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A B S T R A C T

Heterozygous mutations in UMOD encoding the urinary pro-
tein uromodulin are the most common genetic cause of autoso-
mal dominant tubulointerstitial kidney disease (ADTKD). We
describe the exceptional case of a patient from a consanguineous
family carrying a novel homozygous UMOD mutation
(p.C120Y) affecting a conserved cysteine residue within the
EGF-like domain III of uromodulin. Comparison of heterozy-
gote and homozygote mutation carriers revealed a gene dosage
effect with unprecedented low levels of uromodulin and aber-
rant uromodulin fragments in the urine of the homozygote pro-
band. Despite an amplified biological effect of the homozygote
mutation, the proband did not show a strikingly more severe
clinical evolution nor was the near absence of urinary uromodu-
lin associated with urinary tract infections or kidney stones.

Keywords: gout, homozygous mutation, Tamm-Horsfall pro-
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I N T R O D U C T I O N

Autosomal dominant tubulointerstitial kidney disease (ADTKD)
is a heterogeneous group of rare kidney diseases characterized by
interstitial fibrosis with tubular atrophy causing a slowly progres-
sive chronic kidney disease (CKD) [1]. Mutations in the UMOD
gene coding for uromodulin are the most common genetic cause
of ADTKD. Uromodulin (also known as Tamm–Horsfall pro-
tein), the most abundant protein in normal urine, is produced by
the cells lining the thick ascending limb (TAL) of the loop of

Henle. Recent insights point to roles for uromodulin in the regu-
lation of salt transport in the TAL, protection against urinary tract
infections (UTIs) and kidney stones and regulation of innate
immunity [2]. Accurate methods to measure uromodulin in urine
have recently been described [3], permitting demonstration that
urinary levels of uromodulin reflect renal function and tubular
activity in population cohorts [4, 5].

Rare mutations in UMOD are the major cause of ADTKD, a
condition that leads to CKD and end-stage renal disease (ESRD)
[1, 6]. More than 200 UMOD mutations (>95% mis-
sense,>50% targeting cysteines) have been described. These
mutations lead to endoplasmic reticulum (ER) retention of
mutant uromodulin in TAL cells, causing tubulointerstitial
damage [7, 8]. There are no established genotype–phenotype
correlations in ADTKD caused by classic UMOD missense
mutations and large intra familial variability in presentation has
been described [9]. An unusual indel mutation in UMOD has
been associated with a particularly mild clinical evolution in sev-
eral families [10]. Here we report an exceptional case of
ADTKD in a consanguineous family who presented with early-
onset gout and renal disease with a novel homozygous mutation
in UMOD (p.C120Y).

C A S E R E P O R T

A 40-year-old Pakistani woman (index case, II:1, Figure 1A) was
referred for the assessment of CKD and early-onset gout. She first
showed hyperuricaemia and gout at the age of 28 years, with multi-
ple recurrences despite allopurinol treatment. At presentation she
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|was normotensive; her serum creatinine was 104 mmol/L

(1.17 mg/dL) with an estimated glomerular filtration rate (eGFR)
of 54 mL/min/1.73 m2. Her serum urate was elevated at 380 mmol/
L (6.39 mg/dL) with a reduced fractional excretion (FE) of urate at
0.4%. Urinalysis revealed no proteinuria. There was a persistent
but low (>10,<40/mm3) level of leucocytes in the urine on micro-
scopy, but no haematuria. Renal ultrasound imaging showed small
kidneys that were structurally normal (bipolar lengths 9.4 cm),
with no cysts. A kidney biopsy was not performed. The parents
were distantly consanguineous and her mother, age 75 years, is

known to have CKD (eGFR 37.0 mL/min/1.73 m2) with gout
(Table 1; Figure 1A). Her father died at 60 years of age following a
cardiac event. There was no other history of renal disease or gout,
despite the large pedigree (Figure 1A).

