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Abstract

A statistical departure from Mendel’s law of segregation is known as transmission ratio distortion. Although well
documented in many other organisms, the extent of transmission ratio distortion and its influence in the human
genome remains incomplete. Using Genetic Analysis Workshop 19 whole genome sequence data from 20 large
Mexican American pedigrees, our goal was to identify potentially distorted regions in the genome using family-based
association methods such as the transmission disequilibrium test, the pedigree disequilibrium test, and the family-based
association test. Preliminary results showed an unusually high number of transmission ratio distortion signals identified
by the transmission disequilibrium test, but this phenomenon could not be replicated by the pedigree disequilibrium
test or family-based association test. Applying these tests to different subsets of the data, we found the transmission
disequilibrium test to be very sensitive to imputed genotypes. Regression analysis of transmission ratio distortion test
p values controlling for minor allele frequency and quality control checks showed that Hardy Weinberg p values are
associated with this inflation. Although the transmission disequilibrium test appears confounded by imputation of
single nucleotide polymorphisms, the pedigree disequilibrium test and family-based association test seem to offer more
robust alternatives when searching for transmission ratio distortion loci in whole genome sequence data from
extended families.
Background
Transmission ratio distortion (TRD) refers to a significant
departure from the expected Mendelian transmission of
alleles from parents to offspring, which is why it can only
be observed in family-based studies. Meiotic drive,
gametic competition, embryo lethality, germline selection
and imprinting errors are among the known biological
processes that can lead to skewed transmission probabil-
ities [1]. Although biased transmission from parents to
children affected with a particular disease is a form of
TRD by definition, in this study, we are concerned about
the form of TRD that occurs in the general population
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that is unrelated to a specific disease. It is this form of
TRD that can lead to spurious associations in genetic
association studies of diseased populations. To test for this
general form of TRD, ideally one needs families or trios
unselected for phenotype or disease. Although we were
aware that the Genetic Analysis Workshop 19 (GAW19)
families were ascertained because of their type 2 diabetes,
nevertheless, we thought that these data provided an op-
portunity to examine the frequency of sequence-identified
variants displaying TRD. That is, even though these
families are not the perfect choice to study TRD, they may
still provide interesting insights [1]. The simplest test for
detecting TRD is the transmission disequilibrium test
(TDT) [2], which uses genotype information in trio
families (2 parents, 1 affected offspring). To identify TRD
in families unselected for disease, all offspring are
considered as “affected,” which essentially means “having
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survived.” Therefore, the objective is to determine regions
in the genome linked to the phenotype defined as “being
alive in the last generation” [3].
Given the multigenerational structure of the GAW19

data combined with the availability of whole genome
sequence data, our original objective was to evaluate the
prevalence of TRD in sequencing-identified variation.
After some preliminary analysis, however, we noticed
that the imputation of genotypes for family members of
sequenced individuals was creating strange patterns. For
example, across odd-numbered chromosomes, the TDT
identified more than 8000 single nucleotide polymor-
phisms (SNPs) with p values for TRD <10−10, compared
to none less than this threshold when limiting the ana-
lysis to sequenced subjects only. To this end, we decided
to explore possible reasons for this unexpected inflation
by comparing other family-based methods of association
including the pedigree disequilibrium test (PDT) [4] and
the family-based association test (FBAT) [5, 6] across
different subsets of the data.

Methods
Data
For our analysis, we worked with the sequenced/im-
puted genotype family data from GAW19 in the GENO
files provided to the workshop [7]. We did not use the
expression data. We also used the quality control
variables stored in the variant call format (VCF) files to
investigate the association between observed p values
and variant call quality. Full details of the imputation
procedure and quality control variables can be found in
Almasy et al. [8].
One subject chosen at random from each of the 2

pairs of monozygotic twins was dropped from the
analysis. The genotypes were provided free of Mendelian
errors, and monomorphic loci were removed resulting in
a total of 8,348,674 SNPs. We did not filter for signifi-
cant departures from Hardy-Weinberg equilibrium
(HWE) or small minor allele frequencies (MAFs) be-
cause we wanted to see if these features were associated
with certain patterns in our results. We created a new
dichotomous phenotype for hypertension where a
subject was treated as “affected” if the subject had hyper-
tension in any 1 of the 4 visits, resulting in 370 cases,
562 unaffected individuals, and 455 missing phenotypes.
To compare the different family-based tests, we consid-
ered 3 subsets of the family data:

1. All: 1387 subjects, which consists of everyone minus
the 2 randomly chosen monozygotic twins.

2. Sequenced: the 464 sequenced subjects.
3. Nuclear: 136 subjects consisting of 1 nuclear family

per pedigree. This is a combination of 42 sequenced
and 94 imputed subjects. We chose the largest
possible family within each pedigree for which there
was genotype information.

The rationale behind choosing the all and sequenced
subsets was to see the effect imputation had on the test
statistics. Furthermore, the nuclear subset was selected
to facilitate comparison between the TDT, which breaks
the families into trios and treats them as independent,
with the PDT and FBAT, which account for the correla-
tions between families in their test statistics.

Family-based association analysis
We performed the TDT [2], PDT [4] and FBAT [5, 6] on
each of 3 subsets of the GAW19 data just described.
These methods look for transmission patterns to
affected offspring. Therefore, the easiest way to test for
TRD with existing software is to pretend that all
children are “affected” [3]. The TDT was applied to the
best called genotypes for the imputed data which were
provided by the GAW19 organizers to all participants.
TDT analysis was conducted in PLINK 1.9 [9] using the
- tdt flag command. The PDT was implemented in the
PDT software [4], with parameter option 0, which tells
the program to use all information available. The FBAT
analysis was performed with the FBAT software [5, 6]
and specifying the -e flag which computes the test statis-
tic using an empirical variance to account for the correl-
ation between families [10]. Results were summarized in
Manhattan plots created by the qqman package in R.

Regression analysis
The objective of the regression analysis was to determine
if any of the inflation observed in the FBAT p values was
being explained by deviations from HWE, as measured
by the p values from tests of HWE, while controlling
also for the MAF at each SNP and the quality control
measures extracted from the VCF files. Poor quality
genotypes often display evidence of Hardy-Weinberg
(HW) disequilibrium. For each test, we ran the following
multiple linear regression model in the sequenced
subset:

− log10 pð Þ
e

− log10 HWE pvalue
� �

− log10 MAFð Þ
þ Quality Control Variables

ð1Þ

and the following model for the all and nuclear subsets
(since quality control data is only available for sequenced
individuals):

− log10 pð Þ
e

− log10 HWE pvalue
� �

− log10 MAFð Þ ð2Þ

In the sequenced subset, we added quality control var-
iables in case these parameters were also strongly associ-
ated with distribution of p values. We used the following
quality measures from the VCF files (variable ID in
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parentheses): number of samples with fully called data
(NS), strand bias Pearson’s correlation (STR), strand bias
z-score (STZ), cycle bias z-score (CBZ), cycle bias
Pearson’s correlation (CBR), base-quality inflation
z-score (IOZ), ratio of base-quality inflation (IOR),
Fig. 1 Manhattan plots for TDT (a, d, g), PDT (b, e, h) and FBAT (c, f, i) for
(g, h, i). Everyone has been coded as “affected” because we are evaluating
for comparability with the regression analysis. The effect of imputation on
impact of the different test statistics can be compared across columns. The
alternate allele quality z-score (AOZ), alternate allele
inflation score (AOI), and fraction of bases with map
quality less than 10 (MQ10), less than 20 (MQ20), and
less than 30 (MQ30). We first ran these models on all
markers with p < 1, (p = 1 means all transmissions at the
all data (a, b, c), the sequenced subset (d, e, f), and the nuclear subset
evidence for general population TRD. A threshold line was set at 10−3

