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Abstract: Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a hetero-
geneous and complex pathophysiology that presents barriers to traditional targeted therapeutic
approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that com-
prehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways,
that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize
these disease states and experimentally test predictions in a human liver acinus microphysiology
system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic
RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the
LINCS L1000 database led to the identification of drugs predicted to revert these signatures and cor-
responding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis,
inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally
diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane
X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and
is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells,
this platform has the potential for developing personalized NAFLD therapeutic strategies, informing
disease mechanisms, and defining optimal cohorts of patients for clinical trials.

Keywords: liver; non-alcoholic fatty liver disease; NAFLD; metabolic-associated fatty liver disease;
MAFLD; microphysiology systems; MPS; drug discovery; quantitative systems pharmacology; QSP;
connectivity map; CMap; drug repurposing; network proximity; non-alcoholic steatohepatitis; NASH;
fibrosis; lobular inflammation; steatosis; targeting disease states; drug combinations
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD), also known as metabolic dysfunction asso-
ciated fatty liver disease (MAFLD) [1], is a heterogeneous disease with a complex patho-
genesis involving several diverse signaling cues from the environment, the microbiome,
metabolism, comorbidities such as type 2 diabetes, and genetic risk factors [2,3]. NAFLD
comprises a spectrum of progressive disease states from simple hepatic steatosis (fatty liver)
termed NAFL to a more serious condition, nonalcoholic steatohepatitis (NASH), involving
inflammation, hepatocyte damage (i.e., ballooning), and often pericellular fibrosis [4,5].
NASH itself is a risk factor for cirrhosis and end-stage liver disease requiring liver trans-
plantation [6] and for hepatocellular carcinoma (HCC) that can progress insidiously before
cirrhosis is diagnosed [7]. The prevalence of NAFLD is approximately 25% across adult
populations worldwide, with the proportion of those with NASH predicted to increase
over the next decade [6].

Despite the major public health problem NAFLD presents and the economic burden
it exacts [8], no drug treatments have been approved [5,9]. Although significant progress
towards an understanding of NAFLD molecular pathogenesis has been made, our current
knowledge base is insufficient to accurately predict disease progression and response to
emerging therapies, even in similar patient cohorts. To address this unmet need, the re-
search community has adopted systems-based approaches [10–14], such as quantitative
systems pharmacology (QSP) [15]. QSP comprehensively and unbiasedly integrates molec-
ular, cell, and clinical data to generate predictive models of disease progression. These
computational models are then tested and iteratively refined using experimental models
to identify specific signaling networks and predictive biomarkers mechanistically linked
to pathogenesis (i.e., NAFLD) [16]. Intrinsic to QSP is the implementation of human mi-
crophysiological systems (MPS) that recapitulate key aspects of NAFLD pathogenesis and,
in conjunction with iPSC technology [17], can ultimately be used to address those issues
confounded by patient heterogeneity, thus serving as an important complement to animal
models. An overarching goal of implementing a QSP approach is to identify NAFLD
subtypes having distinguishable mechanisms of disease progression [2]. It is hypothesized
that a molecular-based disease sub-classification that has remained elusive thus far will
enable precision medicine and therapeutic advances for targeting patient cohorts with
specific drug combinations [2].

Herein, we describe the implementation of a QSP-based platform [15,18] (Figure 1,
Table S1) that starts with the computational analysis of individual patient-derived hepatic
RNA-seq data encompassing a full spectrum of NAFLD disease states from simple steatosis,
to NASH, to advanced fibrosis and cirrhosis, and including associated comorbidities such
as type 2 diabetes (T2D) [19]. This analysis has enabled us to associate distinct clusters of
individual patient gene expression and pathway enrichment profiles with three NAFLD
sub-classifications: predominantly normal and steatosis (PN&S); predominantly lobular in-
flammation (PLI), typical of NASH early stages; and predominantly fibrosis (PF), reflecting
NASH progression (Figure 2). Approved or investigational drugs predicted to potentially
revert the resulting disease gene signatures were identified from the Library of Integrated
Network-Based Cellular Signatures (LINCS) L1000 database [20–22] and prioritized for
experimental testing using two complementary approaches (Figure 1 Units 2 and 3). One
approach is based on the frequency of appearance and rank of the candidate drug across
multiple signatures (Figure 1 Unit 2). The other prioritization approach considers an
NAFLD subnetwork independently constructed from genes differentially expressed dur-
ing NAFLD progression and uses network proximity [23] to rank drugs according to the
proximity of their targets to this subnetwork (Figure 1 Unit 3). The prioritized candidate
drugs are evaluated in a clinically relevant human biomimetic liver MPS model of NAFLD
progression employing a diverse panel of biomarkers (Figure 1 Unit 4; Figure S1) to: (1)
provide experimental proof-of-concept for the computation-based predictions; (2) iden-
tify drugs and combinations that could form the basis for developing new N非29AFLD
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therapeutic strategies; and (3) gain mechanistic insights into the heterogeneity of NAFLD
pathophysiology, which will enable precision medicine.