The family history, suggesting autosomal dominant inheri-
tance, and the associated early-onset gout with FE of urate
prompted genetic testing for UMOD mutations. Sanger
sequencing of the 11 exons of UMOD identified a single homo-
zygous base change c.359G>A in exon 4, leading to the
novel missense variant p.C120Y affecting a conserved cysteine

FIGURE 1: Genetic and biochemical investigation of the p.C120Y UMOD mutation. (A) Pedigree diagram with proband (II:1; arrow). Females
are denoted by circles and males by squares. The homozygous individual is shaded and heterozygous individuals are half shaded. Presumed car-
riers of the disease allele are shown with a dotted symbol. Age of death is indicated. (B) Chromatograms showing the c.359G>A (p.C120Y)
homozygous (proband) and heterozygous (children) missense mutation. (C) Conservation of the mutated amino acid C120 residue (boxed)
among eutherian mammals. (D) Plot of age (in years) versus eGFR (Chronic Kidney Disease Epidemiology Collaboration equation) demon-
strating progressive decline in renal function in the proband (index case II:1). (E) Urinary uromodulin levels in three individuals from the
investigated family (red symbols; II:1, III:4 and III:5) compared with reference populations (black symbols; matched for gender, age and eGFR).
For each proband, urinary uromodulin was measured in duplicate and the mean value plotted. Characteristics of the reference populations are
shown on the right side; reference uromodulin levels are represented as box and whisker plots with whiskers representing the 10th and 90th
percentiles. Urinary uromodulin is expressed in mg/g creatinine and values plotted on a log2 scale. BDR, below detection range. (F)
Representative western blot analysis of urinary uromodulin in a control individual and two heterozygous carriers (III:4 and III:5) and the
homozygous (II:1) individual from the investigated family. Two independent urine samples were loaded for the homozygous patient as well as
a 10� more concentrated sample, and all the samples were run on the same blot under non-reducing conditions. The loading was normalized
for urinary creatinine content as indicated. (G) Representative western blot analysis of N-deglycosylated urinary uromodulin in a control indi-
vidual, a heterozygous carrier (III:5) as well as the homozygous patient (II:1). The indicated amount of urine (in mL) for each individual was
reduced using DTT and loaded without or with PNGaseF treatment, as indicated. All the samples were run on the same blot. Lower panel west-
ern blot shows detection of b-actin in the homozygote urine sample only. b-actin western blot loading was normalized for urinary creatinine
content as indicated and all the samples were run on the same blot. (H) The p.C120Y mutation resides in EGF-like domain III. On the left, the
crystal structure of the EGF-like domain V of human EMR2 (PDB code 2BOU) is shown. Stabilizing disulfide bonds are shown in yellow and the
bound Ca2þ ion is shown as a purple sphere. On the right, a homology model of the EGF-like domain III of UMOD is shown. The predicted stabi-
lizing disulfide bonds are shown in yellow and the bound Ca2þ ion as a purple sphere. Previously reported UMOD-associated disease mutations
include p.C106Y (EGF-like domain II) and p.C112R, p.C126R, p.C135S, p.C135G, p.C148Y and p.C148W (all within the EGF-like III domain).

H o m o z y g o u s m u t a t i o n i n U M O D 1995
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|(reference transcript NM_001008389) (Figure 1B and C). All

children (III:1–5; 15–26 years of age) were heterozygous for the
p.C120Y mutation (Figure 1A and B); they all exhibited a low
FE of urate but none had experienced clinical gout (Table 1).
Urinalysis was bland in all children and renal function was
largely preserved, excepting III:4 who had a demonstrable
decline in eGFR over the last 2 years. The mutation segregated
from both parents (I:1 and I:2; Figure 1A), who were heterozy-
gous for the allele. Since presentation, the proband showed
slowly progressive CKD (currently stage 3b) with an eGFR fall-
ing from 53.5 to 42.6 mL/min/1.73 m2 over the last 3 years
(�3.6 mL/min/1.73 m2/year; Figure 1D). Compared with her
75-year-old heterozygous mother, the proband showed a more
rapid progression of CKD and earlier gout (Table 1). Specific
questioning, given the genetic diagnosis, confirmed that the
index patient did not have any proven UTIs, episodes of colic or
renal stones. The patient admitted to polyuria (six times during
the day, three times at night) but no episodes of hypotension or
syncope, and no enuresis. Early-onset gout was the only notable
history.

