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Abstract: Recent characterization of the human microbiome and its influences on health have led to
dramatic conceptual shifts in dietary bioactives research. Prebiotic foods that include many dietary
fibers and resistant starches are perceived as beneficial for maintaining a healthy gut microbiota. This
article brings forward some current perspectives in prebiotic research to discuss why reporting of
individual variations in response to interventions will be important to discern suitability of prebiotics
as a disease prevention tool.
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The ancient Greek physician Hippocrates perceived food as the key player in the maintenance of
health, not just as a fuel to run the human body. Since then, scientists have probed deeper into the
role of diet in nutrient absorption and bodily function. In the late 1800s, scientists began isolating
microorganisms from different parts of the human body including from the digestive tract. Some of
these organisms were considered harmful and others beneficial. However, the concept of the human
microbiome and its critical role in human health and diseases is more recent, emerging in the 21st
century after the advent of next generation sequencing. Mapping microbiome diversity has unlocked
many mysteries—but also triggered new questions. The answers to many such questions still elude
us, including a very basic but pressing question, “what diet is ideal for a healthy gut microbiome?”
It remains unknown if there is an ideal gut microbiome that can be considered “healthy”, nor do we
know of one ideal diet that can positively manipulate the microbiome of people of all ages across the
globe. Furthermore, a plethora of contradictory research findings on what dietary component may or
may not be healthy frequently confuse the public. Not too long ago, dietary fat used to be our worst
enemy. With time, that spot was taken over by dietary sugars. Another example is soy, with its many
known health benefits and a host of negative side effects [1]. While the reasons behind contradictory
nutritional research are multi-faceted, one contributing factor may be researchers designing studies
like modern medical research that predominantly aims for disease-specific diagnostic and therapeutic
avenues. Scientists prioritize collective outcomes with high statistical significance. While these
benchmarks are a sign of a successful clinical trial, individual responses to the dietary treatment are
often ignored. For example, recently Zeevi et al. reported widespread and high interpersonal variability
in post-prandial glucose response among healthy participants to common dietary components [2]. It is
possible that researchers in dietary intervention studies frequently encounter similar variations, but
they are under-reported.

Prebiotics are selectively fermented dietary ingredients such as resistant starches and some dietary
fibers that change the composition and/or activity of the gastrointestinal microbiota, thus conferring
benefits to the host’s health [3]. While this newer type of functional food is increasingly popular,
a recent systematic review of six prebiotic trials published before 6 November 2015 suggests that
more randomized controlled trials are needed to support their clinical use [4]. More recently our
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group reported a microbiome signature in response to a resistant starch type 4 (RS4)-enriched diet in
individuals with metabolic syndrome (NCT01887964, [5]). It was concluded that RS4 has prebiotic
effects with a potential for metabolic disease prevention. This double-blind and placebo-controlled
study is among a small number of prebiotic intervention studies conducted under a free-living
setting reporting statistically significant changes across microbial composition and abundance, fecal
short chain fatty acid levels, and host immunometabolic functions in response to RS4 consumption.
More frequently, intervention studies end up being inconclusive or lack statistical power due to
wide variability in responses among participants, particularly when conducted within natural living
conditions [6]. Interestingly in our study, although statistical significance across most endpoints was
observed, response variability was commonplace for bacterial abundance and metabolites as well as
clinical endpoints in the host. Relative to average Americans, the study population (Hutterites living in
eastern South Dakota) was more genetically homogeneous and had fewer differences in daily lifestyle
due to their communal style of living. Their variability in microbiome response, however, came as little
surprise. In earlier reports, microbiota varied both in steady state conditions and in response to diet,
aging, and other lifestyle changes [7–9]. Quite possibly, a deeper mechanistic investigation on how
RS4 functions at the molecular level may shed some light on such response variations in the future.
However, here the author focusses on one other question that emerges from all of this: will it benefit
the scientific community in the long run if such side observations of response variability are routinely
reported? Is it possible that we are missing out on information that may hold the key to unlocking
some of the mysteries of diet and the microbiome interactions by not reporting individual responses to
dietary interventions? Currently, there is little enthusiasm from both scientists and publishers to report
such information, as data without statistical significance would rarely contribute to the conclusions
drawn from the work. The viewpoint is illustrated in Figure 1. We observed increases in Ruminococcus
lactaris and Eubacterium oxidoreducens in the RS4 group compared to baseline and post-CF (control
group, CF) [5]. The most common format for reporting such data is mean % change or fold change
along with the p-value. Less frequently, individual data points with column means and associated
descriptive statistical information are shown (Figure 1B,C). Collective data presentation formats, such
as the one shown in Figure 1A, are less helpful in revealing the distinct nature of the two datasets.
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Figure 1. Data presentation formats. (A) Relative abundance of two bacterial species before and after
RS4 treatment shown as mean % change (log10) with corresponding p values; (B) Percent change from
before intervention of the same two bacterial species shown as individual data points with means and
standard deviations on the side; (C) Descriptive statistical information from the two data sets presented
in A and B. The information presented in the last four rows are less frequently reported in clinical
trial publications.

