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Abstract

Motivation: De novo peptide sequencing based on tandem mass spectrometry data is the key tech-

nology of shotgun proteomics for identifying peptides without any database and assembling un-

known proteins. However, owing to the low ion coverage in tandem mass spectra, the order of cer-

tain consecutive amino acids cannot be determined if all of their supporting fragment ions are

missing, which results in the low precision of de novo sequencing.

Results: In order to solve this problem, we developed pNovo 3, which used a learning-to-rank

framework to distinguish similar peptide candidates for each spectrum. Three metrics for measur-

ing the similarity between each experimental spectrum and its corresponding theoretical spectrum

were used as important features, in which the theoretical spectra can be precisely predicted by the

pDeep algorithm using deep learning. On seven benchmark datasets from six diverse species,

pNovo 3 recalled 29–102% more correct spectra, and the precision was 11–89% higher than three

other state-of-the-art de novo sequencing algorithms. Furthermore, compared with the newly

developed DeepNovo, which also used the deep learning approach, pNovo 3 still identified 21–50%

more spectra on the nine datasets used in the study of DeepNovo. In summary, the deep learning

and learning-to-rank techniques implemented in pNovo 3 significantly improve the precision of de

novo sequencing, and such machine learning framework is worth extending to other related re-

search fields to distinguish the similar sequences.

Availability and implementation: pNovo 3 can be freely downloaded from http://pfind.ict.ac.cn/soft

ware/pNovo/index.html.

Contact: smhe@ict.ac.cn or chihao@ict.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Shotgun proteomics research based on mass spectrometry data

focuses on high-throughput peptide and protein identification. The

main method is using dedicated sequence databases to identify pepti-

des and proteins, such as SEQUEST (Eng et al., 1994), Mascot

(Perkins et al., 1999), MaxQuant/Andromeda (Cox and Mann,

2008), PEAKS DB (Zhang et al., 2012) and pFind (Chi et al., 2015,

2018). Despite its indisputable popularity, database search still

needs reference databases to retrieve peptide candidates, hence it

cannot search for species without any proteome databases such as

microbial communities (Hettich et al., 2013) or unknown proteins

such as monoclonal antibodies (Reichert et al., 2005). Even for

searching against known sequences, amino acid mutations, post-

translational modifications (Chick et al., 2015) and splice variants

(Zhu et al., 2014) are still hard to be identified by the existing data-

base search strategies.

An alternative method for peptide and protein identification is

de novo sequencing, which infers amino acid sequences directly

from tandem mass spectra. De novo sequencing does not need any

reference databases, so it has an irreplaceable advantage for identify-

ing novel protein sequences. For example, many studies have used

de novo sequencing methods to assemble monoclonal antibodies

(Bogdanoff et al., 2016; Guthals et al., 2017; Tran et al., 2016).

Over the past decades, many de novo sequencing algorithms for

shotgun proteomics have been proposed, such as PEAKS (Ma et al.,

2003), PepNovo (Frank and Pevzner, 2005), pNovo (Chi et al.,

2013, 2010; Yang et al., 2017) and Novor (Ma, 2015).
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Although many de novo sequencing tools have been proposed,

the precision of de novo sequencing is still questionable. Muth and

Renard (2017) stated that only �40% of de novo sequencing results

were consistent with the database search results, in which the analy-

ses on simulation datasets showed that the low precision of de novo

sequencing was mainly caused by the abundant noise peaks and the

low fragment ion coverage in tandem mass spectra, especially for

the latter. When the fragment ion coverage decreased from 100% to

50%, the proportion of correctly sequenced peptides dropped from

80% to only 20%, suggesting that the precision of de novo sequenc-

ing is very sensitive to the fragment ion coverage, whose fundamen-

tal cause is that the lack of fragment ions makes the order of

consecutive amino acids indistinguishable, e.g. if no supporting frag-

ment ions are detected between the first two amino acids of the pep-

tide AEHDK in the tandem mass spectrum, then EAHDK may be

wrongly regarded as the de novo sequencing result of this spectrum

without any addition information.