Gene dosage effect on the quantity and quality of
urinary uromodulin

Fresh urine samples from the index patient (II:1) and two of
her children (III:4 and III:5) were analysed for uromodulin pro-
tein levels using a validated enzyme-linked immunosorbent
assay (ELISA) method [3]. When compared with a reference
population matched for gender, age and eGFR, the urinary uro-
modulin levels, normalized to urinary creatinine excretion,
were remarkably low (Figure 1E). For the heterozygous individ-
uals (III:4 and III:5), urinary uromodulin was consistently
below the 10th percentile of urinary uromodulin values from a
reference population (N¼ 266), whereas the homozygous pro-
band (II:1) was below the detection range of the ELISA. The
gene dosage effect suggested by the ELISA measurement was
confirmed by western blot analysis with careful normalization
to creatinine to account for urinary dilution (Figure 1F): a faint
signal for uromodulin could only be observed in the homozy-
gous (II:1) individual when loading a sample 10 times more

concentrated in creatinine. The qualitative analysis of uromo-
dulin in the urine, in control conditions and after N-deglycosy-
lation (Figure 1G) revealed that the homozygous proband (II:1),
like the heterozygous carrier (III:5), eliminated a mutant form
of uromodulin with a molecular mass similar to the wild-type,
and with normal glycosylation. The homozygous and heterozy-
gous subjects also showed abnormal fragments of uromodulin
(molecular weight<60 kDa) in the urine. These fragments were
not glycosylated, as shown by the lack of a mobility shift follow-
ing PNGaseF treatment. The ratio of these abnormal bands to
the global signal was much higher in the homozygous proband
than in the heterozygous carriers. Uromodulin fragments most
likely are not explained by the presence of TAL cell debris in the
urine since no b-actin is detected in the urine of the heterozy-
gote patient. Conversely, detection of b-actin only in the urine
of patient II:1 confirms cellular contaminants, probably leuco-
cytes (see case description above) in the homozygote proband’s
urine (Figure 1G). Altogether, these results show both quantita-
tive and qualitative defects of urinary uromodulin in the
patients and suggest a gene dosage effect on both aspects.

Pathogenicity of the novel p.C120Y mutation in UMOD

Although the crystal structure of the polymerization domain
of uromodulin has recently been reported [11], there are no avail-
able structures of the epidermal growth factor (EGF)-like domain
III, wherein the novel p.C120Y mutation resides. Modelling of
uromodulin based on the crystal structures of EGF-like domains
with putative high structural homology predicted the formation
of three stabilizing disulfide bonds between cysteine residues
(C112–C126, C120–C135 and C137–C148) in EGF-like domain
III (Figure 1H). This cysteine pairing pattern is characteristic of
EGF-like domains [12]. Consistent modelling results were
obtained using the crystal structures of EGF-like domains from
EMR2 [13], fibrillin-1 [14] and Del-1 [15] (Figure 1H and
Supplementary Figure S1). The UMOD p.C120Y mutation identi-
fied in the present study is predicted to disrupt the stabilizing
interaction with C135, likely resulting in protein misfolding. This
effect is therefore predicted to be pathogenic (MutationTaster:
‘disease causing’; PolyPhen-2: ‘probably damaging, score 1.00’;

Table 1. Clinical, genetic and biochemical characteristics of the family members

Patient Gender Genotype
p.C120Y

Current
age
(years)

Highest
serum uric
acid
(mmol/L)

FE
urate
(%)

First
attack
of gout
(years)

