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Due to the speed, efficiency, relative risk, and lower costs compared to tra-

ditional drug discovery, the prioritization of candidate drugs for repurpos-

ing against cancers of interest has attracted the attention of experts in

recent years. Herein, we present a powerful computational approach, ter-

med prioritization of candidate drugs (PriorCD), for the prioritization of

candidate cancer drugs based on a global network propagation algorithm

and a drug–drug functional similarity network constructed by integrating

pathway activity profiles and drug activity profiles. This provides a new

approach to drug repurposing by first considering the drug functional simi-

larities at the pathway level. The performance of PriorCD in drug repur-

posing was evaluated by using drug datasets of breast cancer and ovarian

cancer. Cross-validation tests on the drugs approved for the treatment of

these cancers indicated that our approach can achieve area under receiver-

operating characteristic curve (AUROC) values greater than 0.82. Further-

more, literature searches validated our results, and comparison with other

classical gene-based repurposing methods indicated that our pathway-level

PriorCD is comparatively more effective at prioritizing candidate drugs

with similar therapeutic effects. We hope that our study will be of benefit

to the field of drug discovery. In order to expand the usage of PriorCD, a

freely available R-based package, PriorCD, has been developed to priori-

tize candidate anticancer drugs for drug repurposing.

1. Introduction

The research and development of new drugs, especially

effective cancer drugs, is a slow and costly process (ap-

proximately 12 years and US$1.8 billion on the aver-

age) (Sinha and Vohora, 2018). Due to the high

attrition rates (most drugs fail due to insufficient safety

and/or efficacy) and long time frame for drug develop-

ment, repurposing drugs (finding new indications for

existing drugs) has emerged as an attractive proposi-

tion because of lower costs and shorter development

times (Ashburn and Thor, 2004; Pushpakom et al.,
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2018). A number of computational methods have been

reported to reposition drugs that make use of knowl-

edge in areas such as chemical informatics, bioinfor-

matics, and systems biology to implement the

repurposing process based on prior knowledge, broad

signatures of activities (e.g., gene expression profiles),

or other methods, and each of these has strengths and

weaknesses (Jin and Wong, 2014).

Knowledge-based methods are those using available

information to do drug-repurposing studies, including

chemical structure of drugs, adverse effects, protein–
protein interactions (PPI), and Food and Drug

Administration (FDA) approval labels. Such as PRE-

DICT (Gottlieb et al., 2011), this method builds classi-

fication features by using known drug–indication
associations, as well as drug–drug and indication–indi-
cation similarities, and they are subsequently used to

predict new drug–indication associations. The advan-

tage of the knowledge-based methods is that it collects

and uses a wealth of prior knowledge, which improves

the predictive accuracy of drug repurposing. Although

they may have high statistical significance, they involve

in fewer molecular-level mechanisms, such as signifi-

cantly differential expressed gene compared with signa-

ture-based methods (Jin and Wong, 2014).

There are many signature-based methods that have

been published. The Connectivity Map (CMap) pro-

posed by Lamb et al. (2006), a large-scale algorithm

designed to explore functional interactions between

drugs as well as between drugs and diseases, is based

on the reverse correlations between the drug- and dis-

ease-induced gene expression profiles. Another classical

method was reported by Shigemizu et al. (2012),

whose premise rests on using gene expression profiles

that significantly changed in normal and cancer cell

lines to find candidate drugs that can bring abnormal

processes of disease states back to normal (down-regu-

late overexpressed genes or up-regulate underexpressed

genes). Such methods generally take the perspective

that a drug might have a chance to treat a disease

whether there is an inverse correlation between the

gene expression profiles after taking drug and that

under the disease condition. However, from a system

perspective, drugs generally exert the therapeutic effect

to the diseases on biological pathways, and both of

the methods above were focused on the changes of

gene-level expression. The pathway-based method may

have a potential for drug repurposing and improve the

success rate of drug development (Jin and Wong,

2014; Pushpakom et al., 2018).

A biological pathway is a series of actions among

interacting genes and/or molecules in a cell that leads

to a certain product or a change in a cell (Kanehisa

and Goto, 2000). Compared to pathway-based analy-

sis, gene signature-based analysis often yields a series

of genes that are statistically significant but cannot be

defined for any single theme on a biological level and

thus misses significant impacts on pathways, such as

transcriptional regulation and metabolic processes.

These cellular processes are generally regulated by sev-

eral genes acting together, instead of in isolation, and

generally do not manifest as changes in individual

genes (Subramanian et al., 2005; Ye et al., 2012).

Therefore, understanding the functional similarity of

drug effects at the pathway level is helpful to drug

repurposing.

Moreover, the National Cancer Institute (NCI)-60

panel provides data for molecular profiles (e.g.,

mRNA and microRNA expression profiles) and drug

activities for the NCI-60 cancer cell lines. The drug

activities are expressed as the negative log of the con-

centration that results in a 50% growth inhibition

(GI50) in the NCI-60 cell lines. The NCI-60 data

could be used to study the relationships between

expression levels of various mRNA and microRNA, as

well as their correlations with drug activity, and these

correlations may provide new perspectives for the

computational methods of drug repurposing (Shanka-

varam et al., 2009).

Here, we present a novel approach, termed prioriti-

zation of candidate drugs (PriorCD), to prioritize can-

didate cancer drugs by applying a global network

propagation algorithm to a drug functional similarity

network. We first enriched mRNA and microRNA in

the NCI-60 panel into mRNA and microRNA path-

ways. Then, the mRNA and microRNA pathway

activity profiles were correlated to drug activity pro-

files to obtain mRNA- and microRNA-based path-

way–drug correlations. Subsequently, we measured the

correlations among drugs across the pathway activities

to construct an mRNA pathway-based and microRNA

pathway-based drug–drug functional similarity net-

work, which were then integrated into one integrated

network. Based on the network, we could make

rational biological interpretation on drug functional

similarities. Obviously, drugs that are closer and more

connected to each other in the functional drug similar-

ity network are more likely to share similar functions

and exert similar therapeutic effects on the same dis-

ease. After mapping known cancer drugs to the net-

work, we applied a global network propagation

algorithm to score candidates by proximity to all

known cancer drugs.

In this work, we provide predictions of 14 and 8

candidate drugs for breast cancer and ovarian cancer

drug sets, respectively, and compare our results with
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two other classical drug-repurposing methods. Accord-

ing to cross-validation test and receiver-operating char-

acteristic (ROC) curve analysis, we validated that

PriorCD can efficiently prioritize candidate cancer

drugs.