the test statistic can be seen by comparing across rows, while the
y-axis varies across the plots
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marker were noninformative). Then we restricted the
regressions to markers with p < 10−3. Calculations were
conducted in R.
Results
Family-based association tests
Figure 1 summarizes the results from the family-based as-
sociation analysis. We see that imputation of genotypes in
nonsequenced individuals inflates the p value significance
across all methods (e.g. Fig. 1a, d and g), although this is
much more pronounced for the TDT. The Q-Q plots in
Fig. 2 show that the distribution of TDT p values for the
all subset is systematically different from what we would
expect under the null, whereas the TDT p values for the
sequenced subset of the data look as expected. The TDT
also produces much smaller p values than PDT and FBAT,
regardless of whether or not imputed individuals are in-
cluded (e.g. Fig. 1d compared to Fig. 1e and f). The second
and third columns of Fig. 1 depict the similarities between
the PDT and FBAT in their performance and show that
neither is very sensitive to imputation. The Q-Q plots for
the PDT and FBAT (Fig. 2) show that these test statistics
are overly conservative across all and sequenced subsets.
Regression analysis
Table 1 shows the regression analysis results examining
how much of the (−log10) p value variability for the
TRD tests is explained by HW disequilibrium. When
considering all SNPs, there is essentially no significant
contribution of HW deviations to the R2 for any test
methods or for any subset of samples; however, we do
see that HW disequilibrium contributes to R2 differences
Fig. 2 Q-Q plots of TDT, PDT, and FBAT p values for all (red) and sequenced
The y-axis varies across the plots
when considering only SNPs with TRD p value< 10�3

for the sequenced and nuclear subsets. When looking at
the marginal contribution of HWE test p values to the
regression model, only the TDT rejected the null
hypothesis of no contribution (in F tests) irrespective of
the number of SNPs, method, and subset type consid-
ered. In the analysis of the sequenced subjects only,
none of the quality control variables showed significant
associations with the - log10 p values, probably because
of good preprocessing of the sequence data.
Discussion and conclusions
Although it is known that small levels of genotyping error
can inflate TDT results [3, 6, 11], and that using a modal
call as the best guess genotype leads to misclassification
errors [12–15], our analysis shows that recently developed
imputation algorithms giving no Mendelian errors [8] can
have the same impact. These false-positive signals can
occur for example from mistyping homozygote parents as
heterozygotes (an error that is Mendelian consistent), or
from missed calls among heterozygotes [11]. The majority
of parent–child pairs were either not genotyped or dis-
cordant (one was genotyped and the other was not), which
leaves a lot of room for imputation error. Our regression
analysis showed that deviations from HWE explained only
a small part of the variation in the TDT p values, indicat-
ing that these markers are not likely to be excluded on the
basis of poor performance. Our results emphasize the
caution that must be taken when using the TDT in the
presence of imputed data. A more unexpected result was
that the PDT and FBAT were not very sensitive to the
presence of imputed data. One possible reason is that
(blue) subsets of the data. Both axes are plotted on the - log10 scale.



Table 1 Contribution of HW disequilibrium to p value distribution, evaluated by regression analysis. Significant F tests (p < 0.05)
demonstrating evidence of the contribution of HW disequilibrium to the p value distributions are shown in bold font

Allb, c Sequenceda, c Nuclearb, c

Method TDT PDT FBAT TDT PDT FBAT TDT PDT FBAT

Regression model of - log10 p values at all SNPs

R2full–R
2
reduced 4.4 × 10�4 3.6 × 10�7 1.5 × 10�6 0.0018 3.6 × 10�8 2 × 107 2.9 × 10�6 8.26 × 10�9 3.5 × 10�7

# SNPse 6.1 × 106 5.6 × 106 2.1 × 106 3.2 × 106 3 × 106 8 × 105 3.6 × 106 2.1 × 106 5 × 105

Regression models of - log10 p values greater than 3 only

R2full–R
2
reduced 0.002 8.4 × 10�5 8.8 × 10�4 0.0015 NAf 0.006 0.014 0.01 0.01

# SNPse 8 × 104 517 870 1777 11 19 3.3 × 104 53 54

F-test p-valuesd

All SNPs 0.00 0.16 0.07 0.00 0.74 0.69 0.00 0.89 0.68

P< 10�3 0.00 0.84 0.38 0.10 NAf 0.82 0.00 0.49 0.50
aFull model is given by Eq. (1)
bFull model is given by Eq. (2)
cReduced model excludes � log10 HWEpvalue