Assessing disease risk in susceptible populations remains one major objective of personalized
or precision nutrition, allowing for stratifications of subpopulations in a manner that improves
the accuracy and cost-effectiveness of interventions and follow-ups. In addition, early prognosis
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and/or diagnosis may facilitate prophylactic treatment that would otherwise be unsuitable for a
larger population. In this context, Zeevi et al. has proposed a machine-learning algorithm approach
that integrates multiple features based on a preexisting large cohort data set to predict, for example,
glycemic response to real-life meals [2]. While they have reported feasibility, cost-effectiveness of
such an approach has not been determined. It must be taken into consideration that no one outcome
alone, such as glycemic response, determines the overall health outcome of an individual. For
example, being able to predict glycemic response may attenuate the risk of type 2 diabetes, but will
not help with the prognosis of hyperlipidemia, heart disease, or cancer. Therefore, many large-scale
endeavors, such as those reported by Zeevi et al., will be necessary to predict multiple clinical
end-points or intermediate biomarkers before personalized overall health risk determination followed
by preventive intervention is possible. For similar reasons, personalized microbiome profiling, while
deemed promising as a tool for disease risk stratification, is not ready for translation to a clinical
setting. It is only proposed that a predictive microbiome modeling system with more sophisticated
readouts integrating multiple aspects of gut microbiota (composition, abundance, metagenomics,
meta-transcriptomic, metabolomics, etc.) should be incorporated [10]. In addition, microbiome-based
biomarkers for personalized prognostic, diagnostic, and treatment may vary by geographic locations,
lifestyle, and many other factors. Therefore, while personalized microbiome profiling may be useful
for predicting and mitigating disease, it will take a huge scientific undertaking before it is ready for
the clinical setting.

In the past few decades, there has been a surge in metabolic diseases that affect quality of life
and pose a substantial medical and economic burden on society. There is a growing interest in
preventive measures to modify the risk of metabolic diseases, with diet proposed as a major player
in public health promotion. Decades of generalized nutritional recommendations do not seem to be
mitigating the metabolic health crisis, although at present there is no alternate to an overall healthy
diet and regular physical activity recommendation for long-term health maintenance. Mounting
evidence suggests a more personalized approach is required for health promotion through disease
prevention and that such personalization cannot entirely rely on human genomic variations in case of
complex metabolic diseases. Even taking into account the huge undertaking discussed above, current
knowledge about the microbiome suggests that integrating microbiome profiling into patient care will
likely allow for a faster, more accurate, and less invasive clinical decision-making processes. In this
context, prebiotics will be critical components of personally tailored dietary interventions aimed at
altering the microbiome to a more beneficial configuration for disease prevention. While the benefits
of dietary fibers, many of which have prebiotic properties, are well-known, their mechanisms of action
mostly remain a mystery. Without the knowledge of structure-function relationships between various
prebiotics and microbial species as well as further consideration of the bilateral relationship of the
microbiome and the host, personalized and effective use of prebiotics for disease prevention will
be difficult. Large-scale characterization of the nutrition-microbiome-host metabolism axis will help
delineate the integration of prebiotics in personalized diets for prevention of multi-factorial metabolic
diseases. One caveat toward such effort is that disease prevention trials typically focus on intermediate
outcomes because long-term follow-up of a large enough population, that will both adhere to the
intervention as well as provide sufficient statistical power to detect differences, is technically difficult
and prohibitively expensive. Regrettably, intermediate outcome measures do not always reflect the
true preventive potential of an intervention as reported from the Look AHEAD (Action for Health in
Diabetes) trial [11].

Looking to the future, it will be critical to consider the collective effects that are statistically
significant, as well as individual response variations, for harnessing the many potential health benefits
of prebiotics. Encouraging the scientific community to report variations observed in clinical trials, even
if such observations may not meaningfully contribute to the main conclusions of the current study,
will be important. Such data may be presented in formats that allow more holistic visualization of
study results, including but not limited to, effect sizes, percentile ranking, minimum and maximum
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values, outliers, means, and medians. A recent commentary in Nature Methods discussed similar
data presentation approaches in lieu of sample-to-sample variability and irreproducibility of scientific
data, particularly in biomedical disciplines [12]. In addition to that, the author believes, this may
also provide an opportunity to build on the vast repertoire of individual response variations that
may not otherwise be possible for any one research study to capture. How such data may precisely
inform clinical study designs and/or results in the future will depend on effective systematic reviews
and meta-analysis outcome from the growing body of such data sets. Nevertheless, the author
is hopeful that the information generated will facilitate better predictability of microbial and/or
host-physiological response behavior in the direction of early prognosis and prevention.
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