
EDUCATION

A simple kit to use computational notebooks

for more openness, reproducibility, and

productivity in research

Ludmilla FigueiredoID
1¤a¤b*, Cédric SchererID

2, Juliano Sarmento CabralID
1,3

1 Ecosystem Modeling, Center for Computational and Theoretical Biology (CCTB), University of Würzburg,

Würzburg, Germany, 2 Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research

(IZW), Berlin, Germany, 3 Biodiversity Modelling and Environmental Change, School of Biosciences, College

of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

¤a Current address: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig,

Germany

¤b Current address: Institute of Computer Sciences, Friedrich-Schiller-University Jena, Jena, Germany

* ludmilla.figueiredo@protonmail.com

Abstract

The ubiquitous use of computational work for data generation, processing, and modeling

increased the importance of digital documentation in improving research quality and impact.

Computational notebooks are files that contain descriptive text, as well as code and its out-

puts, in a single, dynamic, and visually appealing file that is easier to understand by nonspe-

cialists. Traditionally used by data scientists when producing reports and informing

decision-making, the use of this tool in research publication is not common, despite its

potential to increase research impact and quality. For a single study, the content of such

documentation partially overlaps with that of classical lab notebooks and that of the scientific

manuscript reporting the study. Therefore, to minimize the amount of work required to man-

age all the files related to these contents and optimize their production, we present a starter

kit to facilitate the implementation of computational notebooks in the research process,

including publication. The kit contains the template of a computational notebook integrated

into a research project that employs R, Python, or Julia. Using examples of ecological stud-

ies, we show how computational notebooks also foster the implementation of principles of

Open Science, such as reproducibility and traceability. The kit is designed for beginners, but

at the end we present practices that can be gradually implemented to develop a fully digital

research workflow. Our hope is that such minimalist yet effective starter kit will encourage

researchers to adopt this practice in their workflow, regardless of their computational

background.

Author summary

The Open Science movement has been gaining track in recent years by reinforcing the

bigger impact that collaborative research has: the more publicly available research there is,

the easier it is to trust and build upon it. A key feature of effectively “available” and

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Figueiredo L, Scherer C, Cabral JS (2022)

A simple kit to use computational notebooks for

more openness, reproducibility, and productivity in

research. PLoS Comput Biol 18(9): e1010356.

https://doi.org/10.1371/journal.pcbi.1010356

Editor: Francis Ouellette, McGill University,

CANADA

Published: September 15, 2022

Copyright: © 2022 Figueiredo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: Development and part of the publication

fees of this work was supported by a grant from

Wikimedia Deutschland’s Open Science Fellows

program (2020/2021 edition, https://de.wikiversity.

org/wiki/Wikiversity:Fellow-Programm_Freies_

Wissen) granted to LF. This publication was also

supported by the Open Access Publication Fund of

the University of Würzburg granted to LF. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-8217-7800
https://orcid.org/0000-0003-0465-2543
https://orcid.org/0000-0002-0116-220X
https://doi.org/10.1371/journal.pcbi.1010356
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010356&domain=pdf&date_stamp=2022-09-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010356&domain=pdf&date_stamp=2022-09-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010356&domain=pdf&date_stamp=2022-09-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010356&domain=pdf&date_stamp=2022-09-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010356&domain=pdf&date_stamp=2022-09-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010356&domain=pdf&date_stamp=2022-09-15
https://doi.org/10.1371/journal.pcbi.1010356
http://creativecommons.org/licenses/by/4.0/
https://de.wikiversity.org/wiki/Wikiversity:Fellow-Programm_Freies_Wissen
https://de.wikiversity.org/wiki/Wikiversity:Fellow-Programm_Freies_Wissen
https://de.wikiversity.org/wiki/Wikiversity:Fellow-Programm_Freies_Wissen


reusable research is being well documented, so it can be easily understood by those who

need it. However, well documenting scientific work can be a daunting task and scientists

may fall prey to workloads that are too heavy and possibly inefficient, if they are not famil-

iar with the tools available for it. At the same time, since most research is conducted with

at least one computational element (e.g., data analysis or storage of data in digital data-

bases), the time is ripe to learn methods of documenting computational work. In this

guide, we provide a minimal yet versatile set up to help scientists conduct and document

their research in a more understandable, shareable, and impactful way.