In order to discriminate the similar peptide candidates, there

needs a more powerful scoring method to better rerank de novo

sequencing results of each single spectrum and, in particular, the dif-

ference among spectra does not need to be considered. Learning-to-

rank models (Bartell et al., 1995; Liu, 2010) are suitable for solving

this problem, which are also useful for many applications in infor-

mation retrieval. Given one query, all webpages should be ranked

by the relevance between the query and each webpage, which is

quite similar to ranking peptides (webpages) for each given spectrum

(query), regardless of the diversity among different spectra. In add-

ition, deep learning has a continuous upward trend in many research

fields, even in the hard decision problems such as the game of Go

(Silver et al., 2016). Also, a few studies based on deep learning in

proteomics have been proposed recently. For example, DeepNovo

(Tran et al., 2017) uses convolutional neural networks and recurrent

neural networks (Hochreiter and Schmidhuber, 1997) to learn fea-

tures of tandem mass spectra for de novo sequencing, and pDeep

(Zhou et al., 2017) uses the bidirectional long short-term memory

(Graves et al., 2013) to predict the theoretical spectrum for one

given peptide with a median Pearson similarity of over 0.9.

Generally, researches based on deep learning are still not very com-

mon in proteomics community. In fact, deep learning can automatic-

ally learn high-levels of representation of complex data without

predesigned features based on domain-specific knowledge, so this

character can be used to learn the fragmentation pattern and other

important features in tandem mass spectra and construct a universal

learning-to-rank model to discriminate very similar results of de

novo sequencing.

In this article, we developed a novel de novo sequencing algo-

rithm, pNovo 3. Unlike the way of using deep learning directly in

DeepNovo (Tran et al., 2017), peptide candidates were generated

firstly using the traditional dynamic programming approach (Yang

et al., 2017) in pNovo 3, and then a few features were extracted

based on the prediction results of pDeep (Zhou et al., 2017) by deep

learning, as well as other information related to the fragmentation

patterns. Finally, a learning-to-rank model, trained by SVM-rank

(Joachims, 2002; Joachims et al., 2009), was built to rerank the pep-

tide candidates generated previously.

In addition, a spectrum merging method was proposed to merge

the results of spectra with similar precursor ion masses to further im-

prove the performance of pNovo 3. Compared with three other

state-of-the-art de novo peptide sequencing tools, the recall of

pNovo 3 was increased by 29.4–96.1% at the full-length peptide

level and 2.0–20.1% at the amino acid level on seven test datasets

with different species. In addition, the recall of pNovo 3 was

20.6–49.8% higher than that of DeepNovo on nine other datasets,

proving the significant improvement on the precision of de novo

sequencing by using deep learning and learning-to-rank.

pNovo 3 can now be freely downloaded from the following web-

site: http://pfind.ict.ac.cn/software/pNovo/index.html.

2 Materials and methods

pNovo 3 uses the same approach as pNovoþ and Open-pNovo (Chi

et al., 2013; Yang et al., 2017) to get top-ranked peptide candidates

for each spectrum, and then it has four steps to rerank the prelimin-

ary results. First, the theoretical spectrum for each candidate is pre-

dicted by pDeep (Zhou et al., 2017) based on the deep learning

approach. Second, features are extracted based on the results of

pDeep and other statistics. Third, peptide candidates are reranked

by the model trained by learning-to-rank (Joachims, 2002; Joachims

et al., 2009). Last, the results of the whole dataset are updated using

the spectrum merging method. The workflow of pNovo 3 is shown

in Figure 1. Before the introduction of the pNovo 3 workflow, we

will first introduce the seven benchmark datasets, one of which was

used in the following steps of model training.

