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Background. In clinical practice, many patients with coronary atherosclerotic heart disease (CAD) have atypical clinical
symptoms. It is difficult to accurately identify stable CAD or unstable CAD early through clinical symptoms and coronary
angiography..is study aimed to screen the potential metabolite biomarkers in male patients with stable CAD and unstable CAD.
Methods. In this work, the metabolomic characterization of the male patients with healthy control (n� 42), stable coronary artery
disease (n� 60), non-ST-elevation acute coronary syndrome (n� 45), including prepercutaneous corona intervention (n� 14),
and postpercutaneous coronary intervention (n� 31) were performed by using ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS). .e serum samples of patients were analyzed by multivariate statistics. Results. Results showed that 17
altered metabolites were identified to have a clear distinction between the stable CAD group and the healthy subjects. Compared
with the stable coronary artery disease group, 15 specific metabolite markers were found in the acute coronary syndrome group.
.e percutaneous coronary intervention also affected the metabolic behavior of patients with CAD. Conclusions. In summary,
CAD is closely related to energy metabolism, lipid metabolism, and amino acid metabolism disorders. .e different metabolic
pattern characteristics of healthy, stable coronary artery disease and acute coronary syndrome are constructed, which brings a
novel theoretical basis for the early diagnosis of patients with stable and unstable CAD.

1. Introduction

Cardiovascular disease is the leading cause of death and
disability worldwide. .e mortality rate of Chinese car-
diovascular disease was the highest [1]. Coronary athero-
sclerotic heart disease (CAD) is still the cardiovascular
disease with the highest fatality rate in the world [2]. At
present, the “gold standard” for identifying and diagnosing
CAD depends on coronary angiography and coronary CT
imaging [3, 4]. Some studies indicated that the incidence of
acute coronary events in CAD patients was closely related to
the stability of coronary plaques and vulnerable plaques
(unstable plaques) [5]. Stable coronary artery disease
(SCAD) and acute coronary syndromes (ACS) (such as

unstable angina, non-ST-elevation myocardial infarction,
and ST-elevation myocardial infarction) are significantly
different in terms of the treatment process, strategies, and
prognostic outcomes. ST-segment elevation acute myocar-
dial infarction can be diagnosed by ECG combined with
clinical symptoms, while non-ST-segment elevation ACS is
often difficult to distinguish between ECG, clinical symp-
toms, and SCAD. Although increased troponin is specific for
identifying myocardial injury in non-ST-elevation ACS, it is
negative in the early stage of non-ST-elevation ACS. As there
is no effective conventional technology for the early diag-
nosis of stable coronary plaques and vulnerable plaques, it is
particularly important to find a simple, low-cost, and ef-
fective method.
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As a new branch of systems biology, metabolomics is an
analysis technique that can quantitatively and qualitatively
study the relationship between metabolites and pathological
changes in the body. It can analyze the overall endogenous
metabolites in cells, tissues, and other biological samples, such
as blood or urine [6, 7]. Metabolomics research has unique
application advantages [8–10]: (1) small changes in gene and
protein expression can be amplified onmetabolites by catalytic
reactions of metabolic enzymes, thus making detection and
analysis easier. (2) In addition to genome changes, metabolites
are also affected by environmental factors and intestinal flora,
which are more dynamic and more sensitive to changes in
organisms. (3)Metabolic reactions andmetabolic products are
similar in the biological systems of all species. .erefore, the
metabolomics methodology is more universal. (4) Metab-
olomics technology can directly detect almost all sample types,
including whole blood, plasma/serum, tissue, cell, cell culture
supernatant, urine, feces, food, saliva, cerebrospinal fluid, and
fat, without establishing whole genome sequencing and mass
expression sequence database. Applications of metabolic
profiling in coronary heart disease have been developed by
using LC-MS or GC-MS..e relationship between circulating
blood metabolite levels and coronary heart disease was de-
tected by metabolomics. .is technology reveals different
potential pathways for the development of coronary heart
disease..e occurrence of cardiovascular diseases is associated
with the metabolites of amino acids, lipids, peptides, carbo-
hydrates, nucleotides, and xenobiotics [11–13]. .ese bio-
markers are important not only for risk stratification and
treatment decision-making but also for improving the un-
derstanding of the cardiovascular disease. Metabolomics re-
search is likely to become a new technology and method for
the early identification of CAD profiles. As the proin-
flammatory mediators do not appear to be directly linked to
the disease [14], the metabolic markers open up a new di-
agnosis and treatment target for CAD [15, 16].

Previous studies using metabolomics as a potential di-
agnostic criterion for SCAD and ACS in human samples are
limited, especially in China. In this work, we used metab-
olomics methods to construct the characteristics of patients’
metabolites with SCAD, ACS, and healthy subjects. .e
pattern characteristics of different conditions were dis-
cussed. In addition, we analyzed the influence of PCI on the
metabolites of patients with CAD. .rough the differential
changes and metabolic characteristics, metabolomics is
expected to become a novel technology for the early diag-
nosis of different types of CAD.