Introduction

As with other disciplines, the call for improving the computational reproducibility of ecologi-

cal studies has been increasing over the years [1–6]. Reproducibility here refers to the ability to

repeat a study and generate the same results by analyzing the same data set with the code and

software originally used [7]. Reproducibility increases trust in the study and the main feature

to achieve it, good documentation, is also important when researchers need to update a project

or share it with newcomers. It is not uncommon for researchers to waste valuable time trying

to understand details of their own work because it was originally poorly documented. Another

common occurrence is researchers having to reinvent the wheel, i.e., recollect data and rewrite

code, where shared work (data and code) could have been reused, adapted, and improved

upon. Moreover, in contrast to observational studies, which, despite the existence of rigorous

protocols, might be bound to specific conditions of the system during observation, the compu-

tational part of the work can be made self-contained and thus completely reproducible

[1,2,4,6,7]. Nonetheless, a major obstacle to computational reproducibility of studies is the

availability and quality of the data and code used in the original study. Making the data avail-

able has become mandatory for publishing in many journals, and the importance of providing

the code used in both empirical and theoretical studies has been increasingly recognized [1,4],

as well as the number of journals that have specific code-sharing policies [3]. In this paper, we

join the increasing calls of the Open Science movement for code documentation and publica-

tion and provide a simple, yet effective way to do it. We use studies in Ecology as our source of

examples, but the practices and ideas explained here could be transferred to many fields where

computational, scripted work is done on nonsensitive data (as opposed to, e.g., personally

identifiable human subjects, secretive information on organizations, or location of endangered

species of potential commercial interest).

In Ecology, computational code is used for modeling, software development, data process-

ing (i.e., storage, transformation, and analysis), and data presentation [2]. We focus on the use

of code for modeling, data processing, and presentation. For ecological software, there is a

variety of guidelines for publication (e.g., [8–11]). Moreover, the very work of software devel-

opment forces authors to apply good practices established in Computer Science to facilitate

understanding, such as code documentation and functional programming (i.e., writing your

own functions, [9]). However, the use of computationally complicated analytical and modeling

methods is increasingly common for students and researchers with little to no experience or

knowledge on the good practices of computational work. Our goal with the kit presented here

is to facilitate the application of good practices in a manner that does not increase the research-

ers’ workload. We do this by creating (i) a computational notebook, a file that contains the

code and the code’s outputs along with descriptive text related to the code and supplementary

to the manuscript’s main text, in a single, dynamic, and visually appealing file; and (ii) the file

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 2 / 12

https://doi.org/10.1371/journal.pcbi.1010356


structure necessary to organize the research workflow around the notebook that provides easy

access to all files relevant to the computational work. Despite the initial time necessary to get

used to a new workflow, users with a basic understanding of code documentation and familiar-

ity with the use of the Markdown syntax in RStudio (for R and Python) or in the Pluto package

(for Julia language) should have no problem adhering to it. Nonetheless, for those who are unfa-

miliar, we provide video tutorials explaining how these tools work and how they are used in our

workflow. Once users have understood these, our workflow should actually save time in the

long run, by facilitating the maintenance of documentation and the understanding of the

computational work, be it by the researchers themselves, collaborators, reviewers, or the public.

In this guide, we show the user how to set up a minimally reproducible workflow for any

given project involving computational work. The workflow is easy to implement and maintain

and can be set up individually or collaboratively. Moreover, we show how maintaining such

documents integrates the production of research outputs (text, figures, and tables) to be

included in the reporting and publication of the study. Finally, we discuss complementary

practices that go beyond the scope of this article but should nonetheless be implemented and

more complex ones that can be adopted once novice users have gained experience.

The starter kit

Our kit consists of 2 functions whose files are available in the Wikimedia’s Fellows Freies Wis-

sen repository https://github.com/FellowsFreiesWissen/computational_notebooks. The repos-

itory also has a DOI assigned on Zenodo: https://doi.org/10.5281/zenodo.6977667. The

set_kit functions, written for R, Python, and Julia languages, are available in the kits folder

of that repository.

For R or Python projects: you should install the RStudio software and download the set_-
kit.R file from the kits/R-Python subfolder. No additional package is required.

For Julia projects: install Julia [12] and the Pluto package and download the set_kit.jl
file from the kits/julia subfolder.

In both cases, the function file does not have to be stored in the same folder as the project.

In fact, it makes more sense to have it saved somewhere else and specify the path to the file

when you call it in R, Python, or Julia. The repository’s README page also contains a summary

of the explanations laid here, along with 2 videos explaining how to set up your projects, how

to build your workflow, and links to all resources mentioned in the “Complementary prac-

tices” and “Next step” sections. Moreover, there is an examples folder showing how compu-

tational notebooks for a data analysis (in R) and a modeling study (in Julia) could be

organized. We recommend that you refer to the examples and videos in the repository as you

read this guide because they make it easier to understand how to interact with the notebooks.