Current
serum
creatinine
(mmol/L)

Current
eGFR
(CKD-EPI;
mL/min/1.73m2)

DGFR
(mL/min/
1.73 m2/
year)

Homozygote
II:1 F Y/Y 44 614 0.4 28 131 42.6 �3.6

Heterozygotes
I:1 M C/Y Deceased

age 60
NA NA NA NA NA NA

I:2 F C/Y 75 NA NA 64 123 37.0 NA
III:1 F C/Y 26 360 1% None 81 87.0 NA
III:2 F C/Y 24 318 1% None 78 >90 0
III:3 F C/Y 22 322 1% None 80 >90 0
III:4 M C/Y 21 377 1% None 114 79 �3.5
III:5 M C/Y 15 363 5% None 82 >90 NA

CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration.

1996 N. Edwards et al.
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|PROVEAN: ‘Deleterious, score �4/687’). Consistently, this

mutation is not found in the ExAC database (http://exac.broadin
stitute.org/), which represents>60 000 human exomes.

D I S C U S S I O N

Mutations in UMOD usually segregate as heterozygous alleles
in ADTKD families, leading to an autosomal dominant pattern
of tubulointerstitial kidney disease. More than 90% of reported
UMOD mutations are missense mutations clustered in exons 3
and 4 (NM_001008389). The underlying pathology is thought
to be secondary to abnormal protein folding, maturation and
trafficking rather than deficient levels of uromodulin in the
urine—as evidenced by the lack of progressive kidney disease in
Umod knockout mice [2, 16]. The reduction in eGFR described
in Umod knockout mice is most probably functional, secondary
to altered sodium chloride handling and activated tubuloglo-
merular feedback; no morphological alterations were observed
in these kidneys up to 3 years of age [17, 18]. In vitro studies
have shown that different UMOD mutations lead to variable
defects in the ER to Golgi trafficking. However, the underlying
patterns and the phenotypic translations are currently unknown
[2, 16]. The pathophysiological cascade, including partial ER
retention and tubulointerstitial injury has been reproduced in
mouse models and patient biopsies [7, 8].

The mutation p.C120Y found in this family has not been
reported before in ADTKD. Disease-associated UMOD muta-
tions affecting the cysteine at position 135 (C135), the putative
disulfide bridge partner to C120, have previously been reported
[19]. Uromodulin contains 48 cysteine residues, engaged in 24
disulfide bonds [20]. The importance of these bonds for the
function of uromodulin is underscored by the many UMOD
disease mutations that affect cysteine residues and by the fact
that formation of the correct number of disulfide bonds within
uromodulin is thought to be the rate-limiting step in the export
of the precursor protein from the ER [21]. These data, together
with the conservation of C120, the modelling results predicting
disruption of a stabilizing interaction and the profound reduc-
tion in urinary uromodulin levels observed in carriers, strongly
corroborate the pathogenic nature of the mutation.

Homozygous mutations in UMOD are exceedingly rare.
There has only previously been one reported family with homo-
zygous UMOD variants. Within this large consanguineous
Spanish family, three individuals with a homozygous UMOD
mutation (p.C255Y) were identified [22]. Compared with fam-
ily members with a single heterozygous UMOD mutation, the
three patients with homozygous changes presented with cystic
kidneys, earlier onset of hyperuricaemia and a more rapid pro-
gression to ESRD. The homozygous case presented here does
not show cystic change within the kidney but, as compared with
the heterozygous mother, the proband exhibits earlier manifes-
tations of gout and a more rapid decline of eGFR—consistent
with reaching ESRD at the age of 50–55 years (comparison with
other heterozygously affected patients is difficult due to their
young age). The proband, however, does not have a strikingly
severe form of disease when considering that heterozygous
patients with ADTKD-UMOD show a median renal survival of

54 years [9]. There is no obvious reason for a particularly mild
phenotype associated with the p.C120Y variant. Mutations in
the EGF-like domain III are among the best studied and most
prototypical mutations in UMOD. For instance, mutations in
C148, C112, C126 and C135, the latter being predicted to pair
with C120, are all associated with the classic presentation of
ADTKD leading to ESRD around 40 years of age [7, 9, 19].
Additional studies are needed, including longer follow-up of the
relatively young mutation carriers in this family.