2. Materials and methods

2.1. Data sources and data processing

2.1.1. Chemical compounds anticancer activity data

The term ‘drug’ was used to indicate chemical com-

pounds in the study. We collected chemical com-

pounds’ anticancer activity data in NCI-60 cancer cell

lines (CCLs) from the CellMiner database (Shanka-

varam et al., 2009), which comprises up to 20 000

compounds. The NCI-60, a panel of 60 human CCLs

from nine tissues of origin widely used in the study of

drug discovery and cancer biology to screen chemical

compounds for anticancer activity (Blower et al.,

2007), includes melanomas (ME), leukemia (LE), and

cancers of the breast (BR), lung (LC), ovary (OV),

prostate (PR), central nervous system (CNS), kidney

(RE), and colon (CO) (Fig. 1A). The activity levels are

expressed as the negative log of the half maximal

growth inhibition concentration [�log10(GI50)], which

denotes that higher values equate to higher sensitivity

of cell lines. For drugs with duplicate IDs, we aggre-

gated their activity data by means. To limit our drug

set, which showed relatively high and diverse activity

across NCI-60 CCLs, we calculated two values, the

inter-quartile range (IQR) and maximum intensity for

each drug. In the end, 3645 drugs were retained for

our analyses that were contained in both the top quar-

tile of the IQR and the top quartile of maximum

intensity.

2.1.2. mRNA and microRNA expression data

In order to better analyze and understand the effects

of drugs on multiple levels, we collected mRNA and

microRNA expression data for the NCI-60 CCLs sep-

arately; 19 794 mRNA expression data in NCI-60

CCLs normalized by GC robust multi-array average

(GCRMA) from Affymetrix Human Genome U133

Plus 2.0 microarrays (Reinhold et al., 2010) and 319

microRNA expression data in NCI-60 CCLs normal-

ized by log2 from OSU V3 microarray (Blower et al.,

2007; Gaur et al., 2007) were retrieved from CellMiner

(Fig. 1A). For mRNA and microRNA with duplicate

IDs, we aggregated their expression values by means

for our analysis.

2.2. Workflow overview

PriorCD was developed to prioritize candidate com-

pounds against a cancer of interest for drug repurpos-

ing based on a drug functional similarity network. Our

method consists of four main steps: (a) inferring

mRNA and microRNA pathway activity profiles, (b)

constructing a functional similarity network between

drugs by integrating mRNA and microRNA pathway-

based drug similarities, (c) calculating drug prioritizing

scores according to a set of approved therapeutic drugs

for the cancer of interest based on a global network

propagation algorithm, and (d) evaluating the statisti-

cal significance of drug prioritized scores by random

permutation test and measuring the performance of the

prioritizing procedure by leave-one-out cross-validation

(LOOCV). A flow diagram of the PriorCD methodol-

ogy is shown in Fig. 1. PriorCD has been implemented

as a freely available R-based tool (https://cran.r-project.

org/web/packages/PriorCD). Users need to input a set

of approved therapeutic drugs for a particular cancer,

and then, the prioritized list of candidate drugs will be

returned.

2.3. Inferring mRNA and microRNA pathway

activity profiles

Single sample gene set enrichment analysis (ssGSEA)

(Barbie et al., 2009) against 250 curated gene sets

(C2) of Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways from MSigDB (http://software.b

roadinstitute.org/gsea/msigdb/index.jsp) was carried

out to convert mRNA expression data into mRNA

pathway activity profiles; then, 227 resultant mRNA

pathways were extracted. For microRNA expression

data, we first obtained microRNA–mRNA interac-

tion data from our previous study (Han et al.,

2016), where we converted pathways of mRNA into

pathways of microRNA. Then, the target mRNA of

microRNA were mapped into mRNA pathways and

a hypergeometric test was used to calculate the P-

values of the associations between microRNA and

mRNA pathways. The associations with P-value

< 0.05 were considered to be microRNA pathways,

which were used in our work to obtain microRNA

pathway activity profiles. In total, 124 microRNA

pathways had been enriched. These pathway activity

profiles were then used to obtain pathway–drug cor-

relations and subsequently pathway-based drug cor-

relations.
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Fig. 1. Workflow of PriorCD. (A) Data preparation. Drug–disease relationships were collected from the FDA; mRNA and microRNA

expression data and drug activity profiles in NCI-60 cell lines were obtained from CellMiner. (B) Both mRNA and microRNA expression data

were enriched into mRNA and microRNA pathway activity profiles, respectively, and then correlated with drug activity profiles to calculate

mRNA- and microRNA-based pathway–drug correlations across NCI-60 cell lines. Based on these correlations, the functional similarity

between each pair of drugs was calculated, and a drug-drug functional similarity network was then generated. Through mapping of known

cancer therapeutic drugs to the network, a global network propagation algorithm was subsequently applied to the network to achieve a

prioritized list of drugs, which was validated by ROC curve analysis.
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2.4. Constructing a drug–drug functional

similarity network

Our method for drug repurposing is based on the

observation that drugs in the vicinity of the approved

therapeutic drugs within the network are more likely

to share similar biological effects. We sought to reveal

the similarity of anticancer activity between drugs on

the biological pathway level. Toward this goal, we first

performed a Pearson correlation analysis between

mRNA pathway or microRNA pathway activity pro-

files and drug activity data across all NCI-60 CCLs.

The Pearson correlation coefficient (PCC) reflects the

extent of correlation between pathways and drugs.

Next, based on the resultant pathway–drug correla-

tion matrices, individual relationships between drugs

on the mRNA and microRNA pathway levels were

defined based on the PCC between each pair of drugs,

which describes the functional similarity between activ-

ity patterns of the drug pairs across all of the path-

ways. The resulting P-values of PCC were false

discovery rate (FDR) adjusted to correct for multiple

comparisons. We then constructed an integrated drug

functional similarity network whose vertices were

drugs and edges represented significant functional simi-

larity as follows: For each drug, we considered drugs

with correlation coefficient ≥ 0.7, FDR ≤ 0.05, and

drugs that ranked in top 0.05% of decreasing correla-

tion coefficients as significantly similar. Drug func-

tional similarity networks based on mRNA and

microRNA pathways were then merged. Vertices that

had edges in any of the networks constructed above

were also connected in the integrated network.

Approximately 82 000 undirected edges among 3645

drugs were contained in this network. This drug func-

tional similarity network is provided in our package

and can also be downloaded from the Table S1. Drugs

with similar activity patterns under multiple but simi-

lar experimental conditions have higher probability of

being involved in related biological pathways and

treating similar diseases. Using an integrated drug sim-

ilarity network, it is feasible to capture the subtle func-

tional relationships among drugs. This integrated drug

similarity network can be represented as a drug–drug
functional similarity matrix, which can be used in the

following analysis.

