody [28]. Such

invariance may even be contributed by the biological depth of prosody in potentially having

evolutionary homologies among primates [30], as demonstrated by comparative studies show-

ing parallels in the ways in which humans and animals shape spectro-temporal features of

their vocalizations to express emotion [30–32]. To further understand the biological signifi-

cance of prosodic differences (specifically with regard to rhythm) in ASD, future studies

should examine the structural and functional neurophysiology associated with the production

of prosody in speakers of multiple languages. For instance, functional neuroimaging studies

have found increased right inferior frontal gyrus [76] and right caudate activation in individu-

als with ASD when performing prosody comprehension tasks [77], which were interpreted as

evidence of more effortful processing needed to interpret prosodic cues. Such findings would

be particularly compelling if replicated in individuals with ASD who are speakers of languages

other than English.

In contrast with strong performance for classifications using rhythm-relevant acoustic fea-

tures in both languages in Model 1, classifications using intonation-relevant acoustic features

(timing-varying f0 values) were significant for English, but not Cantonese. Unlike non-tone

languages where pitch serves linguistic and para-linguistic functions at word, phrase, and

utterance levels, in tone languages such as Cantonese, pitch is also used to convey meaning at

the syllabic and lexical levels. Therefore, differences in intonation may manifest differently

across languages due to cross-linguistic variability (which is represented in our intonation-rel-

evant features, as suggested by the supplementary analysis presented in §3 in S1 File), into f0

contour patterns that were identifiable by the ML algorithm for English but not for Cantonese.

Contrasting prior findings showing common cross-linguistic pitch characteristics in ASD

among typologically and prosodically related languages (i.e., English and Danish [41], Canton-

ese and Mandarin [36]), the cross-linguistic differences between English and Cantonese may

have contributed to the lack of significant classifications using intonation-relevant features in

Model 2, where no common feature patterns consistently associated with ASD across the two

languages combined could be identified.

One consideration in cross-linguistic variability observed in ASD intonation is whether

intonation differences in ASD are apparent only in speakers of English (or its typologically

related languages [41]). Indeed, previous acoustic analyses only reported utterance-level f0 dif-

ferences across ASD and TD groups in English [17–19, 21, 22] but not Cantonese [35], consis-

tent with our classification patterns using f0-based features across Models 1 and 2. It is

possible that the prolific usage of linguistic pitch in tone languages provides a compensatory

effect ameliorating intonational differences in ASD. In the perception domain, pitch process-

ing differences found in tone language-speaking children with ASD [78–81] were surprisingly

not evident in their adult peers [82], potentially due to a longer exposure to the native tone lan-

guage. This possibility, i.e., that extensive pitch experience may ameliorate intonational differ-

ences in ASD, highlights pitch and intonation as a fruitful target for speech interventions in

ASD for those who do not speak a tone language, where targeting this potentially more mallea-

ble factor could lead to therapeutic gains and help to advance more global speech and language

characteristics. From a genetic perspective, in contrast to people of European descent, most

Han Chinese people are carriers of the T allele of the ASPM gene that favors the ability to pro-

cess linguistic pitch patterns [83, 84]. This may implicate a role of genetic factors in contribut-

ing to cross-linguistic differences of ASD phenotypes, such as by potentially ameliorating

intonational differences in our participants from our Cantonese ASD group, all of whom
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reported to be of Han Chinese descent. Future studies might examine the ASPM gene as a

potential genetic marker for prosodic differences in ASD, shedding light onto the etiologies of

communications disorders [85] that contribute to distinct cross-linguistic patterns of intona-

tion in ASD.

Limitations

Several potential limitations should be considered in interpreting findings. First, there was a

wide age range across our Cantonese and English groups and a small number of females

included in the current study. With exhaustive efforts made to avoid model overfitting (i.e.,

the choice of linear SVM, repeated cross-validation, data reduction, and hyperparameter tun-

ing in a nested fashion), robust classification results were found, potentially representing

aspects of prosodic profiles of ASD which are relatively age and gender invariant. Moreover,

neither age nor gender appeared to influence classification results, as per our post-hoc analysis

(§2 in S1 File). Nevertheless, future studies with larger samples are needed to confirm whether

findings reported here extend to both males and females and different age ranges where pro-

sodic abilities may vary. Relatedly, future studies should employ more comprehensive assess-

ments of language abilities for group matching, since baseline language ability may covary

with age and autism severity [86, 87], influencing prosody and pitch in particular [88]. Finally,

it will be important for future work to examine languages from typological classes beyond

English and Cantonese. Such work will optimally include much larger, well matched corpora

of multi-linguistic narrative samples from individuals with ASD, with potential to shed crucial

insight into whether the rhythmic commonality identified here may represent features of ASD

that are expressed across languages, despite cross-linguistic variations in prosodic properties.

Conclusion

Using brief utterance samples from a structured narrative task, ML models applied in this

study were able to robustly classify individuals with ASD from those with TD (reflected by

median AUC values *0.9), based on rhythm-relevant features in both English- and Canton-

ese-speaking populations. The success of our ML approach yields implications for its future

clinical utility, such as developing automatic detection of ASD to augment diagnosis [44] for

personalizing therapy and training regimens [89]. Although further study with larger samples,

and with additional language comparisons, is needed to support adaptation of the current

models into clinical use, the current findings highlight the potential of ML-based methods to

objectively identify other speech language-relevant differences in ASD (and potentially other

neurodevelopmental disabilities impacting speech and language) using acoustic data [49]. Fur-

ther, speech samples were relatively convenient and efficient to obtain, rendering these meth-

ods relatively feasible and potentially high yield for clinical application, and highlighting the

promise of optimizing ML-based diagnostic models that make use of speech acoustic data as

clinical tools. Future studies might also apply ML-based approaches to stratify populations for

target in intervention and biological studies alike.

Together, findings from this study provide some of the first evidence for cross-linguistic

commonalities in rhythmic characteristics in ASD across two typologically and prosodically

distinct languages, while suggesting intonational characteristics in ASD are different across the

two languages. Future studies examining languages rhythmically similar to English (e.g., Ger-

man and Dutch), as well as those distant from both English and Cantonese (e.g., Japanese),

could provide additional crucial insights into establishing prosodic profiles of ASD (e.g.,

rhythm) which could potentially be invariant across languages, while highlighting those (e.g.,

intonation) potentially more malleable to be shaped by language-specific linguistic properties.
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