2. Method

2.1. Baseline Characteristics and Study Design of Patients.
Male participants with ages 40 to 65-year-old were enrolled
in the Department of Cardiology (the Daqing Oilfield
General Hospital, Daqing, China) between January 2015 and
December 2015. As it was not clear that metabolites were the
same in different genders under certain conditions, subjects
of the same sex were selected to reduce the bias of the results.
.e inclusion criteria of healthy controls (HCs), SCAD, and
non-ST-elevation ACS were confirmed according to

American and European guidelines for the diagnosis and
treatment of stable coronary heart disease and guidelines for
the management of non-ST-segment elevation acute coro-
nary syndrome in ESC [17, 18]. .e subjects with no clinical
history of the disease, normal electrocardiogram examina-
tion, and no uncomfortable symptoms of heavy physical
activity were clinically diagnosed as healthy controls. All
subjects were excluded from diseases such as hypertension,
diabetes, chronic kidney disease, metabolic syndrome, heart
failure, COPD, bronchial asthma, connective tissue disease,
rheumatic immune disease, tumor, hyperthyroidism, hep-
atitis, metabolic disease, blood system disease, and severe
liver and kidney damage. .e baseline characteristics (in-
cluding urea, Cr, Na, K, blood sugar, blood lipid, smoking
history, and BMI) of patients were shown in Table 1. .ere
were no statistical differences in the above indicators among
the subjects in experimental groups.

.e selected controls were healthy with no declared
history of CAD (n� 42), SCAD (n� 60), and ACS group
(n� 45), respectively. .e ACS group was divided into pre-
percutaneous coronary intervention (PCI) (within 4 h, n� 14,
PR-ACS group) and post-PCI (within 4 h, n� 31, PO-ACS
group). .e study was performed under the guidance of an
institutional ethical committee from Daqing Oilfield General
Hospital following the Helsinki Declaration. All subjects
agreed to participate in this study, including the blood sample
collection. .e study design was shown in Figure 1.

2.2. Sample Preparation. Cubital vein blood samples were
collected and immediately underwent plasma isolation. .e
blood samples were centrifuged at 1000g for 10min at room
temperature. 100 μL of serum was precipitated by adding
300 μL of methanol and vortexed for 30 s. .e precipitated
proteins were then removed by centrifugation (13,000g,
15min) at 4°C. .e supernatant was transferred to a
microcentrifuge tube and stored at −80°C for further LC-MS
analysis. Quality control (QC) samples were prepared by
mixing 10 μL of each sample.

2.3. LC-MS/MS Analysis. .e separation was performed on
an Agilent®1290 Infinity II (Agilent Technologies Inc., USA)using a Waters ACQUITY HSS T3 C18 (100× 2.1mm,
1.8 µm). .e column oven and the flow rate were set at 30°C
and 0.5mL/min, respectively. In positive mode, the mobile
phase contained 0.1% FA in water (A) and 0.1% FA in ACN
(B). In negative mode, the mobile phase consisted of 0.5mM
NH4F in water (A) and ACN (B)..e gradient was 0min, 1%
B; 1min, 1% B; 8min, 100% B; 10min, 100% B; 10.1min, 1%
B; 12min, 1% B.

ABSCIEX® TripleTOF 6600 Plus ultra-performance
liquid chromatography-tandem mass spectrometer (UPLC-
Q-TOF/MS) was used to acquire the MS/MS spectra on an
information-dependent basis during the LC/MS experiment.
It was operated in positive and negative mode ion mode
under the following operating parameters: GS1: 40 psi; GS2:
80 psi; CUR: 25 psi; TEM: 650°C; ISVF : 5000V
(POS), −4000V(NEG), DP : 60V, CE: 35± 15..e pooled QC
represented the sample matrix and metabolite composition
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of the samples. QC was used to construct the calibration
curves and to judge precision. Stability and recovery were
within the acceptable range. Acquisition software (Analyst
TF1.7 software) continuously evaluated full scan survey MS
data (m/z 50–1200) as it collected and triggered the ac-
quisition of MS/MS spectra depending on preselected
criteria.

2.4. Statistical Analysis. Overall normalization method was
employed in this data analysis. .e three-dimensional data,
including the peak number, sample name, and normalized
peak area were analyzed by the SIMCA14.0 software package
(Umetrics, Umea, Sweden) for orthogonal projections to
latent structures-discriminate analysis (OPLS-DA). To refine
this analysis, the first principal component of variable im-
portance projection (VIP) was obtained. .e VIP value
exceeding 1.0 was first selected as changed metabolites.
Results were presented as mean± SD. An unpaired, two-
tailed Student’s t-test was used for comparisons between two
groups. All analyses were performed using GraphPad Prism
6.0. Differences were considered significant with p< 0.05.

3. Results

3.1. LC-MSDataAnalysis. A total of 147 samples and 20 QC
samples were obtained, of which 4568 peaks were detected
for positive mode and 3516 peaks for negative mode. In
order to optimize the data, the substance with RSD> 30% of
the quality control samples was deleted. Data with a single
group of null values or all groups with a null ≤50% were
retained. .e area normalization method was used to
standardize the data. After processing the data, it remained
at 925 peaks and 727 peaks, respectively.