How to set up your project

To set up a project, the use of the functions is slightly different, depending on whether it is an

R, Python, or Julia project. It is important to clarify that we are not referring to RStudio’s

“Project” feature (.Rproj files), but rather to a study that is going to be organized around the

notebook and file structure proposed by this kit.

For R or Python projects. Start by running source(“/your/local/path/to/
set_kit.R”) in your console in RStudio, so that the function is available in your R envi-

ronment. When calling the function set_kit, you must provide 3 arguments: proj_path
to specify where the project’s folder should be created, proj_name to specify the name of the

project folder to be created inside proj_path, and lang, to choose the project’s program-

ming language (defaults to “r”). For example, the R project in the examples folder was

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 3 / 12

https://github.com/FellowsFreiesWissen/computational_notebooks
https://doi.org/10.5281/zenodo.6977667
https://doi.org/10.1371/journal.pcbi.1010356


created by running: set_kit(proj_name = “datastudy_r”, proj_path =
“examples”).

For Julia projects. Load the function in your workspace with include(“/your/
local/path/to/set_kit.jl”). Call set_kit, with 2 arguments: proj_path to

specify where the project’s folder should be created, and proj_name to specify the name of

the project folder to be created inside proj_path. For example, the Julia project in the exam-

ples folder was created by running: set_kit(proj_name = “modelstudy_jl”,
proj_path = “examples”).

The following explanations are valid for both set_kit.r and set_kit.jl because the

function does the same action in both programming languages:

1. Creates the folder structure depicted in Fig 1. We chose this structure (inspired by Noble

[13]), because it facilitates access to all files involved in manuscript production: Files related

to the main text, results, and submission are all inside their respective subfolders, inside the

folder named after the proj_name argument (datastudy_r or modelstudy_jl, in

the case of our examples). Therefore, this structure facilitates version control (more about it

in the “Complementary practices”) and the publication of your project, since all relevant

files are nested inside proj_name (Figs 1 and 2).

The results folder contains all files related to data (the primary result of research) and

its organization and processing:

• data/raw: Raw data files.

• data/processed: Copies of the raw data (if that is ready to use) and the data sheets

generated by any processing of the raw data.

• data/metadata: Information that will be useful for future users, readers, and

reviewers of the data (e.g., description of variables names, units, and values).

• scripts: All code that is not directly written in the notebook, i.e., code that is

sourced. We advise to have as much code as possible in the notebook to contribute to

its narrative flow, whereby the reasoning is immediately followed by the implementa-

tion. This ensures that the reader does not have to switch to a different file to access it.

However, code that is too cumbersome would contradict this advantage of notebooks

and should be stored in this dedicated folder. Nonetheless, such pieces of code should

be just as well documented as those included in the notebook.

The text folder contains the main text of the manuscript, with subfolders for the figures

and tables included in the main text, as well as a subfolder for the supplementary material, and

one for references.

The submission folder contains the files specific to journal submissions, e.g., cover let-

ters and submitted versions.

Each of the main subfolders (i.e., proj_name, results, text, and submission) also

contains a README.md file describing its contents.

2. Creates the file that constitutes the computational notebook (hereafter “notebook,” Fig 2). It

is either an RMarkdown file (.Rmd) for R and Python projects or a Pluto file (.jl) for Julia.

The notebook is named after proj_name (Fig 2) and remains at the top level in the proj-

ect folder, with direct access to all subfolders via relative paths (e.g., results/data/
processed accesses the data from the notebook). Anyone that downloads this folder can

reuse the code with no need to change file paths.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 4 / 12

https://doi.org/10.1371/journal.pcbi.1010356


PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 5 / 12

https://doi.org/10.1371/journal.pcbi.1010356


Fig 1. File structure created by the set_kit functions. All files relevant to a publication can be found in this nested

structure. The computational notebook (proj_name.Rmd/jl) stays at the upper level, from where it has access, through

relative paths, to input data that is analyzed, as well as scripts, if necessary. The outputs of such analyses can stay visible

in the notebook or be saved in the figures and tables dedicated folders, also through relative paths, if they are to be

included in the main text.

https://doi.org/10.1371/journal.pcbi.1010356.g001

Fig 2. Schematics of the organization of a research project (proj_name) around a computational notebook (proj_name.Rmd/jl,

referring to an RMarkdown or Julia file). The notebook contains narrative text supplementary to the manuscript’s main text, as well

as text explaining the reasoning behind the computational work (included as code blocks) and its respective outputs (either kept on

the notebook or saved as figures or tables). The notebook stays at upper level of a file structure (Fig 1), which provides easy access to

all relevant folders for input (purple) and output (green) files through relative paths. The gray area shows subfolders that are nested

inside folders (e.g., the figures and tables folders are inside the text folder). The notebook, along with all the files in the project’s

folder, can be subjected to version control and be referenced in a lab notebook, thanks to the nested structure of the project. We

recommend publishing it as your main supplementary material to the manuscript, along with a rendered version (.pdf or.html), any

scripts, and not yet public data you use.