2.5. Calculating drug prioritizing scores

Our drug-repurposing process exploits random walk

with restart algorithm (RWR) (Kohler et al., 2008) on

the integrated drug similarity network. RWR is a glo-

bal network propagation algorithm for quantifying

similarity between any given node of a network and a

given set of nodes called the restart set, because the

complete network structure is traversed during these

iterations. In a random walk, a set of start nodes

(restart set) in the network is defined, here correspond-

ing to approved therapeutic drugs against a specific

cancer. In each iteration, the random paths are

extended from their current nodes, and either transi-

tion to a neighboring network node or jump to one of

the nodes in the restart set with a certain restart prob-

ability. Each node in the network is assigned a proba-

bility describing the chance of visiting. When reaching

the steady state, nodes in the network are ranked by

their visiting probabilities (Fig. 1B). The visiting prob-

ability of each node determines the similarity between

the restart set and that node. Those with high visiting

probability are more proximal and more similar to the

restart set and more likely to be considered as candi-

dates. This algorithm has prioritized disease genes in

many other studies (Kohler et al., 2008).

As input, RWR accepts a set of approved therapeu-

tic drugs for a cancer of interest, an undirected drug

similarity network, and a restart probability. The ran-

dom walk with start process is described as Eqn 1:

pt ¼ ð1� aÞApt�1 þ ap0 ð1Þ

where p1 = p0; pt is a vector containing visiting proba-

bilities of all nodes in the network at time point t. A is

a column-normalized adjacent matrix of the drug simi-

larity network. p0 represents the initial probability vec-

tor of nodes, where the nodes in the restart set

corresponding to approve therapeutic drugs against a

specific cancer are assigned as 1 and remaining nodes

as 0. These binary numbers represent the prior knowl-

edge of the drugs. The factor a 2 (0,1) is a certain

probability of continuing the random walk or restart-

ing from the restart set. In this study, a was set to be

0.7, because Kohler et al. (2008) reported that a had

only a slight effect on the results of the RWR algo-

rithm when it fluctuated between 0.1 and 0.9. The

probability vector pt will reach a steady state at certain

time point, when the difference between pt and pt�1

falls below 10�10, and then, the RWR algorithm will

terminate. Drugs were then ranked according to the

values in the steady-state probability vector pt, which

were used as drug prioritizing scores.

2.6. Statistical significance analysis and method

evaluation

To stringently compare with randomized networks to

access the statistical significance of drug prioritizing
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scores, we generated degree-preserving random net-

works with precisely the same number of edges for

each node as in the real drug similarity network but

with different node labels. Simultaneously, the adja-

cency matrices of random networks had the same

number of nonzero values in each row and column as

the real network. For each random network, we

recalculated the prioritized scores of each drug. The

P-value of each drug’s prioritized score was computed

as the ratio of the counts with larger score in the

random networks divided by the permutation times.

In this study, permutation times were set at 1000

as the default. The FDR was accessed by the

Benjamin–Hochberg method (Benjamini and Hoch-

berg, 1995).

Furthermore, the LOOCV test was applied here to

test the performance of our method. For an arbitrary

set of approved therapeutic drugs against a specific

cancer, in order to perform the LOOCV test, each

drug was chosen, and its cancer annotation was then

hidden, one at a time within the set. We evaluated the

performance of our method by its success rate of re-

annotating the cancer annotation-removed drugs.

Moreover, the ROC curve, which plots the true-posi-

tive rate (TPR) versus the false-positive rate (FPR),

which is subject to the drug prioritizing scores separat-

ing the identification results, and the AUROC was

then computed to measure the performance of our

method.

3. Results

3.1. Reliability analysis of mRNA and microRNA

pathway activity data

In this study, 227 mRNA pathways and 124 micro-

RNA pathways were extracted from mRNA and

microRNA expression data in NCI-60 CCLs by using

the ssGSEA method (see Section 2).

To assess the technical reproducibility and variation

among disparate cell lines for mRNA and microRNA

pathway activity data, in which we carried out Pearson

correlation analysis for designated cell–cell groups in

Fig. 2A,C, respectively, all of the enriched mRNA and

microRNA pathways were included. For mRNA path-

way activity correlation from different cell lines, the

average correlation was 0.960, with a range of 0.869–
0.994 and a standard deviation of 0.018 (Fig. 2A). For

microRNA pathway activity correlation from different

cell lines, the average correlation was 0.806, with a

range of 0.465–0.996 and a standard deviation of

0.081 (Fig. 2C).

The tissue-of-origin correlations of mRNA pathway

activities and those of microRNA pathway activities in

Fig. 2B,D, respectively, were calculated using the same

pathway activity data as described above, indicating

the variation levels both within and between tissues of

origin. Averages were taken when a particular tissue of

origin comprised multiple cell lines. For mRNA path-

way activity correlation within a single tissue of origin,

the average correlation was 0.977, with a range of

0.964–0.987 and a standard deviation of 0.008. For

that between different tissues of origin, the average

correlation decreased to 0.959 with a range of 0.926–
0.977 and a standard deviation of 0.014 (Fig. 2B). For

microRNA pathway activity correlation within a single

tissue of origin, the average correlation was 0.880, with

a range of 0.777–0.965 and a standard deviation of

0.053. For that from different tissues of origin, the

average correlation dropped to 0.799, with a range of

0.726–0.874 and a standard deviation of 0.042

(Fig. 2D).

We could observe in Fig. 2B,D that microRNA

pathway activity profile has greater variation than the

mRNA pathway activity data. In addition, melanoma

(ME) and central nervous system (CNS) were the most

coherent (their correlation was 0.9831 and 0.9833,

respectively), whereas leukemia (LE) and lung cancer

(LC) were the least coherent (their correlation was

0.9638 and 0.9667 respectively). In order to explore

which pathways are responsible for these correlations

or distinctions, we selected six leukemia (LE) cell lines

and nine lung cancer (LC) cell lines as an example.

Figure S1 shows the hierarchical clustering heatmap of

15 cancer cell lines and 227 mRNA pathways. We

could clearly observe that cancer cell lines from the

same tissue are clustered together. In addition, many

pathways had almost the same activity pattern, that is,

consistently high activity or low activity. Such as the

activity of citrate cycle (TCA cycle) pathway was con-

sistently high, but the activity of olfactory transduction

pathway was consistently low. Also, some pathways

acted distinctly different in the two tissues. For exam-

ple, ECM-receptor interaction pathway and histidine

metabolism pathway had lower activity in leukemia

cell lines and higher activity in lung cancer cell lines.