3.2. Distinguished Health and CAD Patients by OPLS-DA
Analysis. SIMCA software was used to perform OPLS-DA
to maximize the differences of the predictive component.
.e score plot of OPLS-DA(POS) was shown in
Figures 2(a)–2(d). HC group was all located to the left of the
midline, while the SCAD group was all located to the right
(Figure 2(a)). At the latitude of the first principal compo-
nent, the two groups were well separated. Compared with
the principal component score, the separation trend of the
two groups was obvious. .e samples were all within the
99% confidence interval (Hotelling T2 Ellipse). Similar re-
sults were obtained between HC and PR-ACS, SCAD and
PR-ACS, PR-ACS, and PO-ACS, respectively, as shown in
Figures 2(b)–2(d). .e robustness of OPLS-DA was assessed
by 200 times permutation tests. .e validated model of
OPLS-DA was shown in Figures 2(e)–2(h). .e R2 and Q2

were 0.926 and −0.44 for HC versus SCAD; 0.963 and −0.449
for HC versus PR-ACS; 0.961 and −0.485 for SCAD versus
PR-ACS; and 0.773 and −0.421 for PR-ACS versus PO-ACS,
respectively. It implied the validation of these OPLS-DA
models. .e score plot of OPLS-DA(NEG) exhibited similar
results as shown in Figures S1(a)–S1(h).

3.3. Differential Diagnosis of Metabolic Biomarkers.
Metabolic biomarkers can provide further information on
the metabolic mechanism and biochemical pathway of
disease [19, 20]..erefore, screening for differential markers
is an important step in metabolomics analysis. .e loading
plot of the OPLS-DA model (POS) was shown in Figure 3.
.e load diagram reflects the weight of the variable in the

Table 1: .e clinical data for the human plasma samples. Values are presented as mean± SD. SBP: systolic blood pressure; Cr: creatine. Na:
sodium; K: potassium; BMI: body mass index.

Clinical indicator HC SCAD ACS p value (HC vs. SCAD) p value (HC vs. ACS) p value (SCAD vs. ACS)
Sex Male Male Male — — —
Age (year) 52.7± 8.4 55.1± 7.9 56.5± 6.7 0.143 0.180 0.395
SBP (mmHg) 136.8± 20.9 132.75± 23.7 142.4± 20.5 0.381 0.254 0.055
Urea (mmol/L) 5.7± 1.4 5.6± 1.9 6.2± 2.5 0.614 0.294 0.164
Cr (μmol/L) 71.7± 12.5 70.7± 13.5 73.6± 18.2 0.686 0.605 0.384
Na (mEq/L) 141.7± 2.3 141.8± 3.5 140.6± 3.2 0.784 0.099 0.099
K (mEq/L) 4.4± 0.4 4.4± 0.5 4.4± 0.4 0.792 0.832 0.973
GLU (mmol/L) 4.9± 0.4 4.9± 0.5 5.0± 0.4 0.963 0.840 0.884
LDL-c (mg/Dl) 80.7± 26.6 89.2± 14.6 89.9± 16.7 0.746 0.852 0.913
Smoking, n(%) 21 (50%) 40 (66.6%) 22 (48.9%) 0.288 0.747 0.107
BMI (kg/m2) 25.7± 1.6 25.5± 1.5 25.7± 1.6 0.765 0.967 0.737

Subjects (n = 147)

HC (n = 42) SCAD (n = 60) ACS (n = 45)

Related metabolic
pathways

Serum sampling

Biomarkers
identification

Differential
metabolites

PR-PCI (n = 14) PO-PCI (n = 31)

Figure 1: Study design..is study, involving 147 subjects, included
42 healthy controls, 105 patients with SCAD, and 45 patients with
ACS. ACS: acute coronary syndrome; HC: healthy control; SCAD:
stable coronary atherosclerosis disease; PR-ACS: prepercutaneous
coronary intervention; PO-ACS: postpercutaneous coronary
intervention.
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Figure 2: Score plot of and validated model of OPLS-DA obtained from experimental groups (POS). 2(a)–2(d). Score plot of OPLS-DA
model obtained from experimental groups. black: HC, red: SCAD, blue: PR-ACS, yellow: PO-ACS. 2(e)–2(h), the validated model of OPLS-
DA. 200 times were performed, and the resulting R2 andQ2 values were plotted. Green triangle: R2; blue square:Q2..e green line represents
the regression line for R2 and the blue line for Q2.
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principal component. .e substances on the left and right
sides of the load diagram are the potential altered bio-
markers. Results showed that there were specific metabolism
biomarkers for health subjects versus CAD patients and
SCAD versus ACS. PCI also influenced the metabolites of
CAD patients. .e mode of loading plot of the OPLS-DA
model (NEG) obtained from experimental groups was
shown in Figures S2(a)–S2(d).

To evaluate the criteria of metabolomics-based bio-
markers, the variable importance in the projection value
(VIP)> 1 of the OPLS-DA model and the p value <0.05
adjusted Student’s t-test (t-test) were both used to find
differential expression of metabolites. In order to identify
these metabolites, we further matched the fragments of these
metabolites in the MS/MS spectra. .e details of metabolic
parameters were shown in Table 2. As shown in Table 2,
there are 17 altered metabolic biomarkers with a high
correlation for HC versus CAD, 15 for SCAD versus PR-
ACS, and 7 for PR-ACS versus PO-ACS (POS and NEG).