2.1 Generating the benchmark datasets
Seven high-resolution datasets are used in this study. The first five

datasets are acquired from the Thermo Scientific Q Exactive with

the HCD activation mode (Cassidy et al., 2016; Hu et al., 2016;

Nevo et al., 2017; Paiva et al., 2016; Seidel et al., 2017) and the last

two datasets are acquired from the Thermo Scientific Q Exactive

HF-X (the latest MS instrument in the benchtop Orbitrap series)

with the HCD activation mode (Kelstrup et al., 2018). These data-

sets are from a wide variety of species to ensure an unbiased evalu-

ation on different samples. All datasets can be downloaded from the

ProteomeXchange website and the details are shown in

Supplementary Table S1. The first one (Vigna mungo, V.mungo) is

used for training the learning-to-rank model while the other six ones

are used for the performance evaluation.

pFind (Chi et al., 2015, 2018) and PEAKS DB (Zhang et al.,

2012) are used to search the seven datasets mentioned above against

the proteins of the corresponding sample downloaded from the

UniProt database in 2017.9. The search results of pFind and PEAKS

DB are filtered with the false discovery rate (FDR) of 1% at the pep-

tide level and the peptide-spectrum match (PSM) level, respectively.

The detailed database search parameters of pFind and PEAKS DB

are shown in Supplementary Table S2. To build the benchmark

datasets, the inconsistent PSMs reported by pFind and PEAKS DB

are removed. In addition, as the current version of pDeep cannot

predict the theoretical spectra of modified peptides, PSMs with

modified peptides except those with carbamidomethylation of cys-

teines only are removed. The retained PSMs consistently reported by

pFind and PEAKS DB are used as the ground truth, and the corre-

sponding MS/MS data are extracted from the original datasets for

evaluating the performances of different de novo sequencing algo-

rithms in the Section 3.

2.2 Generating theoretical spectra by pDeep
The intensity information is essential for calculating the similarity be-

tween a theoretical spectrum and a real spectrum. However, in most

scoring methods for PSMs, the intensities of all peaks in theoretical

spectra are set to equal values or only by a few simple rules, which

makes it difficult to distinguish among different orders of consecutive

amino acids if no fragment ions are observed among them. In order to
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show the importance of the intensity information, we take two peptide

candidates, P1: GTFSGLESSSPEVK and P2: GTFSGLESSSEPVK, for

one spectrum, as a running example. If there are no fragment ions

observed between PE and between EP, then the scores of the two cor-

responding PSMs should be identical to each other. However, the frag-

mentation patterns of the two peptides are quite different that the

intensity of the y-ion between E and P should be much higher than

that between P and E, which is in general in CID or HCD activation

mode (Snyder, 2000). If such pattern can be used in generating theor-

etical spectra, then P1 will be more probable to be the result of the

spectrum because the absence of the fragment ions between P and E is

more consistent with its real fragmentation pattern.

The training datasets of pDeep are from several published

datasets (Chick et al., 2015; Kulak et al., 2014; Sharma et al.,

2015) of a wide variety of species produced by Q Exactive or Q

Exactive HF. The theoretical spectrum predicted by pDeep is com-

posed of the masses and intensities of all backbone theoretical

ions, including b and y ion series with 1þ and 2þ charge states.

Assuming that r1, . . ., rn (n is the number of all ions) are the real

intensities of all ions (b1þ, b2þ, . . ., b1þþ, b2þþ, . . ., y1þ, y2þ,

. . ., y1þþ, y2þþ,. . .), p1, . . ., pn are the predicted intensities of the

corresponding ions. r is the mean of r1, . . ., rn, p is the mean of p1,

. . ., pn, r01, . . ., r0n are the indexes of r1, . . ., rn if they are sorted in

descending order, and p01, . . ., p0n are the indexes of p1, . . ., pn if

they are sorted in descending order, three measures of similarities,

i.e. cosine, Pearson and Spearman between the theoretical and real

spectra, are computed by formulas 1 to 3, respectively. The value

of cosine similarity is from 0 to 1 and the values of the other two

similarities are from �1 to 1.

SIM cos ¼
Pn

i¼1 ripiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ri

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 pi
2

p (1)

SIMpear ¼
Pn

i¼1 ri � rð Þ pi � pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ri � rð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 pi � pð Þ2

q (2)

SIMspear ¼ 1�
6
Pn

i¼1 r0i � p0i
� �2

n n2 � 1ð Þ (3)

2.3 Extracting gap features
The information of fragmentation gaps in PSMs is used to design fea-

tures independently to the theoretical spectrum prediction of pDeep.