On the contrary, carbohydrate digestion and absorp-

tion pathway had higher activity in leukemia cell lines

and lower activity in lung cancer cell lines. Therefore,

the pathways having the same activity pattern in dif-

ferent tissues may lead to high correlations and path-

ways having reverse activity pattern in different tissues

may be responsible for the distinction of tissues.

In comparison with the cell–cell and tissue-of-origin

correlations based on pathway activity levels (Fig. 2),
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Fig. 2. Cell–cell and tissue-of-origin correlation. Pearson correlation coefficient (PCC) of 227 mRNA and 124 microRNA pathway activity

profiles, respectively, presented at the levels of NCI-60 cell line and tissue of origin. (A) Heatmap of cell–cell correlation coefficient for

mRNA pathway. (B) Mean tissue of origin correlation coefficient for mRNA pathway. (C) Heatmap of cell–cell correlation coefficient for

microRNA pathway. (D) Mean tissue of origin correlation coefficient for microRNA pathway.
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the correlations based on gene expression levels are

lower (Fig. S2). For instance, for mRNA expression

correlation from different cell lines, the average corre-

lation was 0.886, with a range of 0.810–0.981 and a

stand deviation of 0.027. Within a single tissue of ori-

gin, the average mRNA expression correlation was

0.930, with a range of 0.908–0.952 and a stand devia-

tion of 0.016. For that between different tissues of ori-

gin, the average correlation was 0.883, with a range of

0.840–0.901 and a stand deviation of 0.020.

As shown in Fig. 2, some unrelated cell lines and

tissues of origin seemingly had high correlations,

which are likely generated by KEGG pathways repre-

senting housekeeping processes and those representing

processes that are not expressed in cancer cell lines.

Moreover, the length of pathway activity profile

(n = 227) is much shorter than the length of gene

expression profile (n > 10 000), which could also lead

to high correlations.

These results indicated that in comparison with using

mRNA and microRNA expression data, using mRNA

and microRNA pathway activity data demonstrated

the coherence of pathway activities within tissues as

well. Moreover, pathway activity profiles contain fewer

features and smaller fluctuation. Therefore, it is more

appropriate for us to use pathway activity profiles to

analyze functional similarities among drugs.

The clustering results of 227 mRNA pathways and

124 microRNA pathways are shown in Fig. 3A,B,

where high activity levels are expressed in red and low

activity levels in blue. Separation according to tissues

of origin for both mRNA and microRNA pathway

activity data was observed in most instances when cell

lines were clustered. Particularly noteworthy is that cell

lines from the same tissue of origin tended to be clus-

tered together. For mRNA pathway activity data, six

leukemia cell lines (six in total) and eight melanoma

cell lines (nine in total) were clustered together

(Fig. 3A). For microRNA pathway activity data, five

leukemia cell lines (six in total) and nine melanoma

cell lines (10 in total) were clustered together (Fig. 3B),

which indicated relatively high coherence between

mRNA and microRNA pathway activity.

Since the results of using mRNA and microRNA

pathways were consistent with, or even better than,

the results of using mRNA and microRNA in Liu

et al., it was theoretically feasible to analyze drug

effects on the pathway level. Furthermore, using path-

way activity data enables more comprehensive and

accurate results, which was more conducive to captur-

ing, researching and summarizing the similarity of

drug effects from the biological functional level (Liu

et al., 2010).

3.2. Prioritization of drugs for breast cancer

Breast cancer, the second cause of death worldwide

among females in recent years (Ferlay et al., 2015), is

also a very important model to evaluate new therapeu-

tic drugs in cancer research. Therefore, we collected 33

FDA-approved drugs for treating breast cancer from

the NCI (National Cancer Institute) at the NIH

(National Institutes of Health) website (https://www.ca

ncer.gov/about-cancer/treatment/drugs/breast) on Jan-

uary 2, 2019. Biologics drugs, such as proteins, anti-

bodies, cell therapies, and lytic viruses, were excluded

because they did not consist in our chemical com-

pound datasets and did not make sense based on our

fundamental approach. After excluding these, 16

breast cancer drugs remained in this section for analy-

sis, which was concerned as the restart set and summa-

rized in Table S2.

Drugs such as paclitaxel (antimitotic agent), lapa-

tinib ditosylate (EGFR and ErbB-2 dual tyrosine

kinase inhibitor), and fluorouracil (DNA and RNA

synthesis inhibitor) are FDA-approved drugs for treat-

ing breast cancer that are included in our restart set,

which were first mapped into our drug functional simi-

larity network. The RWR algorithm was then per-

formed on our network to prioritize drugs. With FDR

< 0.001, PriorCD identified 14 statistically significant

candidate drugs, which may potentially treat breast

cancer (Table 1). The full list of ranked drugs is listed

in the Table S3.

Specially, there are 14 prioritized candidate drugs in

total (Table 1). Gefitinib (prioritized score = 9.73E-03,

FDR < 0.001), afatinib (prioritized score = 3.14E-03,

FDR < 0.001), ibrutinib (prioritized score = 3.14E-03,

FDR < 0.001), tyrphostin AG1478 (prioritized

score = 3.13E-03, FDR < 0.001), zorubicin (prioritized

score = 1.15E-03, FDR < 0.001), and daunorubicin

(prioritized score = 1.13E-03, FDR < 0.001) show sig-

nificant prioritized scores in our PriorCD method and

are considered to show great potential therapeutic

effects in the treatment of breast cancer.

Gefitinib (NSC715055), a type of epidermal

growth factor receptor (EGFR) tyrosine kinase inhi-

bitor, is an FDA-approved drug for treating non-

small-cell lung cancer (NSCLC). EGFR is an estab-

lished therapeutic target in the treatment of breast

cancer. The over-expression of EGFR in breast can-

cer is associated with poor differentiation and prog-

nosis (Masuda et al., 2012; Rimawi et al., 2010).

Kalykaki et al. (2014) showed that gefitinib had

encouraging clinical benefits (clinical trial:

NCT00428896) in eliminating circulating tumor cells

in metastatic breast cancer.