The pathological basis for a gene dosage effect on the severity
of ADTKD in relation to uromodulin processing and urinary
excretion had not been tested thus far. Examination of kidney
biopsies in mouse models and patients suggests that mutations
in uromodulin are conferring a gain-of-function toxic effect to
the tubulointerstitial compartment. Whether wild-type uromo-
dulin helps in stabilizing the mutant form and, at least partially,
alleviates its toxic effects or whether the toxic effect of mutated
uromodulin is itself dose dependent remains an open question.
On the other hand, the deletion of uromodulin in mouse does
not lead to an ADTKD phenotype [17, 18].

We provide the first direct comparison of the urine levels and
biochemical properties of uromodulin of heterozygote and
homozygote UMOD mutation carriers within the same family.
Compared with a cohort of individuals with a similar degree of
CKD due to other causes, the levels of urinary uromodulin in the
homozygote proband were undetectable using a sensitive ELISA.
The urinary uromodulin levels were reduced in a gene dosage–
dependent manner in the family, with levels in heterozygous
patients detectable, but in the lower 10th percentile range of the
normal population. Western blot analyses with non-reduced
urinary samples confirmed the unprecedented low levels of
uromodulin excretion in the proband, with a clear decrease
of urinary uromodulin with each mutated allele. The biochemical
properties of the secreted uromodulin were assessed in reducing
conditions with native or N-deglycosylated urine samples (con-
centrated in the proband). Both the heterozygote and the homo-
zygote carrier showed a major band around the physiological
mass of �100 kDa, with a mature N-glycosylation pattern.
However, in contrast to the control, N-deglycosylated uromodu-
lin (�70 kDa) as well as uromodulin fragments (�50 kDa, insen-
sitive to PNGaseF) were detected in the heterozygous and
homozygous carriers. The ratio of these fragments was increased
in the urine of the homozygous individual.

We can only speculate about the origins of the aberrant uro-
modulin bands detected in the patients. Since the accumulation
of mutant uromodulin has been associated with cell death by
apoptosis [23], cell debris could possibly contaminate the urine.
Indeed, b-actin is detected in the urine of the homozygote pro-
band, reflecting tubular cell debris or other cell types such as
inflammatory cells (in the context of more advanced renal
injury). Indeed, leucocytes were repeatedly detected in the pro-
band’s urine. However, the aberrant bands are also detected in
the heterozygote carrier in the absence of cell contamination.
Furthermore, intracellular uromodulin would be detected pri-
marily as a band of 80 kDa (ER-type glycans) that is sensitive to
PNGaseF treatment [24]. Arguably the observed bands could
thus reflect either immaturely secreted uromodulin bypassing ER
quality control or intraluminal deglycosylation/degradation of

H o m o z y g o u s m u t a t i o n i n U M O D 1997
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|mature uromodulin in these patients. Of note, mutant uromodu-

lin has been detected in the urine of patients with heterozygous
UMOD mutations, although at levels significantly lower than the
wild-type uromodulin [24]. Arguably such mutant uromodulin
may be more sensitive to luminal processing or degradation,
explaining the greater abundance of fragments in the homozy-
gous individual compared with the heterozygous carrier.

The lack of a wide range of clinical phenotypes in the homo-
zygous proband is striking in the context of extremely low levels
of urinary uromodulin. Based on the current understanding of
uromodulin’s physiological roles derived from murine KO stud-
ies and human association studies, one could expect that the
lack of functional uromodulin in urine would be reflected in
repeated UTIs, kidney stones and/or nephrocalcinosis, polyuria
or hypotension [2]. Yet, only polyuria could be documented in
this case. It should be kept in mind that the patient is not a
knockout individual: although she has unprecedented low uri-
nary levels of uromodulin, the residual, mutant uromodulin
shows normal glycosylation and could thus play some physio-
logical role. Furthermore, we should keep in mind that genome-
wide association studies look for statistical associations with
common variants and not for rare mutations.