In the running example, when the b and y ions fragmented between

two consecutive amino acids (e.g. PE or EP) are not observed in the

spectrum, we cannot distinguish between the two peptides without

other information. However, we can compute the probabilities of los-

ing fragment ions between PE and EP based on the statistics by using

a large amount of the existing high-resolution MS/MS data. The

probability of losing fragment ions between two consecutive amino

acids XZ is defined by the number of XZ between which the ions are

missing divided by the total number of XZ in the dataset used in the

statistics. This probability is referred to as g1, which is from 0 to 1.

Specifically, considering that the order of the two N-terminal amino

acids reported by de novo sequencing is often more error-prone (Fu

and Li, 2005), we also compute the probability of losing fragment

ions between the two N-terminal amino acids, which is referred to as

g2. Its value is also from 0 to 1. In the running example, the probabil-

ities of losing fragment ions between EP and PE are 3.4% and

20.1%, respectively, indicating that the peptide with PE should be

more confident than the peptide with EP.

Then, given one PSM, two features are generated based on g1 and

g2, and then used in the learning-to-rank model. One is called G1,

which is the arithmetic mean value of all gaps g1 found in the PSM.

G1 is set as 1.0 if no gaps are found, indicating that the PSM has no

gaps. The other one is called G2, which is equal to g2 if there is an N-

terminal gap, otherwise it is also set as 1.0. Take one peptide P:

GTFSGLESSSPEVK as an example, where three gaps, GT, LE and

PE are detected and the first gap GT is the N-terminal gap. Then, two

gap features are computed: G1 Pð Þ ¼ g1 GTð Þ þ g1 LEð Þ þ g1 PEð Þ
� �

=3

and G2 Pð Þ¼ g2 GTð Þ. It is worth mentioning again that GT is involved

in the feature extraction twice based on two different ways of data sta-

tistics, one is from all possible amino acid pairs and the other is only

from the N-terminal ones. Therefore, the values of g1 GTð Þ and

g2 GTð Þ may not be identical to each other.

2.4 Training the learning-to-rank model
Six features are finally extracted before model training, i.e. the ori-

ginal PSM score, the three similarities between the theoretical and

real spectrum described in Section 2.2, and the two features, G1 and

G2, related to gap information described in Section 2.3. Then, SVM-

rank (Joachims et al., 2009) is used to train the model for reranking

top-ranked peptide candidates for each spectrum. All feature values

are normalized to [0, 1] according to the value range of the corre-

sponding feature of top-ranked peptide candidates for each spec-

trum. As mentioned in Section 2.1, the first benchmark dataset of

V.mungo is used for training the model. For each spectrum in this

benchmark dataset, pNovoþ (Yang et al., 2017) is used to report de

novo sequencing results and top-10 candidate sequences are

retained. If the correct peptide, annotated by the database search

results, is not contained in the top-10 candidate sequences for one

spectrum, then this spectrum cannot be used in the model training;

otherwise, the PSM with the correct peptide sequence is regarded as

one positive sample, and the other nine PSMs with the incorrect pep-

tide sequences are regarded as nine negative samples. SVM-rank is

then trained on all of the positive and negative samples using the

regularization parameter of 1000 based on a linear classifier rather

than a kernel classifier, owing to the higher speed of the former.

2.5 Refining the top-1 results by spectrum merging
After reranking the top-10 candidate sequences for each spectrum

by the output scores of SVM-rank, different spectra with similar

Fig. 1. The workflow of pNovo 3
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precursor ion masses within a pre-set tolerance (e.g. 620 ppm) are

further checked to see whether they are generated by the same pep-

tide. In this step, the only top-1 sequence in each spectrum is

retained. To avoid merging spectra incorrectly by the random match

of similar precursor ions from different peptides, a few additional

measures should be involved for evaluating the match quality be-

tween the current spectrum and each peptide from other spectra.