2266 Molecular Oncology 13 (2019) 2259–2277 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Prioritization of candidate cancer drugs J. Di et al.

https://www.cancer.gov/about-cancer/treatment/drugs/breast
https://www.cancer.gov/about-cancer/treatment/drugs/breast


Fig. 3. Clustered image of (A) 227 mRNA and (B) 124 microRNA pathway activity levels in NCI-60 cell lines, where red indicates high

activity level and blue indicates low activity level.
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Afatinib (NSC750691) is an orally administered

blocker of the tyrosine kinase and epidermal growth

factor receptor family, with antineoplastic activity. It

has been approved by FDA for the first-line treatment

of NSCLC. The positive therapeutic effect of afatinib

in the treatment of breast cancer, in particular trastu-

zumab-resistant HER2-positive breast cancer, has been

observed in phase I/II clinical studies (Canonici et al.,

2016; Hurvitz et al., 2014; Lin et al., 2012). Addition-

ally, the study of its effect in combination with letro-

zole suggested a potential in advanced hormone-

refractory breast cancer (Gunzer et al., 2016).

Ibrutinib (NSC761910), an orally bioavailable small

molecular drug, can bind irreversibly to inhibit Bru-

ton’s tyrosine kinase (BTK) activity. It has been

approved and shows notable clinical antineoplastic

activity against several B-cell lymphoproliferative dis-

eases, such as chronic lymphocytic leukemia (CLL),

small lymphocytic lymphoma (SLL), and Waldenstr€om

macroglobulinemia (a type of non-Hodgkin lym-

phoma). Ibrutinib has been reported to play a valuable

role in inhibiting activity of BTK-C, a novel isoform

of BTK that protects breast cancer cells from apopto-

sis (Wang et al., 2016). Specifically, the effect of ibruti-

nib has been clearly confirmed in the suppression of

the growth of HER2+ breast cancer cell lines (Chen

et al., 2016). Thus, it could become a drug for the

treatment of ErbB2+ breast cancer (Campbell et al.,

2018; Grabinski and Ewald, 2014).

Tyrphostin AG1478 (NSC693255), a potent and

specific quinazoline small molecular inhibitor of

EGFR tyrosine kinase (Lenferink et al., 2000; Zhang

et al., 2008), is another compound we consider to be a

prioritized candidate in treatment of breast cancer. An

in vitro study showed that the cytotoxicity of EGFR

inhibitor tyrphostin AG1478 on breast cancer cell lines

was enhanced when simultaneously suppressing the

phosphoinositide 3-kinase (PI3K) signaling pathway,

aberrant activation and dysfunction of which were fre-

quently reported in breast carcinogenesis (Li et al.,

2012).

Daunorubicin (NSC82151), an anthracycline

chemotherapeutic, inhibits the replication and repair

of DNA and the synthesis of RNA and protein, and

was approved by the FDA to treat acute leukemia,

that is, acute lymphoblastic leukemia (ALL) and acute

myeloid leukemia (AML). The valuable anticancer

activity of stealth liposomal daunorubicin in eliminat-

ing breast cancer cell has been validated in in vitro

studies by Guo et al. (2010). Moreover, octreotide-

modified daunorubicin liposomes could potentially

prevent breast cancer invasion according to Ju et al.

(2018) and Liu et al. (2017). In addition, zorubicin

(NSC164011), a benzoylhydrazine analog of daunoru-

bicin, which shares similar effects with daunorubicin in

inhibition of carcinogenesis, is now in a phase III clini-

cal trial for treatment of breast cancer (Jeswani and

Paul, 2017). Meanwhile, the reason why daunorubicin

(NSC82151) and zorubicin (NSC164011) could be

regarded as candidate drugs can also be found in our

drug functional similarity network. A subnet of the

drug functional similarity network was extracted

(Fig. S3), displaying the network structure of part of

three drugs in restart set (red nodes) and five candidate

drugs (yellow nodes). The prioritized scores of each

drug were determined by the global distance between

Table 1. Candidate drugs for breast cancer identified by PriorCD with FDR < 0.001

NSCID Drug name Prior score FDR Statusa M.O.A.b

715055 Gefitinib 9.73E-03 < 0.001 FDA approved YK|PK:EGFR

750691 Afatinib 3.14E-03 < 0.001 FDA approved YK|PK:EGFR

761910 Ibrutinib 3.14E-03 < 0.001 FDA approved YK

693255 Tyrphostin AG 1478 3.13E-03 < 0.001 – YK

677423 Amythiamicin a 1.69E-03 < 0.001 – –

673191 – 1.58E-03 < 0.001 – –

668404 – 1.39E-03 < 0.001 – –

123139 l-cysteine, s-[(4-methylphenyl)diphenylmethyl]-(9ci) 1.38E-03 < 0.001 – –

164011 Zorubicin 1.15E-03 < 0.001 – –

82151 Daunorubicin 1.13E-03 < 0.001 FDA approved T2

711946 Antineoplastic-d668094 1.10E-03 < 0.001 – –

736681 – 1.07E-03 < 0.001 – –

726148 n,n’-bis[4-(n-butylamidino)phenyl}homopiperazine 1.05E-03 < 0.001 – –

699491 Epidoxoform 7.74E-04 < 0.001 – –

aStatus is the current stage of drugs, which can be divided into FDA approved, Europe approved, clinical trial, and none (–).
bM.O.A. is the abbreviation of mechanism of action, and detailed information can be found in the Table S9.
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itself and drugs in the restart set. When they had more

direct neighbors and more shared neighbors (i.e., indi-

rect connections via hub nodes, gray nodes) with the

restart set, the RWR algorithm was more inclined to

propagate to these drugs and give them higher priori-

tized score. This indicates that the candidate drugs

would possess greater functional similarity with the

drugs in the restart set. For instance, daunorubicin

and zorubicin have more counts of direct (3, 3) and

shared (39, 34) neighbors in drugs in the restart set

than other drugs in the subnet, thus their prioritized

scores are higher (Fig. S3).

3.3. Prioritization of drugs for ovarian cancer

Ovarian cancer has a high incidence worldwide. It is

estimated that there are about 239 000 new cases and

125 000 fatalities per year worldwide, which is also the

eighth leading cause of death in females (Ferlay et al.,

2015). Furthermore, the 5-year relative survival rate of

ovarian cancer at the last stage is only 1 in 29 (Reid

et al., 2017). Therefore, in order to enhance the cure

rates and to weaken the toxicity of side effect of cur-

rent treatment regimens for ovarian cancer, the discov-

ery of treatments for ovarian cancer is imperative. At

present, the FDA has approved more than 10 drugs

for the treatment of ovarian cancer. We visited NIH

website (https://www.cancer.gov/about-cancer/treatme

nt/drugs/ovarian) on January 2, 2019, to collect these

drugs. After cross-referencing with our drug list, seven

drugs were left in the case study of ovarian cancer and

considered as a restart set and is summarized in

Table S2.