https://doi.org/10.1371/journal.pcbi.1010356.g002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 6 / 12

https://doi.org/10.1371/journal.pcbi.1010356.g001
https://doi.org/10.1371/journal.pcbi.1010356.g002
https://doi.org/10.1371/journal.pcbi.1010356


Before creating the folder structure and the notebook, however, the function checks

whether there already is a folder with the same name in the location you chose. If so, it sends a

message asking you to change the project’s name or location. Otherwise, the function lets you

know that “Your project is ready to go.”

How notebooks work and how to build your workflow around them

First, you should store your data into the results/data/raw subfolder. Afterwards, copy

the same data into results/data/processed. No matter what you do with the copies,

you should never overwrite the original files. By storing a copy of them in this dedicated sepa-

rate folder and never accessing results/data/raw during the analysis, you avoid that risk

entirely. Second, start filling your notebook (Figs 3 and 4).

Both notebooks (RMarkdown and Pluto) use the Markdown syntax, which supports

narrative text and code in the same file, which can then be rendered as an html or pdf. A brief

intro to Markdown language is available in the notebooks created by set_kit functions

Fig 3. Comparison between the Rnotebook file available for editing (A) and the rendered html version (B). The function in set_kit.R creates an.Rmd file

(A) with basic metadata (title and minimal formatting of the rendered file), a brief tutorial on the Markdown syntax, paths to the most relevant folders, and

suggestions of use. In the.html version (B), one can see how text and code are converted and combined, as well as a couple of features available in Rnotebooks: a

table of contents, just below the title (defined by the toc argument set to true in the YAML section of the Rnotebook file), and a code button, that hides the

blocks of code by default, to facilitate reading (defined by the code_folding argument set to hide in the YAML section). The video accompanying this tutorial

details how the document works (available in https://github.com/FellowsFreiesWissen/computational_notebooks).

https://doi.org/10.1371/journal.pcbi.1010356.g003

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 7 / 12

https://github.com/FellowsFreiesWissen/computational_notebooks
https://doi.org/10.1371/journal.pcbi.1010356.g003
https://doi.org/10.1371/journal.pcbi.1010356


(Figs 3 and 4) and in the videos in the repository. In RMarkdown, any text is directly written

in the file, while code to be executed is included in specially formatted areas, called chunks (Fig

3A). In Pluto, everything is written inside cells. Narrative text must be marked as md”Your
text here” (use triple quotes if you want to write more than one line, Fig 4A), while exe-

cutable code is written with no special marking. Both notebooks have the option of not includ-

ing the code in the rendered version (Figs 3A.1 and 4A.1). Moreover, RMarkdown has a

variety of controls regarding how much of the code and its outputs should be shown when ren-

dering. In the notebook created by the function in set_kit.R, we make use of the option to

include foldable code tabs in the html version (Fig 3B; this is not available for pdf).

The differences between RMarkdown and Pluto computational notebooks are mostly

related to how they are displayed for editing (Figs 3A and 4A) and the options for rendering

the final document (Figs 3B and 4B). RMarkdown notebooks have an YAMLmetadata section

that can include information such as title, author, date, and type (html, pdf, and doc) of the

rendered file, as well as formatting and aesthetics of the rendered version of the notebook (e.g.,

table of contents, page numbering). As of recently, YAML stands for YAML Ain’t Markup

Fig 4. Comparison between the Pluto notebook file available for editing (A) and the rendered html version (B). The function in set_kit.jl creates a.jl file

(A) with a brief tutorial on the Markdown syntax, paths to the most relevant folders, and suggestions of use. The Pluto notebook offers the following features:

Cells of code can be hidden by clicking the “Show/hide code” button (A.1), the time for running the code is shown alongside the “Run” button (A.2), and the

file type to be exported (.jl,.html, or.pdf) can be chosen by clicking the “Export” button (A.3)—no detailed formatting is possible, however. In the html version

(B), a button (B.1) allows the reader to edit and run the code on Binder, a free cloud server for scientific notebooks. The video accompanying this tutorial

details how the document works (available in https://github.com/FellowsFreiesWissen/computational_notebooks).