For example, for one spectrum s1, assume that there is another

spectrum s2 with a similar precursor ion mass. The top-1 sequences

for s1 and s2 are p1 and p2, respectively. Then the match quality of s1

and p2 is to be tested. To be more specific, for the PSM between s1

and p2, if the maximum matched tag length is greater than 3, and

the summed intensities of matched peaks account for 5% of the total

in s1, then p2 should be considered as a peptide candidate for updat-

ing the result of s1. The match quality of s2 and p1 needs to be tested

in the same way.

Supplementary Figure S1 shows an example to further explain

the process of spectrum merging. For spectrum s1, its top-1 result

reranked by SVM-rank is ADCEFK with the score of 19. After spec-

trum merging, another five spectra are found and there are three dif-

ferent sequence candidates in total for the six spectra from s1 to s6.

Then, another SVM-rank model is trained, in which two features

are considered: one is the number of PSMs supporting each peptide

candidate, and the other is the mean value of SVM-scores of the sup-

porting PSMs for each peptide candidate. The two features are based

on the fact that a peptide candidate is more confident if it is sup-

ported with more PSMs and with a better score. Finally, in this ex-

ample, the incorrect sequence ADCEFK of spectrum s1 is corrected

to the true one ACDEFK.

3 Results

3.1 The effect of different features
First, we have investigated the three similarity distributions based

on the correct identified PSMs on the seven real datasets

(Supplementary Fig. S2). The details about these datasets are shown

in Supplementary Table S1. For V.mungo dataset, there are as high

as 82–87% of results, whose similarities are larger than 0.9, and the

median values of cosine, Pearson and Spearman similarities are as

high as 0.97, 0.97 and 0.94, respectively (Table 1), suggesting the

excellent performance of pDeep that the theoretically predicted

spectra are very similar to the real ones.

Then, we also tested the performances of reranking separately

using each of the six features and merging all features in one

learning-to-rank framework (Supplementary Table S3). If the values

of the five features (i.e. cosine, Pearson, Spearman, G1 and G2) of

two peptide candidates are the same, the original PSM score is used

to rerank these two candidates. Although the performances of separ-

ately using the last five features except the original score are all in-

ferior to that of the original score, the performance of considering

all features in the same learning-to-rank model is significantly better,

suggesting the good effect and complementary of the features con-

sidered in our model. In order to further investigate the validity of

the features, we have compared the distributions between the correct

and incorrect results considering each feature (Supplementary Fig.

S3). The two distributions shown in each subfigure are with a large

K-S distance and the corresponding P-value is less than 0.01 based

on the two-sample Kolmogorov–Smirnov test, suggesting that the

features can effectively discriminate between the correct and incor-

rect results.

3.2 Performance of different de novo sequencing

algorithms at the peptide level
pNovo 3 was compared with three other state-of-the-art de novo

peptide sequencing tools (Supplementary Table S4), specifically

PEAKS (Ma et al., 2003) (v8.5), Novor (Ma, 2015) (v1.1) and

pNovoþ (Yang et al., 2017) (referred to as pNovo). The seven

benchmark datasets described in Section 2.1 were used to measure

the result accuracy. A PSM was regarded as correct if its peptide was

the same as that annotated by database search in the benchmark

datasets (regardless of the difference between Ile and Leu).

The recalls of the top-1 peptide for each spectrum reported by all

of the four de novo sequencing algorithms were calculated. As shown

in Table 2, on V.mungo dataset, which was also used for the model

training, the recall of pNovo 3 was 64.6%, which was 50.6% higher

than that of pNovo (42.9%) and 45.8% higher than that of PEAKS

(44.3%). Novor recalled less PSMs, which might be caused by not

training with the high-resolution datasets in its test version. On all

seven datasets, the recall of pNovo 3 was 35.6–96.1% higher than

that of pNovo and 29.4–102.4% higher than that of PEAKS, which

demonstrated the good extendibility of the machine learning model.

Figure 2 and Supplementary Figure S4 show the consistency of the cor-

rect results reported by pNovo 3, pNovo and PEAKS, in which pNovo

3 covered 88.1–94.6% of pNovo results and 82.5–89.6% of PEAKS

results. Also, pNovo 3 independently reported 20.6–43.3% more

PSMs, which were reported by neither pNovo nor PEAKS.