Drugs that are used to treat ovarian cancer, for

instance, gemcitabine (antimetabolite with antineoplas-

tic activity), doxorubicin (anthracycline antibiotic with

activity of topoisomerase II inhibition), and topotecan

(camptothecin derivative, inhibitor of topoisomerase

I), are approved by the FDA for the treatment of

different types of ovarian cancer widespread and used

as a restart set in our method. The procedure of prior-

itization was done as before.

For a new treatment plan for ovarian cancer, eight

drugs are identified by PriorCD as candidate drugs,

which may become effective strategies of the treatment

for ovarian cancer. We regard camptothecin and its

derivatives, irinotecan and its biologically active

metabolite SN38 (prioritized score see Table 2, FDR

< 0.001) and epirubicin (prioritized score = 1.66E-03,

FDR < 0.001) as optimal therapeutic candidates.

Table 2 comprises detailed information about eight

candidate drugs. The full list of ranked drugs is listed

in the Table S4.

NSC94600, known as camptothecin (Fig. 4A), is a

natural quinoline alkaloid isolated from the Chinese

tree Camptotheca acuminata (Wall et al., 1966). It has

broad-spectrum anticancer activity in vitro, especially

against many solid tumors. Plenty of camptothecin

analogs have been synthesized to date, such as irinote-

can (for colorectal cancer) and topotecan (for cervical

cancer, ovarian cancer, and small cell lung cancer),

which have been approved by the FDA for use in the

treatment of cancer (Sooryakumar et al., 2011). Camp-

tothecin has been reported to exhibit significant pre-

clinical antineoplastic activity in ovarian cancer cell

lines (Beggiolin, 2005; Sriram et al., 2005). Different

types of camptothecin derivatives appeared most fre-

quently in our prioritized list, such as NSC629971

(Fig. 4C), NSC610457 (Fig. 4D), and NSC681644

(Fig. 4E). Despite there not being enough preclinical

or clinical trials yet to demonstrate their efficacies, we

analyzed them from their chemical structure and found

that they have exactly the same parent ring system

(Fig. 4A), the pyranoindolizinoquinoline. The sub-

stituents on the ring system are the only difference

among them. In addition, they are very similar in

structure to the FDA-approved camptothecin deriva-

tive topotecan (NSC609699) (Fig. 4B) according to the

Table 2. Candidate drugs for ovarian cancer identified by PriorCD with FDR < 0.001

NSCID Drug name Prior score FDR Statusa M.O.A.b

681644 Camptothecin Derivative 2.03E-03 < 0.001 – T1

629971 Camptothecin Derivative 2.03E-03 < 0.001 – T1

94600 Camptothecin 1.99E-03 < 0.001 – T1

728073 Irinotecan 1.90E-03 < 0.001 FDA approved T1

673596 7-Ethyl-10-hydroxycamptothecin 1.86E-03 < 0.001 FDA approved T1

711946 Antineoplastic-d668094 1.74E-03 < 0.001 – –

256942 Epirubicin 1.66E-03 < 0.001 FDA approved T2

610457 Camptothecin Derivative 1.52E-03 < 0.001 – T1

aStatus is the current stage of drugs, which can be divided into FDA approved, Europe approved, clinical trial, and none (–).
bM.O.A. is the abbreviation of mechanism of action, and detailed information can be found in the Table S9.
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maximum common substructure (MCS) Tanimoto sim-

ilarities (0.62, 0.81, and 0.63, respectively, calculating

by R-based package ‘ChemmineR’) (Cao et al., 2008).

Based on previous studies on the structure–activity
relationship (SAR) of camptothecin, the addition of

substituents at positions 7, 9, 10, and 11 of the A and

B rings can retain or improve its antitumor activity (Li

et al., 2017; Venditto and Simanek, 2010). Two of

three camptothecin derivatives we prioritized have one

substituent at the above positions. This also struc-

turally verifies that these camptothecin derivatives may

have good effects on preclinical studies and are there-

fore considered as potential therapeutic drugs for

treating ovarian cancer.

Irinotecan (NSC728073), also a camptothecin deriva-

tive, is a type of topoisomerase inhibitor approved by

the FDA to treat colon or rectal cancer alone or

combined with other drugs. It can be converted by car-

boxylesterase converting enzyme to the active metabo-

lite 7-Ethyl-10-hydroxycamptothecin (SN38,

NSC673596) in the body, which is up to 1000 times more

active than its prodrug irinotecan. Recent experiments

in vitro and in vivo show that irinotecan has moderate

single-agent activity in treating platinum-sensitive and

platinum-resistant ovarian cancer (Bodurka et al., 2003;

Muggia et al., 2013). As for attaching cytotoxic drugs to

monoclonal antibodies, that is, antibody–drug conju-

gates (ADCs) of irinotecan attached to bevacizumab,

results of clinical phase II studies also show that they

have great potential for recurrent ovarian cancer (Mug-

gia et al., 2013; Musa et al., 2017). In addition, accord-

ing to Yao et al. (2015) trastuzumab-SN38 conjugates

may have encouraging activity in HER2-positive ovar-

ian cancer.

Fig. 4. Chemical structures of camptothecin and its derivatives. (A) Camptothecin (NSC94600). (B) Topotecan (NSC609699), FDA-approved

drug for ovarian cancer. (C) Camptothecin derivative NSC629971. (D) Camptothecin derivative NSC610457. (E) Camptothecin derivative

NSC681644. Structures in red represent their common structure.
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The topoisomerase II inhibitor epirubicin, a 40-epi-
isomer of the anthracycline antibiotic doxorubicin

(epirubicin, NSC256942), is also ranked highly in our

prioritized list of ovarian cancer drugs. It has been

considered to be safe and effective as the first-line drug

in the treatment of metastatic breast cancer through

clinical trials (Conte et al., 2000). Sayal et al. (2015)

reported the combination of epirubicin and gemc-

itabine in the treatment of platinum-resistant epithelial

ovarian cancer (EOC) and provided a new option of

ovarian carcinoma treatment, which is likely to

become an effective regimen after further investigation.