https://doi.org/10.1371/journal.pcbi.1010356.g004

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 8 / 12

https://github.com/FellowsFreiesWissen/computational_notebooks
https://doi.org/10.1371/journal.pcbi.1010356.g004
https://doi.org/10.1371/journal.pcbi.1010356


Language, alluding to the fact that this is a data-serialization language (designed to represent

data structures) rather than a Markup language (designed to markup elements of a text). This

distinction became necessary once the original meaning of the acronym, Yet Another Markup
Language, became an erroneous definition, rather than a tongue-in-cheek reference as initially

intended. For the purposes of this tutorial, understanding it as the language to control the ren-

dering of the notebook is enough. R packages allow for further customization of the final docu-

ment. For example, “bookdown” supports various formatting styles in (long-form) articles and

reports (e.g., sections, headers, references, etc., [14]), and “kableExtra” allows richer formatting

of tables rendered in.html and.pdf documents [15]. Pluto notebooks do not have an YAML

section, are more limited in the file types (jl, pdf, and html only), and formatting (the only one

currently available is shown in Fig 4B). Nonetheless, the notebook created by the set_kit.
jl function is fully functional.

We suggest providing the notebook, both in original and rendered versions, as part of the

supplementary material for the study being reported, since its narrative content should help

guide the reader through the researcher’s reasoning (as shown in Fig 4B and in the examples
folder). Readers and reviewers can then follow the work in detail, if they choose to, or just look

for specific figures, tables, or bits of text. To facilitate navigation in the latter case, we suggest

using descriptive names of section headers, matching the ones in the main text (e.g., place the

block of code that produces a supplementary figure in a section named “Figure S1,” as shown

in Fig 4B). Moreover, to avoid unnecessary repetition, figures and tables from the main text

need not to be rendered in the notebook. Instead, a line of code saving them as a file is enough.

In the examples folder, the notebooks were filled as supplementary material, and we detail

how to work with them in the video tutorials.

We chose to use RMarkdown and Pluto notebooks for their suitability for non-experienced

programmers. In case collaborators are not comfortable with these formats, a pdf version can

be rendered and shared, and collaborators can add comments if necessary. Another possibility

for RMarkdown is rendering, sharing, and editing a doc version of the notebook. We, how-

ever, do not encourage such practices, because the changes would have to be continuously

transferred by hand between the doc/odt or pdf and the RMarkdown or Pluto files, and the

authors would risk losing track of them, defeating the purpose of practicality of the kits. More-

over, it is important to remember that the notebook contains the computational work and

descriptive text supporting it, not the main text of the manuscript. Therefore, the collaborators

that would actively edit the notebook are the ones involved in the computational work, and

thus, they are more likely to be familiar with the file format or would not have a hard time

learning the basic features of the workflow we propose here.

Finally, another important feature of reproducible computational work is having informa-

tion about the computational system in which the work was performed, which includes the

names, versions, releases, and dependencies of the operating system and packages used when

the notebook was last compiled (i.e., the code was run and the document was rendered into

the published version). Both RMarkdown and Pluto contain this information. In RMarkdown,

it is done by calling the Sys.info() function, which is included in a code block at the end

of the document created by set_kit.R and lists the names, versions, releases, and depen-

dencies of the operating system and packages. When you share it, readers must install the com-

ponents of that environment if they want to reproduce it completely. In Pluto, the jl file has, by

default, the PLUTO_PROJECT_TOML_CONTENTS section (with names and versions of

packages) and the PLUTO_MANIFEST_TOML_CONTENTS section (with names and versions

of indirect dependencies of the packages). Whoever opens and runs your Pluto notebook will

have that environment installed by default, with no need to additionally download it.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 9 / 12

https://doi.org/10.1371/journal.pcbi.1010356


Complementary practices

Our kit adds to the efforts of Wilson and colleagues in promoting the “best” [9] or at least

“good enough” [10] practices in scientific computing. Below, we briefly comment other prac-

tices that should be implemented alongside this kit. Since we cannot expand on how these

tools work, we provide the latest comprehensive references that can support you with a low

entry-level barrier.

Version control: Originally created for software development, the open source version con-

trol software git allows tracking and, most importantly, documenting changes to files in a

directory over time. During the months or years, it takes to complete a research project, it is

crucial to have a systematic, digital record of the changes in the files related to the research, as

well the reasoning behind them. The directory can be stored locally on the user’s machine, or

remotely, with the aid of services such as GitHub or GitLab. The nested file structure presented

here can be tracked from conception until publication of the study, when the repository can be

made public. As a starter tutorial oriented at scientists, we recommend Blischak and colleagues

[16].