The recalls considering from top-1 to top-10 peptide candidates

for each spectrum are also demonstrated in Figure 3 for the first

three datasets and Supplementary Figure S5 for the other four data-

sets. The recall considering top-k (1�k�10) candidates was calcu-

lated by the number of the spectra whose correct peptide results

were in the top-k sequences divided by the number of total spectra.

As Novor only reported the top-1 results, it was not considered in

this analysis. As shown in Figure 3 and Supplementary Figure S5,

the recall of top-10 results reported by pNovo 3 was �20.8% higher

than that of pNovo and �25.7% higher than that of PEAKS on all

datasets. Although the recall of top-10 results reported by pNovo

was slightly higher than that of PEAKS, the recall of top-1 results

reported by pNovo was even a little worse than that of PEAKS. This

meant that the scoring method in pNovo was less effective to distin-

guish the similar candidates in one spectrum. However, the refined

scoring method in pNovo 3 was shown to be much more powerful.

As a result, pNovo 3 yielded a large difference of recall compared

with pNovo and PEAKS, especially for the top-1 results which were

more important for real biological discoveries.

The recall difference between pNovo 3 and pNovo considering

top-10 candidates demonstrated the effect of the spectrum merging

method, the last step of pNovo 3, because the original top-10 pep-

tide candidates were the same for both pNovo 3 and pNovo.

Furthermore, we compared the performance between pNovo 3, the

same algorithm without spectrum merging (referred to as pNovo 3-

NM) and the same algorithm without SVM-rank model mentioned

in Section 2.4 (referred to as pNovo 3-NR). The recall of top-1

results reported by pNovo 3 was 15.0–35.2% higher than that of

pNovo 3-NM and 15.6–35.8% higher than that of pNovo 3-NR

(Supplementary Table S5). This demonstrated that both of the two

SVM-rank models are useful for increasing the number of correct

results. Furthermore, pNovo 3 stably covered �96% of pNovo 3-

NM results on all datasets and independently reported 17.2–30.0%

of the total results (Supplementary Fig. S6), which was also proved

that this strategy hardly replaced a correct PSM from the learning-

to-rank model by an incorrect one.
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3.3 Examples showing the effect of the features used in

pNovo 3
Two examples were selected to explain why pNovo 3 could report

more correct results than pNovo and PEAKS. The first one is shown

in Figure 4. For this spectrum, only pNovo 3 reported the correct se-

quence (KYDEIDAAPEER) annotated by database search while

pNovo and PEAKS reported the same incorrect sequence

(KYDEIDAAEPER). If only considering the quality of the PSM,

both two sequences matched the same backbone fragment ions,

hence the match scores should be the same if no additional informa-

tion was considered. However, according to the two theoretical

spectra correspondingly predicted by pDeep, the fragmentation pat-

terns of the two sequences were actually quite different, especially

for the intensities of y2, y3 and y4 ions (Supplementary Figs S7 and

S8), which resulted in the different similarities. In addition, the

probabilities of the existence of two gaps, PE and EP, were 0.2 and

0.03, respectively, which is also helpful in distinguishing between

the two sequences. Another similar example is shown in

Supplementary Figures S9–S11.

3.4 Recalls and precisions of different de novo

sequencing algorithms at the amino acid level
PEAKS and Novor also reported scores for individual amino acids in

the peptide results, which indicate the local confidence level of

PSMs and is helpful in assembling entire protein sequences (Tran

et al., 2016). The same function of pNovo 3 was implemented by

the newly developed software tool, pSite (Yang et al., 2018).

Considering the top-1 results reported by each algorithm, the recalls

and precisions with different confidence score thresholds were com-

puted (Fig. 5a–c for the first three datasets and Supplementary Fig.

S12 for others), and the area under curve (AUC) (Davis, 2006) met-

ric can be used to evaluate the overall accuracy of de novo sequenc-

ing at the amino acid level. On all datasets, the precision-recall (PR)

curves of pNovo 3 were always higher than those of pNovo, PEAKS

and Novor. The AUC of pNovo 3 was 12.1–34.4% higher than that

of pNovo, 2.0–20.1% higher than that of PEAKS and 65.7–112.5%

higher than that of Novor (Fig. 5d).