3.4. Performance of the PriorCD method

For a more comprehensive confirmation of the accu-

racy and wide applicability of PriorCD, we also col-

lected therapeutic drug information for four other

cancers, acute myeloid leukemia (AML), acute lym-

phoblastic leukemia (ALL), prostate cancer (PRC),

and non-small-cell lung cancer (NSCLC), which are

shown in Table S2. We considered the restart set

(FDA-approved drugs) of all six types of cancers as

the true-positive drug set. LOOCV and ROC analysis

were then used to evaluate the predictability of our

PriorCD method. As shown in Fig. 5A, the value of

AUROC of our method applied to the breast cancer

data set (BRC) was 0.87 and to the ovarian cancer

data set (OVA) was 0.97. For the other four types of

cancers (AML, ALL, PRC, and NSCLC), it was 0.88,

0.91, 0.82, and 0.87, respectively. The full set of drugs

for these types of cancers is shown in Tables S5–S8.

3.5. Comparison of PriorCD with other methods

We also compared the predictability our PriorCD

method with two classical computational methods for

drug repurposing, proposed by Shigemizu et al. (2012)

and CMap by Lamb et al. (2006), both of which are

mainly based on the reverse correlation between gene

expression and disease signature. We obtained 1251,

1079, and 1182 compound activity profiles from CMap

in breast cancer, leukemia and prostate cancer cell

lines, respectively. Gene expression data in breast can-

cer, leukemia, and prostate cancer cells (GSE6883,

GSE5788, and GSE3325) were downloaded from Gene

Expression Omnibus (GEO) database of the National

Center of Biotechnology Information (NCBI). Subse-

quently, these two methods were used to generate

ranked drug lists. In order to perform ROC curve

Fig. 5. Cross-validation and comparison results. (A) ROC curves for 6 different cancer drug sets were generated. The AUROC values for

each cancer drug set were calculated and were displayed in the brackets, respectively. (B) Comparison between PriorCD and two other

methods. We applied PriorCD on three different drug datasets to compare its performance with Lamb et al. and Shigemizu et al. The TPR

and FPR were calculated, and then, AUC values behind the color bar were used to measure their performance. UCDB: drugs that can

down-regulate up-regulated cancer genes. DCUB: drugs that can up-regulate down-regulated cancer genes.
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analysis to evaluate the predictability of the two previ-

ous methods, 20 breast cancer drugs, 10 myeloid leu-

kemia (ML) drugs, and 11 prostate drugs that

receiving FDA marketing approval were collected and

been considered as true-positive sets. According to the

AUROC values, PriorCD shows better values than the

two methods above (Fig. 5B).

3.6. Robustness analysis of PriorCD method

The KEGG database contains distinct pathways that

consist mostly of the same genes, which might lead to

highly similar pathway activities across all cancer cell

lines. We examined if overlapping pathways influenced

our results. Thus, we excluded the highly overlapping

pathways and then re-implemented our method.

Specifically, according to the method of eliminating

redundancy proposed by Haider et al. (2018), we

tested the overlap between each pair of pathways and

eliminated the smaller one when a pair of pathways

had a two-way overlap above 80% (if two pathways

shared over 80% of their genes). In the end, we

obtained 199 mRNA pathways and 102 microRNA

pathways, which we called nonredundant KEGG (non-

reKEGG) pathways. Then, cell–cell and tissue-of-ori-

gin correlations based on nonrecKEGG pathways

were calculated, and the results are shown in Fig. S4.

For example, for mRNA pathway activity correlation

from different cell lines, the average correlation was

0.959, with a range of 0.863–0.994 and a stand devia-

tion of 0.019. Within a single tissue, the average

mRNA pathway activity correlation was 0.977, with a

range of 0.963–0.986 and a stand deviation of 0.008.

For that between different tissues, the average correla-

tion decreased to 0.958, with a range of 0.925–0.976
and a stand deviation of 0.014. These results were

fairly consistent with the previous results derived from

original KEGG pathways.

Furthermore, in order to test whether the redundant

pathways result in bias results, we then compared the

number of overlapping drugs on the top 30 of priori-

tized drug lists based on KEGG pathways and nonre-

KEGG pathways. We found that the overlapping

ratios of drugs in breast cancer, leukemia, and prostate

cancer were 76.7%, 50%, and 73.3% (Fig. S5). These

results indicate that the redundant pathways slightly

influence the results, and our method is robust and

stable for the redundant pathways.

Besides, in order to evaluate whether our method is

robust and stable when using different pathway

database, mRNA and microRNA were, respectively,

enriched into 642 mRNA pathways and microRNA

pathways based on Reactome database. Cell–cell and

tissue-of-origin correlations based on Reactome path-

ways are shown in Fig. S6. For mRNA pathway activ-

ity correlation from different cell lines, the average

correlation was 0.976, with a range of 0.921–0.996 and

a stand deviation of 0.011. Within a single tissue, the

average mRNA pathway activity correlation was

0.986, with a range of 0.978–0.991 and a stand devia-

tion of 0.005. For that between different tissues, the

average correlation was 0.974, with a range of 0.954–
0.984 and a stand deviation of 0.008. We could

observe that the results of correlation based on Reac-

tome pathways (Fig. S6) are similar with those based

on KEGG pathways.

We then compared overlapping drugs on the top

30 of prioritized drug lists based on both databases

of pathway annotations. Figure S7 shows three Venn

diagrams representing three different cancers (breast

cancer, leukemia, and prostate cancer). The overlap-

ping ratios of drugs in these three cancers almost

exceeded 50%, which demonstrates the robustness

and stability of our method for the different

pathway database.

4. Discussion

Drug repurposing is a strategy for identifying new

indications for marketed or investigational drugs and

can revitalize compounds that have failed in late clini-

cal trial phase or during preclinical research. As we

know, a cancer has its unique genetic characteristics

even if they come from the same tissue. This is also

the reason why patients with same cancer response dif-

ferently to identical drugs. Repurposing on cancer

drugs could offer patients multiple different choices in

order to overcome drug resistance and therefore make

the treatment more effective. Moreover, by drug repur-

posing it is also capable to reveal novel targets or

pathways that might provide new thoughts in carcino-

genesis and cancer treatment. It has become a focus of

experts’ attention in drug development, and many

methods have been published in this sphere. The most

commonly used computational approaches are based

on the comparison of the unique characteristics (such

as transcriptomics, proteomics, or chemical structures)

of a drug against those of another drug and disease

(Hieronymus et al., 2006; Keiser et al., 2009). Biologi-

cal pathways may help experts further study on the

potential function of drugs (Ye et al., 2012). In our

PriorCD method, we enriched pathway activity profiles

based on mRNA and microRNA expression of 60 can-

cer cell lines from the NCI-60 panel. We integrated

pathway activities with drug activities to construct a

drug functional similarity network for prioritizing
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candidate drugs, and the resulting tool may provide

new insight for drug repurposing.