TRACE framework: For modeling work, the TRAnsparent and Comprehensive model

Evaluation framework [17,18] provides a structure and a workflow to document the decisions

involved in model development. In this framework, the steps involved in the “modeling cycle”

(i.e., conceptual model evaluation, implementation and verification, model analysis and appli-

cation, and model output corroboration) are clearly mapped to sections of a document to be

written by the researcher. With such document, model users, developers, and stakeholders

have comprehensive description of the model, which increases trust in the model, efficiency in

analysis and development, and reuse. Ayllon and colleagues [19] provide a practical guide on

how to implement this practice. We suggest using a computational notebook as your TRACE

file.

Next steps

After the simple start presented here, which should get users comfortable with the functioning

of a basic reproducible workflow and the tools involved in it, users have the possibility of

implementing more complex practices and tools that are beyond the scope of our paper. For

example, it is possible to write manuscripts in an RMarkdown file [20], and there is a variety of

online tutorials on how to format RMarkdown reports (e.g., [21–23]), as well as packages pro-

viding tools for writing reproducible manuscripts in R (e.g., [24,25]). We nonetheless still sug-

gest using a separate computational notebook for the analytical/modeling work in these cases.

Another possibility is organizing research projects as R packages, as suggested by Boettiger

[26], Marwick and colleagues [27], and Hanß and Baldauf [28]. For a different workflow, the

drake package [29] allows establishing a completely reproducible data analysis workflow.

Besides RMarkdown and Pluto files, 2 other publishing software are worth mentioning.

The first, Jupyter notebooks [30], are long established and support a bigger range of program-

ming languages than RMarkdown and Pluto. We do not include them in our starter kit

because the user interface and, especially, version control is not as straightforward as that of

RMarkdown and Pluto files. The main issue with tracking changes in Jupyter notebooks is that

they cannot be easily visually inspected using git only. There are tools available such as jupyter-
lab-git [31] and nbdime [32], which provide some, but not all, functionalities of git in a visually

appealing way. Nonetheless, they might be enough to complete the version control of a

research project, so have a look into Rathi [33] for a list of tools with different capabilities. The

second is Quarto [34], RStudio’s latest writing and publishing tool, which is still in its infancy.

Quarto can support R, Python, and Julia code and can be edited in a variety of text editors, not

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 10 / 12

https://doi.org/10.1371/journal.pcbi.1010356


only RStudio. It is a relatively new tool, which is why we did not include it in our kit. Nonethe-

less, it works very similarly to RMarkdown files. Therefore, users who want or need to use

Quarto should be able to transfer the practices suggested here without much friction.

Conclusion

Given the necessity of open and clear discussion of scientific ideas and the technological devel-

opments that allow the implementation of reproducible computational research workflow, it is

of upmost importance that practices assuring reproducibility become common place. We

hope this starter kit facilitates this change.

Acknowledgments

We acknowledge Anne Lewerentz, Stefan Fallert, Daniel Vedder, Jana Blechschmidt, Charlotte

Sieger, André Silva, Robin Rölz, Janika Kerner, Justine Vansynghel, and members of the Cen-

ter for Computational and Theoretical Biology for discussing the ideas presented here, testing

the kit, and commenting on earlier versions of this manuscript. LF acknowledges as well tech-

nical support from Wikimedia’s Germany Open Science Fellows program, and especially Dr.

Johanna Havermann, for mentoring during the program.

References
1. Borregaard MK, Hart EM. Towards a more reproducible ecology. Ecography. 2016; 39(4):349–353.

https://doi.org/10.1111/ecog.02493

2. Mislan KAS, Heer JM, White EP. Elevating The Status of Code in Ecology. Trends Ecol Evol. 2016; 31

(1):4–7. https://doi.org/10.1016/j.tree.2015.11.006 PMID: 26704455

3. Culina A, van den Berg I, Evans S, Sánchez-Tójar A. Low availability of code in ecology: A call for urgent

action. PLoS Biol. 2020; 18(7):e3000763. https://doi.org/10.1371/journal.pbio.3000763 PMID:

32722681

4. Powers SM, Hampton SE. Open science, reproducibility, and transparency in ecology. Ecol Appl. 2019;

29(1):e01822. https://doi.org/10.1002/eap.1822 PMID: 30362295

5. Hampton SE, Anderson SS, Bagby SC, Gries C, Han X, Hart EM, et al. The Tao of open science for

ecology. Ecosphere. 2015; 6(7):art120. https://doi.org/10.1890/ES14-00402.1

6. Ellison AM. Repeatability and transparency in ecological research. Ecology. 2010; 91(9):2536–2539.

https://doi.org/10.1890/09-0032.1 PMID: 20957944

7. Peng RD, Hicks SC. Reproducible Research: A Retrospective. Annu Rev Public Health. 2021; 42:79–

93. https://doi.org/10.1146/annurev-publhealth-012420-105110 PMID: 33467923

8. Poisot T. Best publishing practices to improve user confidence in scientific software. Ideas Ecol Evol.

2015; 8.