Supplementary Table S6 shows the total recall and precision of

amino acids on the seven datasets regardless of the confidence level,

i.e. all amino acids reported by each de novo sequencing tool were

considered to compute the recall and precision. The recall and preci-

sion of pNovo 3 were always greater than 80% on the first five data-

sets in most cases. On the last two datasets produced by Q Exactive

HF-X, the recall and precision decreased to 55–73%, which per-

formed similarly to that for full-length peptides. Overall, the recall

of pNovo 3 was 20.5%, 9.2% and 65.9% higher than those of

pNovo, PEAKS and Novor, respectively; meanwhile, the precision

of pNovo 3 was 18.4%, 17.5% and 83.8% higher than the above

three algorithms, respectively.

Table 1. Median values of three similarities on all datasets

V.mungo M.musculus M.mazei S.cerevisiae A.mellifera QE_HF_X1 QE_HF_X2

Cosine 0.97 0.97 0.97 0.96 0.97 0.96 0.96

Pearson 0.97 0.97 0.96 0.96 0.96 0.95 0.95

Spearman 0.94 0.94 0.94 0.92 0.94 0.94 0.93

#PSMsa 41 721 12 538 67 452 55 163 126 966 104 052 83 313

aAll spectra whose top-10 peptide candidates contain the correct results are considered. This part accounts for 60–76% of total spectra on all of the seven data-

sets Vigna mungo (V.mungo), Mus musculus (M.musculus), Methanosarcina mazei (M.mazei), Saccharomyces cerevisiae (S.cerevisiae), Apis mellifera

(A.mellifera), QE_HF_X1 and QE_HF_X2.

Table 2. Recall of top-1 peptides identified by different de novo sequencing algorithms

V.mungo M.musculus M.mazei S.cerevisiae A.mellifera QE_HF_X1 QE_HF_X2

pNovo 3 64.6% 50.4% 66.0% 64.7% 62.5% 47.8% 38.3%

pNovo 42.9% 25.7% 42.4% 47.7% 36.7% 29.8% 21.4%

PEAKS 44.3% 24.9% 42.4% 50.0% 38.0% 32.2% 24.6%

Novor 17.4% 9.7% 19.1% 19.1% 13.7% 10.9% 9.3%

#Total PSMs 62 089 25 354 103 959 81 326 217 841 196 759 201 301

Fig. 2. Venn diagram of the correct results of pNovo 3, pNovo and PEAKS on the first three datasets: (a) V.mungo, (b) M.musculus and (c) M.mazei
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3.5 Comparing the performance of pNovo 3 and

DeepNovo
Both pNovo 3 and DeepNovo (Tran et al., 2017) have used the deep

learning model on the Google TensorFlow library, and the perform-

ances of them were also compared in this study. As DeepNovo used

different models for the nine high-resolution test datasets (Cassidy

et al., 2016; Cypryk et al., 2017; Hu et al., 2016; Mata et al., 2017;

Nevo et al., 2017; Paiva et al., 2016; Petersen et al., 2016; Reuß

et al., 2017; Seidel et al., 2017), we downloaded the original results

of DeepNovo rather than re-analysis the datasets using the unified

model in the software, and then tested pNovo 3 with the same nine

datasets to make a fair comparison. The benchmark strategy was

the same as that shown in Section 2.1 that PSMs generated by the

database search results of PEAKS DB at 1% FDR were used as the

ground truth, while the PSMs whose corresponding spectra were not

appeared in the results of DeepNovo were removed.