For identifying the altered metabolites, it is necessary to
search the metabolomics database to find the spectrum peak
attribution of the possible biomarkers. .e KEGG database
(https://www.genome.jp/kegg/) was used to screen all the

metabolic pathways related to comparison groups. .e
disturbedmetabolic pathways were shown in Supplementary
Material 1 based on the KEGG pathway database. Compared
with healthy control, we found that the levels of specific
metabolites, such as 5-Cholesten-3β, 25(S)-diol, N-Acetyl-
lysine, tyramine, biliverdin, urocanate, phenol, hypoxan-
thine, L-tryptophane, L-palmitoylcarnitine, were upregu-
lated while the levels of pantetheine, indole, and lecithin
were downregulated in CAD patients. Compared with
SCAD patients, the levels of α-d-glucose, glycol-cholate,
α-tocopherol, inosine, hypoxanthine, L-ornithine, and 5-
oxoproline were upregulated in ACS patients. .e levels of
lecithin were downregulated. Compared with PR-PCI pa-
tients, the levels of methacrylyl-CoA, proline, 5-oxoproline,
L-proline, primary bile acids, glycine, cholate, adrenoster-
one, and 1-oleoyl-sn-glycerol 3-phosphate were upregulated
and the levels of PE (22 : 5/0 : 0) and bilirubin were down-
regulated in PO-PCI patients.

3.4. Metabolic Pathway Analysis. MetaboAnalyst 3.0
(https://www.metaboanalyst.ca) performs both metabolic
pathway enrichment and topological analysis of different
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Figure 3: Loading plot of OPLS-DA model obtained from experimental groups (POS). (a) HC versus SCAD, (b) HC versus PR-ACS,
(c) SCAD versus PR-ACS, and (d) PR-ACS versus PO-ACS.
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metabolites [21, 22]. .e changes in metabolic behavior of
different experimental groups in the positive mode were
shown in Figures 4(a)–4(d). Compared with HC and SCAD,
the metabolisms of glycerophospholipid, linoleic acid,
pantothenate, CoA, and primary bile acid biosynthesis were
changed. For HC versus PR-ACS, linoleic acid, phenylala-
nine, tyrosine, and tryptophan biosynthesis, glycer-
ophospholipid were changed. Glutathione, D-arginine,
D-ornithine, purine, and glycerophospholipid exhibited
different metabolism behaviors compared to SCADwith PR-
ACS. For PR-ACS versus PO-ACS, the same metabolic
differences of HC versus SCAD in glycerophospholipid,
linoleic acid, pantothenate, and CoA were found. Different
from HC versus SCAD, arginine proline metabolism was
markedly changed compared to PR-ACS with PO-ACS. .e
metabolic behavior changes of different groups in the
negative mode were shown in Figures S3(a)–S3(d). In brief,
for HC versus SCAD, the changes in metabolism were
histidine, pyrimidine, tyrosine, porphyrin, and chlorophyll;

for HC versus PR-ACS, linoleic acid, alpha-linolenic acid,
glycerophospholipid, and pyrimidine; for SCAD versus PR-
ACS, linoleic acid, alpha-linolenic acid, glycer-
ophospholipid, and arachidonic acid; and for PR-ACS
versus PO-ACS, linoleic acid, primary bile acid, fatty acid
elongation, and glycerophospholipid. Changes in glycer-
ophospholipid metabolism were found almost in all the
comparison groups which suggested that glycer-
ophospholipid had a significant impact on CAD.

4. Discussion

.e metabolic biomarkers of CAD have been reported in
many studies [21]. However, using metabolomics for the
early diagnosis of CAD in terms of both stable and unstable
plaques is limited, especially in Chinese. .e majority of
these studies paid more attention to the lipids metabolites
[11, 12]. Many altered metabolites with different chemical
structures were not presented. In this work, we screened all

Table 2: Differentiation of metabolites in experimental groups.

Group Metabolites m/z Retention Time(min) VIP p Value Fold change

HC vs. CAD

N6Acetyl-L-lysine 171.113 0.660 3.620 <0.001 1.847
Tyramine 120.080 3.011 2.732 <0.001 1.402
Biliverdin 583.254 4.898 2.45 <0.001 1.936

25-Hydroxycholesterol 425.340 6.826 1.954 <0.01 1.287
Phenol 93.034 2.094 2.177 <0.01 1.273

Urocanic acid 174.988 2.095 1.428 <0.05 1.175
L-tryptophane 205.097 3.145 2.588 <0.01 1.798

L-palmitoylcarnitine 422.326 5.880 1.284 <0.05 1.385
Hypoxanthine 137.045 1.048 1.768 <0.05 1.809