Taken together, these findings demonstrate a gene dosage
effect on uromodulin processing and urinary excretion, which
does not associate with a striking severity of the clinical phenotype.

M A T E R I A L S A N D M E T H O D S

Clinical and molecular genetics. Clinical data were reviewed.
Following informed consent, DNA was obtained from the
affected patient and relatives where available. This study was
approved by the Northern and Yorkshire Regional Ethics
Committee. Genomic DNA was extracted from blood samples
collected in ethylenediaminetetraacetic acid tubes using the
QIAGEN Blood and Cell Culture DNA kit according to the
manufacturer’s instructions.

UMOD sequencing was performed in the Cambridge
Regional Genetics Centre, UK, via the UK Genetic Testing
Network (http://ukgtn.nhs.uk/).

In silico tools MutationTaster (http://www.mutationtaster.
org/), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) and
PROVEAN (http://provean.jcvi.org/index.php) were used to
determine missense mutation pathogenicity. HHPred [25] and
Modeller [26] software were used to model UMOD based on
the crystal structures of calcium-binding EGF-like domains
from EMR2 (PDB code 2BOU) [13], fibrillin-1 (PDB code
2W86) [14] and Del-1 (PDB code 4D90) [15]. Homology mod-
els were visualized and figures prepared using PyMOL (http://
www.pymol.org/).

Uromodulin measurements. The level of uromodulin was
measured in spot urine samples using a validated ELISA that
was performed as previously described [3, 4]. The capture anti-
body used was sheep anti-human uromucoid (Biodesign
International, Saco, ME, USA; ref: K90071C). The primary anti-
body for detection was anti-human Tamm–Horsfall ascites
(Clone1032A; Cedarlane, Burlington, ON, Canada). This anti-
body was revealed by an EIA-grade affinity purified goat anti-

mouse (Hþ L) horseradish peroxidase conjugate (Bio-Rad,
Hercules, CA, USA; ref: 172-1011). The standard protein used
for calibration was human Tamm–Horsfall glycoprotein
(>95%) (Millipore, Billerica, MA, USA; ref: AG733). The refer-
ence samples were obtained from the Cohort Lausannoise
(CoLaus) and matched for age, gender and eGFR. The CoLaus
study is a population-based study including 6000 people 35–
75 years of age from the city of Lausanne, Switzerland, as previ-
ously described [4]. The uromodulin levels were normalized to
urinary creatinine concentration, determined on the
SYNCHRON LX UniCel DxC 800 system (Beckman Coulter,
Brea, CA, USA), as previously described [4].

Western blotting. For semi-quantitative western blot analysis,
the loading of urine was normalized to creatinine and samples
were denatured by boiling but not reduced. For qualitative
western blot analysis, all urine samples were denatured by boil-
ing and reduced using dithiothreitol (DTT). When indicated,
these samples were N-deglycosylated using PNGaseF (New
England Biolabs, Ipswich, MA, USA) according to the manufac-
turer’s instructions. Volumes of all samples were adjusted with
distilled water and mixed with Laemmli sample buffer (Bio-
Rad), followed by separation on 7% SDS-PAGE gel. Proteins
were then transferred onto a polyvinylidene fluoride membrane
(Bio-Rad). Blocking and immunolabelling was performed using
established protocols [27] with polyclonal sheep anti-
uromodulin (K90071C; Meridian Life Science, Cincinnati, OH,
USA) and monoclonal mouse anti b-actin (A2228; Sigma-
Aldrich, St Louis, MO, USA) primary antibodies and an appro-
priate horseradish peroxidase–conjugated secondary antibody.
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