9. Vedder D, Ankenbrand M, Sarmento CJ. Dealing with software complexity in individual-based models.

Methods Ecol Evol. 2021; 12(12):2324–2333. https://doi.org/10.1111/2041-210X.13716

10. Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al. Best Practices for Scientific Com-

puting. PLoS Biol. 2014; 12(1):e1001745. https://doi.org/10.1371/journal.pbio.1001745 PMID:

24415924

11. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific

computing. PLoS Comput Biol. 2017; 13(6):e1005510. https://doi.org/10.1371/journal.pcbi.1005510

PMID: 28640806

12. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A Fresh Approach to Numerical Computing.

SIAM Rev. 2017; 59(1):65–98. https://doi.org/10.1111/2041-210X.13716

13. Noble WS. A Quick Guide to Organizing Computational Biology Projects. PLoS Comput Biol. 2009; 5

(7):e1000424. https://doi.org/10.1371/journal.pcbi.1000424 PMID: 19649301

14. Xie Y. bookdown: Authoring Books and Technical Documents with R Markdown [Internet]. 2020 [cited

2022 Apr 19]. Available from: https://github.com/rstudio/bookdown.

15. Zhu H. kableExtra: Construct Complex Table with “kable” and Pipe Syntax [Internet]. 2020 [cited 2022

Apr 19]. Available from: https://CRAN.R-project.org/package=kableExtra.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 11 / 12

https://doi.org/10.1111/ecog.02493
https://doi.org/10.1016/j.tree.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26704455
https://doi.org/10.1371/journal.pbio.3000763
http://www.ncbi.nlm.nih.gov/pubmed/32722681
https://doi.org/10.1002/eap.1822
http://www.ncbi.nlm.nih.gov/pubmed/30362295
https://doi.org/10.1890/ES14-00402.1
https://doi.org/10.1890/09-0032.1
http://www.ncbi.nlm.nih.gov/pubmed/20957944
https://doi.org/10.1146/annurev-publhealth-012420-105110
http://www.ncbi.nlm.nih.gov/pubmed/33467923
https://doi.org/10.1111/2041-210X.13716
https://doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pubmed/24415924
https://doi.org/10.1371/journal.pcbi.1005510
http://www.ncbi.nlm.nih.gov/pubmed/28640806
https://doi.org/10.1111/2041-210X.13716
https://doi.org/10.1371/journal.pcbi.1000424
http://www.ncbi.nlm.nih.gov/pubmed/19649301
https://github.com/rstudio/bookdown
https://CRAN.R-project.org/package=kableExtra
https://doi.org/10.1371/journal.pcbi.1010356


16. Blischak JD, Davenport ER, Wilson G. A Quick Introduction to Version Control with Git and GitHub.

PLoS Comput Biol. 2016; 12(1):e1004668. https://doi.org/10.1371/journal.pcbi.1004668 PMID:

26785377

17. Schmolke A, Thorbek P, DeAngelis DL, Grimm V. Ecological models supporting environmental decision

making: a strategy for the future. Trends Ecol Evol. 2010; 25(8):479–86. https://doi.org/10.1016/j.tree.

2010.05.001 PMID: 20605251

18. Grimm V, Augusiak J, Focks A, Frank BM, Gabsi F, Johnston ASA, et al. Towards better modelling and

decision support: Documenting model development, testing, and analysis using TRACE. Ecol Model.

2014; 280:129–39. https://doi.org/10.1016/j.ecolmodel.2014.01.018

19. Ayllón D, Railsback SF, Gallagher C, Augusiak J, Baveco H, Berger U, et al. Keeping modelling note-

books with TRACE: Good for you and good for environmental research and management support. Envi-

ron Model Softw. 2021; 136:104932. https://doi.org/10.1016/j.envsoft.2020.104932

20. Hartgerink C. Composing reproducible manuscripts using R Markdown [Internet]. eLife. eLife Sciences

Publications Limited; 2017 [cited 2021 Jun 25]. Available from: https://elifesciences.org/labs/cad57bcf/

composing-reproducible-manuscripts-using-r-markdown.

21. Hemberger J. Writing your manuscript in R Markdown [Internet]. 2020 [cited 2022 Feb 1]. Available

from: https://jhemberger.github.io/posts/posts/r-markdown-manuscripts/.