PE (P-16 : 0/0 : 0) 436.282 6.632 2.466 <0.001 1.212
PE (P-18 :1/0 : 0) 462.299 7.579 3.155 <0.001 1.388
PA (18 : 2/0 : 0) 433.235 5.552 2.272 <0.05 1.739
PA (20 : 4/0 : 0) 457.235 5.580 1.852 <0.05 1.768
PC (12 : 0/22 : 2) 758.569 7.152 1.505 <0.05 0.848
PC (24 : 4/12 : 0) 804.550 7.619 1.764 <0.05 0.866

Pantothete 220.118 1.444 1.412 <0.05 0.841
Indole 257.112 1.416 2.068 <0.01 0.846

SCAD vs. PR-ACS

N-Acetyl-L-lysine 171.112 0.660 2.565 <0.05 1.410
Glycocholic acid 466.328 7.561 2.077 <0.01 1.259
Alpha-D-Glucose 180.065 3.577 2.243 <0.05 1.247

N-Acetyl-L-glutamate 265.980 2.871 1.133 <0.05 1.118
PC (14 :1/4 : 0) 536.333 4.660 1.841 <0.05 1.291
α-Tocopherol 431.381 9.694 1.176 <0.05 1.215
Hypoxanthine 137.045 1.048 2.638 <0.001 2.027
Ornithine 177.061 0.428 2.022 <0.01 1.309

PE (P-16 : 0/0 : 0) 436.282 6.632 2.642 <0.05 1.145
PE (P-18 : 0/0 : 0) 464.314 7.579 2.118 <0.05 1.202
PA (18 : 2/0 : 0) 433.235 5.552 2.275 <0.01 1.514
PA (20 : 4/0 : 0) 457.235 5.580 2.083 <0.01 1.561
PA (22 : 4/0 : 0) 485.266 7.505 2.760 <0.05 1.293
PC (22 : 5/16 :1) 828.549 9.560 1.264 <0.05 0.858
PI (16 : 0/20 : 4) 857.518 8.278 2.147 <0.05 0.738

PR-ACS vs. PO-ACS

L-Proline 116.070 4.212 1.082 <0.01 0.998
gamma-L-Glutamyl-L-valine 247.128 1.563 2.168 <0.05 1.500

1-Stearoyl-2-oleoyl-sn-glycerol 3-phosphocholine 786.600 7.686 1.568 <0.01 1.437
1-Oleoyl-sn-glycerol 3-phosphate 455.259 7.463 1.112 <0.001 1.129

Glycochenodeoxycholate 430.295 4.037 1.215 <0.05 1.272
Bilirubin 585.270 4.462 1.812 <0.05 0.784

PE (22 : 5/0 : 0) 550.289 6.502 2.716 <0.01 0.400
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the metabolites in the experimental human groups using a
metabolomics approach in an unbiased way. .e altered
metabolites were selected by OPLS-DA which could reduce
the false positives in the data..e identifiedmetabolites were
matched with published literature and online resources. .e
differentiated metabolites of healthy subjects and stable and
unstable CAD patients were compared. Furthermore, we
focused not only on the metabolism differences between
healthy and CAD patients but also on the SCAD and ACS
group, PR-PCI and PR-PCI group, which were almost no
relevant reports. Our results demonstrated that the accurate
model could identify novel biomarkers in different types of
CAD.

Previous studies have demonstrated a wide range of
metabolites associated with CAD [23–36]. Our study has a
high correlation with some of them. Lysine acetylation

modification is a reversible posttranslational modification
that affects enzyme activity, DNA binding force, and protein
stability by changing the charge on lysine residues and the
structure of proteins. Wang et al. found higher N-acetyl-
threonine levels were identified to be a biomarker associated
with heart failure risk [12]. Li et al. reported lysine acety-
lation was found closely related to CAD [24]. In our studies,
N-Acetyl-lysine was upregulated in both SCAD and ACS
patients compared with healthy control. .is was consistent
with previous research. Serum sterols were a risk factor for
CAD [25]. Abnormal metabolic pathways of cholesterol to
bile acid could lead to cholesterolemia, which was involved
in the occurrence and development of CAD [26]. Bhat et al.
found that low excretion of bile acids might promote CAD
[27]. When compared with healthy control, 5-Cholesten-β,
25(S)-diol, and biliverdin were found upregulated in CAD
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Figure 4: Pathway analysis of experiment group (POS)..e larger the circle meant the greater the influence of topology analysis; the redder
the color meant the smaller the p value, and vice versa. (a) HC versus SCAD, (b) HC versus PR-ACS, (c) SCAD versus PR-ACS, and (d) PR-
ACS versus PO-ACS.
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patients. It suggested that the primary bile acids were de-
creased in CAD patients. As an ischemia marker, hypo-
xanthine had been identified in ACS [28]. As an ATP
degradation product, upregulation of hypoxanthine was
observed in CAD patients in this study. We found that the
energy metabolism was different between healthy and CAD
subjects. Tryptophan, an ingredient to generate amino acids,
was at high levels in CAD patients. A previous study in-
dicated that activated amino acid biosynthesis was an in-
dicator for CAD [29]. As the most important part of the urea
cycle, ornithine was obtained from arginine by arginase.
Arginine was negatively associated with CAD risk which had
been reported [30]. Compared with patients with normal
coronary arteries, patients with CAD downregulated leci-
thin, phosphatidylcholine, pantetheine, and indole as shown
in Supplementary Material 1. Low lecithin cholesterol
acyltransferase activity had been linked to CAD [31]. Many
phosphatidylcholines (PCs) exhibited a negative association
with CAD [32]. Our results showed that PC (12 : 0/22 : 2) and
PC (24 : 4/12 : 0) were downregulated in CAD patients,
which was consistent with other studies [33]. .e changed
insulin sensitivity and glycemic control were associated with
an increased cardiovascular risk in previous reports [34]..e
adenosine, inosine, and hypoxanthine, which were released
by the oxygen-deprived heart were AMP catabolites. Inosine
is a sensitive and early indicator of wall-thickness changes in
the ischemic pig hearts [35]. Vitamin E with its major
isoforms α-tocopherol (α-T) and c-tocopherol (c-T) and
reduced glutathione (GSH) are the main antioxidants in the
blood. Supplementation with antioxidant micronutrients
could be beneficial for CAD [36]. .e levels of lecithin were
downregulated in CAD patients. Plasma lipids and fatty
acids had been linked to CAD. Linoleic acid deficiency had
been proposed as a risk factor for cardiovascular disease.
Decreased hexadecanoic suggested an elevated level of fatty
acids in the metabolism [37].