� �

dTest to see if there is a significant difference between the full model and the reduced model. Numbers presented correspond to pvalues of the F test where the
null hypothesis is βHWE ¼ 0
eThe number of informative SNPs
fNot enough data points to fit the model

Fig. 3 Number of subjects, by chromosome, where the imputed
dosage genotypes were closer to an integer value at all markers
than the indicated threshold
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there are many informative nuclear family marker config-
urations that can contribute to the FBAT statistic [10] so
it does not suffer from a severe loss of information when
for example, parental genotypes are missing but sibship
information is available and vice versa. The TDT would
ignore this information. There are about 100 sib-pairs
which would contribute accurately to the FBAT but would
be completely ignored by the TDT, resulting in a smaller
sample size and less power for the latter. Another possible
explanation is in the way the variance of the test statistic
is being calculated, that is, larger variances are resulting in
smaller test statistics.
Because TRD was estimated by ignoring the true

phenotype, we also performed these tests using our
combined hypertension phenotype to see if different
results would have been obtained. To do so, we repeated
the analysis examining only transmissions to hyperten-
sive individuals. The effect of the phenotype definition,
that is, everyone affected versus hypertension, did not
yield notable differences to the previous analyses for
each method and subset type (results not shown).
To further explore the effect of imputation, we exam-

ined the dosage files provided by GAW19 and extracted
the “best” imputed individuals, that is, individuals whose
genotype dosages were within 1, 5, 10 or 20 % of integer
values 0, 1 or 2 (Fig. 3). We then repeated similar ana-
lyses, except we redefined the all subset to include only
the individuals with these “best”-imputed genotypes,
along with the sequenced subjects. This analysis showed
much less inflation of TDT significance. Of note, we also
observed significantly higher apparent dosage accuracy
on chromosome 21. Specifically, on chromosome 21,
dosage genotypes were with 1 % of an integer value for
119 individuals, whereas on other chromosomes,
estimated dosages were within 1 % of integer values for
only 12 to 37 individuals. Our findings therefore suggest
that the TDT might be a useful measure of imputation
quality for family data. For example, if the TDT reveals
similar patterns to those in Fig. 1, this could be an indi-
cation that the data was poorly imputed.
Future work on this topic could focus on better under-

standing why imputation affects some methods more
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than others. It would be useful to run the same analysis on
reimputed data that takes the pedigree structure into ac-
count during the prephasing step. A GAW19 contribution
by Saad et al. showed that the prephasing algorithm has
the greatest influence on imputation accuracy (for varying
MAF), and that the best performing algorithm was one that
accounted for family structure. We tried running TRD ana-
lysis on their best imputed data, though it did not yield any
meaningful results as there were not enough informative
families in that sample set.
Although it would be of interest to investigate whether

any of our TRD signals are near any previously reported
genes that are known to display TRD, it might be better
to perform such analysis in data that are not imputed.

Acknowledgements
This work was supported by the Ludmer Centre for Neuroinformatics and
Mental Health. Source code for this analysis is available at https://
github.com/sahirbhatnagar/GAW19.

Declarations
This article has been published as part of BMC Proceedings Volume 10
Supplement 7, 2016: Genetic Analysis Workshop 19: Sequence, Blood
Pressure and Expression Data. Summary articles. The full contents of the
supplement are available online at http://bmcproc.biomedcentral.com/
articles/supplements/volume-10-supplement-7. Publication of the
proceedings of Genetic Analysis Workshop 19 was supported by National
Institutes of Health grant R01 GM031575.