22. Miller S. An R. Markdown Template for Academic Manuscripts | Steven V. Miller [Internet]. 2016 [cited

2022 Feb 1]. Available from: http://svmiller.com/blog/2016/02/svm-r-markdown-manuscript/.

23. de Balsch JT. Scientific Writing with Markdown [Internet]. Jaan Tollander de Balsch. 2018 [cited 2022

Feb 1]. Available from: https://jaantollander.com/post/scientific-writing-with-markdown/.

24. Hollister JW. manuscriptPackage [Internet]. 2021 [cited 2022 Feb 1]. Available from: https://github.com/

jhollist/manuscriptPackage.

25. Rodriguez-Sanchez F. rmdTemplates: A collection of Rmarkdown templates v0.9.0 [Internet]. Zenodo;

2021 [cited 2022 Feb 1]. Available from: https://zenodo.org/record/4540663.

26. Boettiger C. cboettig/template [Internet]. 2022 [cited 2022 Feb 1]. Available from: https://github.com/

cboettig/template.

27. Marwick B, Boettiger C, Mullen L. Packaging Data Analytical Work Reproducibly Using R (and Friends).

Am Stat. 2018; 72(1):80–8. https://doi.org/10.1080/00031305.2017.137598

28. Hanß S, Baldauf S. Reproducible data analysis R packages as research compendia [Internet]. [cited

2022 Feb 1]. Available from: https://selinazitrone.github.io/YoMos2020/index.html.

29. Landau WM. The drake R package: a pipeline toolkit for reproducibility and high-performance comput-

ing. J Open Source Softw [Internet]. 2018; 3(21), [cited 2022 Jun 24]. Available from: https://doi.org/10.

21105/joss.00550.

30. Kluyver T, Ragan-Kelley B, Perez F, Granger B, Bussonnier M, Frederic J, et al. Jupyter Notebooks–a

publishing format for reproducible computational workflows. In: Loizides F, Schmidt B, editors. Position-

ing and Power in Academic Publishing: Players, Agents and Agendas. 2016. p. 87–90.

31. jupyterlab-git [Internet]. JupyterLab; 2022 [cited 2022 Apr 19]. Available from: https://github.com/

jupyterlab/jupyterlab-git.

32. Alnæs MS, Project Jupyter Revision fa4e2a38. nbdime–diffing and merging of Jupyter Notebooks—

nbdime 3.1.1.dev documentation [Internet]. 2016 [cited 2022 Apr 19]. Available from: https://nbdime.

readthedocs.io/en/latest/.

33. Rathi A. How to version control Jupyter Notebooks [Internet]. Fortschr Med. 2020 [cited 2022 Apr 19].

Available from: https://towardsdatascience.com/how-to-version-control-jupyter-notebooks-

ccf0be144319.

34. Quarto [Internet]. [cited 2022 Apr 19]. Available from: https://quarto.org/.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010356 September 15, 2022 12 / 12

https://doi.org/10.1371/journal.pcbi.1004668
http://www.ncbi.nlm.nih.gov/pubmed/26785377
https://doi.org/10.1016/j.tree.2010.05.001
https://doi.org/10.1016/j.tree.2010.05.001
http://www.ncbi.nlm.nih.gov/pubmed/20605251
https://doi.org/10.1016/j.ecolmodel.2014.01.018
https://doi.org/10.1016/j.envsoft.2020.104932
https://elifesciences.org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-markdown
https://elifesciences.org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-markdown
https://jhemberger.github.io/posts/posts/r-markdown-manuscripts/
http://svmiller.com/blog/2016/02/svm-r-markdown-manuscript/
https://jaantollander.com/post/scientific-writing-with-markdown/
https://github.com/jhollist/manuscriptPackage
https://github.com/jhollist/manuscriptPackage
https://zenodo.org/record/4540663
https://github.com/cboettig/template
https://github.com/cboettig/template
https://doi.org/10.1080/00031305.2017.137598
https://selinazitrone.github.io/YoMos2020/index.html
https://doi.org/10.21105/joss.00550
https://doi.org/10.21105/joss.00550
https://github.com/jupyterlab/jupyterlab-git
https://github.com/jupyterlab/jupyterlab-git
https://nbdime.readthedocs.io/en/latest/
https://nbdime.readthedocs.io/en/latest/
https://towardsdatascience.com/how-to-version-control-jupyter-notebooks-ccf0be144319
https://towardsdatascience.com/how-to-version-control-jupyter-notebooks-ccf0be144319
https://quarto.org/
https://doi.org/10.1371/journal.pcbi.1010356