Different from other studies, we also obtained some new
biomarkers in our study. Our results indicated that amino
acid metabolism and biosynthesis could also be used as a
new marker to distinguish SCAD from ACS. Tyrosine was
increased in CAD patients which suggested the role of amino
acid disorder in the CAD process. In addition, L-ornithine
and ornithine were also found to significantly increase in the
ACS group which had not been reported. PE and PC are two
major subclasses of glycerophospholipids. PE is a glycer-
ophospholipid in which a phosphoryl ethanolamine moiety
occupies a glycerol substitution site. .ough some Lyso PC,
PC, and Lyso PE were identified to have a negative asso-
ciation with CAD, different classes of PC and PE might be
expressed differently. Xu et al. reported most PE species
showed no significant differences between AMI and stable
angina patients [32]. It seemed that PEs had a strong
negative association with CAD. However, in this study, the
levels of PEs (P-16 : 0/0 : 0) and PE(P-18 : 0/0 : 0) were both
upregulated in healthy versus CAD and SCAD versus ACS.
.e results suggested that some PEs might contribute to
unstable plaque progress. PA (18 : 2/0 : 0) and PA (20 : 4/0 : 0)
exhibited different expression levels compared with the CAD
group and healthy control in our studies. However, PA (18 :

2/0 : 0), PA (20 : 4/0 : 0), and PA (22 : 4/0 : 0) were increased
in ACS patients (versus SCAD), which could be used as a
distinction between ACS and SCAD. PA is rarely reported as
a biomarker for CAD diagnosis. As primary bile acids were
found to be decreased in CAD patients, the higher level of
PA might attribute to the cost of cholesterol in the synthesis
of bile acids. .e increased α-d-glucose in ACS patients was
blood-related to the energy metabolism disorder compared
to patients with SCAD. Interestingly, α-tocopherol and 5-
oxoproline were upregulated in ACS patients compared with
SCAD which suggested the body’s autoregulatory function
was stronger in ACS. We further investigated the influences
of PR-PCI and PR-PCI treatment on patients with ACS.
Besides proline, 5-oxoproline, L-proline, primary bile acids,
glycine, cholate, the levels of methacrylyl-coA, and adre-
nosterone of PO-PCI were upregulated compared with PR-
PCI patients. PE (22 : 5/0 : 0) and bilirubin were down-
regulated in PO-PCI patients which alleviated the symptom
of CAD. Several new biomarkers were identified from this
study with PCI treatment for CAD. .ese newly found
biomarkers enhanced the power for discrimination of dif-
ferent types of CAD.

5. Limitation of This Study

.e limitations of this study mainly include the following
aspects. Firstly, although the UPLC-MS technology has high
detection sensitivity [33, 34], there are still many difficulties
in the identification and accurate quantification of trace
substances [35]. Secondly, in this study, the number of
subjects was relatively small, and the required sufficient
samples are not obtained. Whether there are metabolic
differences between men and women is not clear. .irdly,
the metabolites of HC, SCAD, ACS, and ACS treated by PCI
or not were screened out only by LC-MS. .ese different
metabolites still need to be verified through tracking the
related upstream and downstream genes or enzymes in
subsequent studies.

6. Conclusion

.is study used UPLC-MS for metabolomics analysis in
healthy subjects, SCAD, and ACS with PR-PCI or PO-PCI in
positive and negative modes. .ere were 17 different me-
tabolites between the healthy subjects and SCAD, 15 be-
tween SCAD and ACS, and 7 between PR-PCI and PO-PCI
groups..e results suggested that CADwas closely related to
energy metabolism, lipid metabolism, and glucose meta-
bolism disorders. In summary, the alteredmetabolites can be
used as special metabolic biomarkers for patients with
different types of CAD in the early diagnosis.
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.e larger the circle meant the greater the influence of
topology analysis; the redder the color meant the smaller the

p value, and vice versa. A: HC versus SCAD, B: HC versus
PR-ACS, C: SCAD versus PR-ACS, D: PR-ACS versus PO-
ACS (NEG). (Supplementary Materials)

References

[1] G. A. Roth, G. A.Mensah, C. O. Johnson et al., “Global burden
of cardiovascular diseases and risk factors, 1990-2019: update
from the GBD 2019 study,” Journal of the American College of
Cardiology, vol. 76, pp. 2982–3021, 2020.