Both mRNA and microRNA expression profiles

were taken into account when we constructed the drug

functional similarity network, based on sufficient evi-

dence that mRNA and microRNA are involved in sur-

prisingly diverse biological processes associated with

cell homeostasis, such as DNA replication, cell cycle,

and cell apoptosis (Kwak et al., 2010; Mo, 2012).

Using pathway activity profiles could observe various

changes at a higher biological level, since in that com-

plex cellular biological processes are not just governed

by individual genes, but are impacted by many other

genes and molecules. Therefore, the use of gene-level

expression data is not comprehensive to understand

the biological significance of cell processes.

In comparison with our PriorCD approach, CMap

and the method proposed by Shigemizu et al. focused

on the gene expression profiles in disease versus nor-

mal state. Such methods have been influenced and

restricted by expression data. Even if disease profiles

are reproduced under the similar conditions, different

results may be obtained from one instance to the next.

Moreover, our drug activity profiles currently cover a

wider range of compounds (over 3000).

In our method, we first enriched mRNA and micro-

RNA into mRNA pathways and microRNA pathways

and obtained their activity profiles. Then, we corre-

lated the pathway activities to the drug activities

across 60 cancer cell lines. After obtaining mRNA

pathway–drug correlations and microRNA pathway–
drug correlations, we calculated correlation between

each pair of drugs across all pathways to construct the

drug functional similarity network based on mRNA

pathways and microRNA pathways and then inte-

grated them. This process could be easily explained as

‘Correlations of correlations’ approach. Although

some pathways behave the same activity pattern across

cell lines (Fig. 3), their correlations to all drugs are

not identical (Fig. S8). This indicates that these path-

ways are informative for the drug clustering, although

their effects are modest. Specially, there are several

pathways that actually differ between the cell lines.

For example, ECM-receptor interaction pathway and

histidine metabolism pathway have lower activity in

leukemia cell lines and higher activity in lung cancer

cell lines (Fig. S1). These pathways are likely the pro-

cesses that in the end drive the clustering of drugs.

Two drugs were considered functionally similar if

they had similar pathway–drug correlations. We chose

gefitinib (NSC715055) and afatinib (NSC750691) as

concrete examples to interpret the drug similarity net-

work in biological pathway level. Gefitinib and

afatinib are both EGFR inhibitors, which target sev-

eral related pathways, such as EGFR tyrosine kinase

inhibitor resistance pathway and ERBB signaling path-

way. Figure S9 shows that these two drugs (gefitinib

and afatinib) are both positive correlated with the two

pathways (EGFR tyrosine kinase inhibitor resistance

pathway and ERBB signaling pathway). Moreover, we

could observe that correlations between gefitinib and

227 mRNA pathways and those between afatinib and

227 mRNA pathways were generally consistent. And

the correlation between gefitinib and afatinib was 0.71

(FDR = 2.43e-36). The high correlation between them

is driven by the consistency of their pathway–drug cor-

relations across all pathways. Therefore, the two drugs

were functionally similar and were connected in our

drug functional similarity network. The implication is

that the drug functional similarity network could

reflect the similarities among drugs on a biological

functional level, which means the closer the connection

between two drugs in this network; the more similar

they are functionally. Our results exactly confirm this

conclusion. For instance, in our network, drugs for the

treatment of breast cancer such as epirubicin

(NSC256942) and doxorubicin (NSC123127) were scat-

tered nearby its candidate drug daunorubicin

(NSC82151). All of these drugs are topoisomerase II

inhibitors (Table S9) that produce anticancer activity

by blocking DNA replication and thereby interfering

protein synthesis. Since PriorCD uses pathway activi-

ties rather than just gene expression data, it is more

conducive to find candidate drugs that have similar

pharmacological and pharmacodynamic effects.

In this study, we mainly used FDA-approved drug

sets against specific cancers to prioritize candidate

drugs. For a given cancer, the PriorCD method could

identify drugs that may have different targets but exert

the similar functions with the FDA-approved drugs.

Thus, our method may provide alternatives for

patients when they are drug resistance for the present

drugs. Moreover, our method could find new uses for

approved drugs (drug repurposing). In breast cancer

dataset, PriorCD found 14 candidate drugs, some of

which approved to treat other diseases have been iden-

tified as candidates for treating breast cancer in our

study. For instance, two approved drugs for non-

small-cell lung cancer, gefitinib (prioritized

score = 9.73E-03, FDR < 0.001) and afatinib (priori-

tized score = 3.14E-03, FDR < 0.001), were ranked at

the top of the prioritized list and were considered as

candidate drugs for breast cancer. However, there are

still a number of drugs that have not been approved

by the FDA, which may result in the incomplete

restart sets and candidate drugs. As the number of
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drugs receiving marketing approval increases, so does

the completeness of the prioritized list and the robust-

ness and accuracy of our method.

In order to make PriorCD be more widely used, we

made an attempt to develop it into a flexible R-based

package ‘PriorCD’, which can be downloaded freely

from CRAN (https://cran.r-project.org/web/packages/

PriorCD). The drug functional similarity network we

constructed in this work can also be obtained from

this R-based package. If users enter a series of thera-

peutic drugs against a cancer of interests, a prioritized

drug list with detailed information will be returned.

5. Conclusions

In this study, we proposed a powerful computational

method, PriorCD, to prioritize candidate cancer drugs

by integrating pathway activity profiles and drug activ-

ity profiles. This provides a new approach to drug

repurposing by considering the drug functional similar-

ities at the pathway level. The performance of

PriorCD was evaluated by using drug datasets of

breast cancer and ovarian cancer. PriorCD provided

predictions of 14 and 8 candidate drugs for breast can-

cer and ovarian cancer drug sets. According to cross-

validation test and literature searches, we validated

that PriorCD can efficiently prioritize candidate cancer

drugs.
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Fig. S5. Overlap among top 30 candidate drugs

when non-redundant KEGG (nonreKEGG) pathway

annotations and KEGG pathway annotations are

used.

Fig. S6. Cell-cell and tissue-of-origin correlation.

Fig. S7. Overlap among top 30 candidate drugs

when Reactome pathway annotations and KEGG

pathway annotations are used.

Fig. S8. A hierarchical clustering heatmap of corre-

lations of 227 mRNA pathways and 3,652 drugs,
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Fig. S9. Correlations between gefitinib (NSC715055)

and 227 KEGG pathways and those between afatinib

(NSC750691) and 227 KEGG pathways.
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