As shown in Supplementary Table S7, the recall of pNovo 3 was

still 20.6–49.8% higher than that of DeepNovo. Furthermore,

pNovo 3 also yields higher recall and precision at the amino acid

level for the top-1 peptide sequences (Supplementary Table S8). This

gap might be owing to the different ways of using deep learning

between these two algorithms. DeepNovo combined deep learning

and dynamic programming in a unified de novo sequencing work-

flow, while pNovo 3 divided this workflow into two steps: finding

top-ranked candidates by the traditional algorithm, e.g. pNovoþ,

and then reranking candidates considering several different features

extracted by deep learning, which was integrated into a learning-to-

rank framework. The first step has been widely investigated in past

decades, which might be more mature compared with the newly

proposed deep learning approach. However, once the top-ranked

peptide candidates were generated, the deep learning approach,

which provided more accurate spectrum prediction for the following

learning-to-rank model, played a more important role in distinguish-

ing among the similar peptides in pNovo 3.

4 Discussion

In this study, we have used the deep learning approach to extract

features, and built a learning-to-rank model to rerank the results of

de novo sequencing. Until now, the problem of low precision on de

novo sequencing has not been solved well because there are no ef-

fective methods to distinguish similar peptides if no pivotal peaks in

Fig. 3. The recalls of top-1 to top-10 on the first three datasets: (a) V.mungo, (b) M.musculus and (c) M.mazei

Fig. 4. One example shows that the features extracted by pNovo 3 can effectively discriminate between the correct and very similar incorrect results. The real

spectrum is from V.mungo dataset and the title of this spectrum is 4723.8552.8552.2.dta. Both the correct (KYDEIDAAPEER, the above subfigure) and incorrect

(KYDEIDAAEPER, the below subfigure) peptide sequences are matched to this real spectrum. Five features of the correct and incorrect peptide sequences are

labeled with the green and red figures, respectively
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one spectrum can be detected. As a result, a more powerful scoring

function is needed, and using deep learning to learn the fragmenta-

tion pattern of peptides comes into the view of this study. However,

deep learning models are often learned directly from raw data and

do not rely on well-designed features, and we still need to find that

which features are most useful for de novo sequencing to discrimin-

ate between correct and incorrect peptides. In this study, we found

that the similarity between the experimental and theoretical spectra,

which were measured by three types of metrics, was very important

for reranking de novo sequencing results. As no model comprehen-

sively considering modified peptides was yet trained by the current

version of pDeep, only peptides without variable modifications were

used in this study; however, the learning-to-rank model can be easily

extended to modified peptides with the upgrading of pDeep.

We used learning-to-rank models [e.g. SVM-rank (Joachims,

2002; Joachims et al., 2009) and RankBoost (Freund et al., 2004)],

rather than traditional machine learning models [e.g. SVM (Cortes

and Vapnik, 1995; Vapnik, 1999) and decision tree (Quinlan,

1999)], in this study. In general, traditional machine learning models

are more suitable to learn a global classification function to effect-

ively discriminate between correct and incorrect PSMs from differ-

ent spectra; however, as the comparison among different spectra is

less important in de novo sequencing, learning-to-rank models are

more applicable to solve the reranking problem, i.e. rerank the simi-

lar sequence candidates for each spectrum.

On all datasets, the recalls and precisions of pNovo 3 are always

the highest compared with pNovo, PEAKS, Novor and DeepNovo.

But the recalls of top-10 results from pNovo 3 are still only 60–76%

on different datasets so that we are curious about the reason why

the rest of the results cannot be sequenced even when as many as ten

candidates are considered. For example, a total of 15 067 (24% of

62 089) PSMs in the V.mungo dataset are not recalled in the top-10

results, and 32% (4775/15 067) of which are difficult to be recalled

by de novo sequencing because the maximum gap lengths are greater

than 2. We further try to enumerate the similar peptide candidates

based on the correct sequence from these low-quality PSMs, and

then match them to the original spectra. For example, if the correct

sequence is ASQEPK with a gapped subsequence ASQ, the similar

candidates involve ASQEPK, AQSEPK, . . ., SQAEPK, and then the

three similarity metrics used in this study are computed

(Supplementary Fig. S13). We find that their similarities are too

close to find which one is correct. This means that the de novo

sequencing algorithms at the current stage may not be able to distin-

guish among the similar results with long gapped subsequences,

even using the effective deep learning approach. In this case, the

more effective way to improve the accuracy of de novo sequencing is

to produce high-quality MS/MS spectra with higher fragment ion

coverage.
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