[2] G. B. D. Mortality, “Causes of Death C. Global, regional, and
national age-sex specific all-cause and cause-specific mortality
for 240 causes of death, 1990–2013: a systematic analysis for
the Global Burden of Disease Study 2013,” Lancet, vol. 385,
pp. 117–171, 2015.

[3] S. Achenbach and W. G. Daniel, “Noninvasive coronary
angiography-an acceptable alternative?” New England Journal
of Medicine, vol. 345, no. 26, pp. 1909-1910, 2001.

[4] Task Force for Diagnosis and Treatment of Non-ST-Segment
Elevation Acute Coronary Syndromes of European Society of
Cardiology, J. P. Bassand, C. W. Hamm et al., “Guidelines for
the diagnosis and treatment of non-ST-segment elevation
acute coronary syndromes,” European Heart Journal, vol. 28,
pp. 1598–1660, 2007.

[5] P. Libby, P. M. Ridker, and G. K. Hansson, “Progress and
challenges in translating the biology of atherosclerosis,”
Nature, vol. 473, no. 7347, pp. 317–325, 2011.

[6] J. Nielsen and S. Oliver, “.e next wave in metabolome
analysis,” Trends in Biotechnology, vol. 23, no. 11, pp. 544–546,
2005.

[7] T. Hui-Run and W. Yu-Lan, “Metabonomics: a revolution in
progress,” Progress in Biochemistry and Biophysics, vol. 33,
pp. 401–417, 2006.

[8] J. He, K. Wang, N. Zheng et al., “Metformin suppressed the
proliferation of LoVo cells and induced a time-dependent
metabolic and transcriptional alteration,” Scientific Reports,
vol. 5, no. 1, Article ID 17423, 2015.

[9] H. Li, Z. Q. Xie, J. C. Lin et al., “Transcriptomic and
metabonomic profiling of obesity-prone and obesity-resistant
rats under high fat diet,” Journal of Proteome Research, vol. 7,
no. 11, pp. 4775–4783, 2008.

[10] N. F. Butte, Y. Liu, I. F. Zakeri et al., “Global metabolomic
profiling targeting childhood obesity in the Hispanic pop-
ulation,” 9e American Journal of Clinical Nutrition, vol. 102,
no. 2, pp. 256–267, 2015.

[11] N. P. Paynter, R. Balasubramanian, F. Giulianini et al.,
“Metabolic predictors of incident coronary heart disease in
women,” Circulation, vol. 137, no. 8, pp. 841–853, 2018.

[12] Z. Wang, C. Zhu, V. Nambi et al., “Metabolomic pattern
predicts incident coronary heart disease,” Arteriosclerosis,
9rombosis, and Vascular Biology, vol. 39, no. 7, pp. 1475–
1482, 2019.

[13] A. Ganna, S. Salihovic, J. Sundstrom et al., “Large-scale
metabolomic profiling identifies novel biomarkers for inci-
dent coronary heart disease,” PLoS Genetics, vol. 10, no. 12,
Article ID e1004801, 2014.

[14] K. H. Collins, G. Z. MacDonald, D. A. Hart et al., “Impact of
age on host responses to diet-induced obesity: development of
joint damage and metabolic set points,” Journal of Sport and
Health Science, vol. 9, no. 2, pp. 132–139, 2020.

[15] M. Mayr, Y. L. Chung, U. Mayr et al., “Proteomic and
metabolomic analyses of atherosclerotic vessels from apoli-
poprotein E-deficient mice reveal alterations in inflammation,
oxidative stress, and energy metabolism,” Arteriosclerosis,

Cardiology Research and Practice 9

https://downloads.hindawi.com/journals/crp/2022/6491129.f1.zip


9rombosis, and Vascular Biology, vol. 25, no. 10, pp. 2135–
2142, 2005.

[16] C. Bernal-Mizrachi, A. C. Gates, S. Weng et al., “Vascular
respiratory uncoupling increases blood pressure and ath-
erosclerosis,” Nature, vol. 435, no. 7041, pp. 502–506, 2005.

[17] D. F. Stephan, C. B. James, P. A. Karen et al., “ACC/AHA/
AATS/PCNA/SCAI/STS focused update of the guideline for
the diagnosis and management of patients with stable is-
chemic heart disease,” Journal of the American College of
Cardiology, vol. 64, pp. 1929–1949, 2014.

[18] M. Roffi, C. Patrono, J. P. Collet et al., “2015 ESC guidelines
for the management of acute coronary syndromes in patients
presenting without persistent ST-segment elevation: task
force for the management of acute coronary syndromes in
patients presenting without persistent ST-segment elevation
of the european society of cardiology (ESC),” European Heart
Journal, vol. 37, no. 3, pp. 267–315, 2016.