Authors’ contributions
CMTG and AL conceived the idea. SRB performed the analysis. SRB wrote a
draft of the manuscript then all authors edited, read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Epidemiology, Biostatistics and Occupational Health, McGill
University, 1020 Pine Avenue West, Montreal, QC H3A 1A2, Canada. 2Lady
Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste.
Catherine, Montreal, QC H3T 1E2, Canada. 3Departments of Oncology and
Human Genetics, McGill University, Montreal, QC, Canada. 4Department of
Psychiatry, McGill University, Montreal, QC, Canada.

Published: 18 October 2016

References
1. Huang L, Labbe A, Infante-Rivard C. Transmission ratio distortion: review of

concept and implications for genetic association studies. Hum Genet.
2013;132(3):245–63.

2. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage
disequilibrium: the insulin gene region and insulin-dependent diabetes
mellitus (IDDM). Am J Hum Genet. 1993;52(3):506–16.

3. Paterson AD, Waggot D, Schillert A, Infante-Rivard C, Bull SB, Yoo YJ,
Pinnaduwage D. Transmission-ratio distortion in the Framingham Heart
Study. BMC Proc. 2009;3 Suppl 7:S51.

4. Martin E, Monks S, Warren LL, Kaplan NL. A test for linkage and association
in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet.
2000;67(1):146–54.

5. Rabinowitz D, Laird N. A unified approach to adjusting association tests for
population admixture with arbitrary pedigree structure and arbitrary missing
marker information. Hum Hered. 2000;50(4):211–23.

6. Laird NM, Lange C. Family-based designs in the age of large-scale gene-
association studies. Nat Rev Genet. 2006;7(5):385–94.

7. Blangero J, Teslovich TM, Sim X, Almeida MA, Jun G, Dyer TD, Johnson M,
Peralta JM, Manning AK, Wood AR, et al. Omics squared: human genomic,
transcriptomic, and phenotypic data for Genetic Analysis Workshop 19. BMC
Proc. 2015;9 Suppl 8:S2.

8. Almasy L, Dyer TD, Peralta JM, Jun G, Wood AR, Fuchsberger C, et al. Data
for genetic analysis workshop 18: human whole genome sequence, blood
pressure, and simulated phenotypes in extended pedigrees. BMC Proc.
2014;8 Suppl 1:S2.

9. Purcell S, Chang C. Plink 1.9. https://www.cog-genomics.org/plink2.
Accessed May 2014.

10. Lake SL, Blacker D, Laird NM. Family-based tests of association in the
presence of linkage. Am J Hum Genet. 2000;67(6):1515–25.

11. Meyer WK, Arbeithuber B, Ober C, Ebner T, Tiemann-Boege I, Hudson RR,
Przeworski M. Evaluating the evidence for transmission distortion in human
pedigrees. Genetics. 2012;191(1):215–32.

12. Mitchell AA, Cutler DJ, Chakravarti A. Undetected genotyping errors cause
apparent over transmission of common alleles in the transmission/
disequilibrium test. Am J Hum Genet. 2003;72(3):598–610.

13. Bernardinelli L, Berzuini C, Seaman S, Holmans P. Bayesian trio models for
association in the presence of genotyping errors. Genet Epidemiol.
2004;26(1):70–80.

14. Gordon D, Heath SC, Liu X, Ott J. A transmission/disequilibrium test that
allows for genotyping errors in the analysis of single-nucleotide
polymorphism data. Am J Hum Genet. 2001;69(2):371–80.

15. Morris RW, Kaplan NL. Testing for association with a case‐parents design in
the presence of genotyping errors. Genet Epidemiol. 2004;26(2):142–54.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https://github.com/sahirbhatnagar/GAW19
https://github.com/sahirbhatnagar/GAW19
http://bmcproc.biomedcentral.com/articles/supplements/volume-10-supplement-7
http://bmcproc.biomedcentral.com/articles/supplements/volume-10-supplement-7
https://www.cog-genomics.org/plink2

	Abstract
	Background
	Methods
	Data
	Family-based association analysis
	Regression analysis

	Results
	Family-based association tests
	Regression analysis

	Discussion and conclusions
	Acknowledgements
	Declarations
	Authors’ contributions
	Competing interests
	Author details
	References