[19] M. Martin-Lorenzo, P. J. Martinez, M. Baldan-Martin et al.,
“Citric acid metabolism in resistant hypertension: underlying
mechanisms andmetabolic prediction of treatment response,”
Hypertension, vol. 70, no. 5, pp. 1049–1056, 2017.

[20] F. Fei, T. Ma, X. Zhou, M. Zheng, B. Cao, and J. Li, “Metabolic
markers for diagnosis and risk-prediction of multiple mye-
loma,” Life Sciences, vol. 265, Article ID 118852, 2021.

[21] J. Xia, I. V. Sinelnikov, B. Han, and D. S. Wishart, “Metab-
oAnalyst 3.0--making metabolomics more meaningful,”
Nucleic Acids Research, vol. 43, no. W1, pp. W251–W257,
2015.

[22] F.Murgia, S. Svegliati, S. Poddighe et al., “Metabolomic profile
of systemic sclerosis patients,” Scientific Reports, vol. 8, no. 1,
p. 7626, 2018.

[23] M. S. Lewitt and J. S. Baker, “Relationship between abdominal
adiposity, cardiovascular fitness, and biomarkers of cardio-
vascular risk in British adolescents,” Journal of Sport and
Health Science, vol. 9, no. 6, pp. 634–644, 2020.

[24] P. Li, J. Ge, and H. Li, “Lysine acetyltransferases and lysine
deacetylases as targets for cardiovascular disease,” Nature
Reviews Cardiology, vol. 17, no. 2, pp. 96–115, 2020.

[25] M. Sonoda, K. Sakamoto, T. Miyauchi et al., “Serum lipids,
apoproteins and sterols as risk factors for coronary artery
disease,” 9e Journal of Japan Atherosclerosis Society, vol. 19,
no. 2-3, pp. 139–144, 1991.

[26] S. Khurana, J. P. Raufman, and T. L. Pallone, “Bile acids
regulate cardiovascular function,” Clinical and Translational
Science, vol. 4, no. 3, pp. 210–218, 2011.

[27] B. G. Bhat, S. R. Rapp, J. A. Beaudry et al., “Inhibition of ileal
bile acid transport and reduced atherosclerosis in apoE-/-
mice by SC-435,” Journal of Lipid Research, vol. 44, no. 9,
pp. 1614–1621, 2003.

[28] N. Turgan, C. Gülter, S. Habif et al., “Urinary hypoxanthine
and xanthine levels in acute coronary syndromes,” Interna-
tional Journal of Clinical and Laboratory Research, vol. 29,
no. 4, pp. 162–165, 1999.

[29] A. L. Mellor, J. Sivakumar, P. Chandler et al., “Prevention of
T cell-driven complement activation and inflammation by
tryptophan catabolism during pregnancy,” Nature Immu-
nology, vol. 2, no. 1, pp. 64–68, 2001.

[30] L. Tenori, X. Hu, P. Pantaleo et al., “Metabolomic fingerprint
of heart failure in humans: a nuclear magnetic resonance
spectroscopy analysis,” International Journal of Cardiology,
vol. 168, no. 4, pp. e113–5, 2013.

[31] C. Stegemann, R. Pechlaner, P. Willeit et al., “Lipidomics
profiling and risk of cardiovascular disease in the prospective

population-based Bruneck study,” Circulation, vol. 129,
no. 18, pp. 1821–1831, 2014.

[32] X. Xu, B. Gao, Q. Guan et al., “Metabolomic profile for the
early detection of coronary artery disease by using UPLC-
QTOF/MS,” Journal of Pharmaceutical and Biomedical
Analysis, vol. 129, pp. 34–42, 2016.

[33] W.W. Tang, Z.Wang, B. S. Levison et al., “Intestinal microbial
metabolism of phosphatidylcholine and cardiovascular risk,”
New England Journal of Medicine, vol. 368, no. 17,
pp. 1575–1584, 2013.

[34] T. Basak, S. Varshney, Z. Hamid, S. Ghosh, S. Seth, and
S. Sengupta, “Identification of metabolic markers in coronary
artery disease using an untargeted LC-MS based metabolomic
approach,” Journal of Proteomics, vol. 127, pp. 169–177, 2015.

[35] J. W. de Jong, P. D. Verdouw, W. J. Remme, M. L. Simoons,
and H. Stam, “Diagnostics of ischemic heart disease: influence
of myocardial ischemia on AMP catabolite release and he-
modynamics,” Clinical Cardiology, vol. 3, p. 212, 1980.

[36] R. McKechnie, M. Rubenfire, and L. Mosca, “Antioxidant
nutrient supplementation and brachial reactivity in patients
with coronary artery disease,” 9e Journal of Laboratory and
Clinical Medicine, vol. 139, no. 3, pp. 133–139, 2002.

[37] B. S. P. Bentham Science Publisher, J. A. Lovegrove, R. Gitau,
K. G. Jackson, and K. M. Tuohy, “.e gut microbiota and lipid
metabolism: implications for human health and coronary
heart disease,” Current Medicinal Chemistry, vol. 13, no. 25,
pp. 3005–3021, 2006.

10 Cardiology Research and Practice