Figure 1. Workflow associating NAFLD subtypes with gene expression signatures to computationally
predict and prioritize drugs for testing in a patient-derived microphysiological model of disease
progression. Four integrated units are shown, each comprised of a set of steps detailed in the
Methods and Results. Unit 1A–D identifies and clusters individual patient hepatic gene expression
and enriched pathway profiles associated with clinical subtypes and categorizes the differentially
enriched pathways among these clusters (Figures 2 and 3; Tables S2 and S3, and Data files S1 and S2)
within our current framework of NAFLD pathophysiology [2,5]. The rationale is presented in the
Results for using clusters based on individual patient pathway enrichment profiles as an alternative
to the clinical classifications (compare Figure 3, Figures S1 and S2) for determining both differentially
expressed genes and enriched pathways between different stages of disease progression. Unit 2E–G
generates disease progression-based gene expression signatures (Table S4; Data file S3) and, using the
Connectivity Map (CMap) databases, identifies drugs that can normalize these signatures (Table 1
and Table S5; and Data files S4 and S5). The highly integrative Unit 3 H-J maps known protein targets
of the predicted drugs from Unit 2 to an NAFLD subnetwork encompassing protein targets from the
gene expression analysis within Unit 1 (Figure S6; Table S7, and Data file S6). A network proximity
score is then calculated that helps prioritize candidate drugs identified by CMap analysis for experimental
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testing based on the proximity of their targets to the NAFLD subnetwork (Table S8; Data file S7).
In Unit 4K, the effects of the prioritized drugs on a diverse set NAFLD–associated biomarkers in a
human MPS, independently shown to recapitulate critical aspects of NAFLD progression (Unit 4L)
(Figure 4, Figures S4 and S5), are determined (Figures 5 and 6). Table S1 provides an index of tables,
figures, and data files associated with each step.

Figure 2. Individual patient liver transcriptome analysis yields distinct clusters based on their Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment profiles. The heatmap shows
the hierarchical clustering of the liver KEGG pathway enrichment profiles (columns) from individual
patients, determined by RNA sequencing and gene set variation analysis (GSVA) using MSigDB
v7.0 C2 KEGG pathways [24] (see Methods). Pathways (rows) are grouped according to the top-level
KEGG hierarchical classifications (labeled along the left ordinate) to which they belong. The color
represents the enrichment score (ES; see the color-coded bar under the heatmap), which reflects the
degree to which a pathway is over- or under-represented within that individual patient sample
(see [25]). The plots above the heatmap show the patient metadata: the top two bars indicate the
color-coded diagnosis (see panel on the right) and patient sex, the third indicates if the patient has
been diagnosed with type 2 diabetes (T2D) (black bars), and the additional two plots show the body
mass index (BMI) and age of the patient. The clinical subtype distribution for each of the three
clusters (PN&S, PLI, PF) is shown in Table S2. More details on this analysis, including the specific
pathway information and patient metadata, can be found in the associated R notebooks [26].
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2. Results
2.1. Individual Patient KEGG Pathway Enrichment Profiles Cluster According to Predominant
NAFLD Subtypes

To help distill NAFLD complexity at the molecular level and associate hepatic signal-
ing network dysregulation with clinical subtypes, we performed an unsupervised gene set
variation analysis (GSVA) derived from 182 individual patient liver biopsies representing
different stages of NAFLD [19] that included 36 normal, 46 steatosis, 50 lobular inflamma-
tion, and 50 fibrosis (Figure 1A,B). The resulting KEGG pathway enrichment profiles were
then subjected to hierarchical clustering with the dendrogram cut at the third level to create
three distinct clusters (see Methods) that were each enriched in different stages of disease
(Figures 1B and 2; Table S2; Methods). The first cluster is composed of 44% normal patients
and 48% patients with simple steatosis (NAFL), termed predominantly normal and steatosis
(PN&S), highlighting the challenge of distinguishing these two cohorts by gene expression
analysis alone when inflammation is not discernable; the second cluster is predominated by
patients with lobular inflammation (70%) with little or no fibrosis, termed predominantly
lobular inflammation (PLI); and the third is predominantly comprised of patients with
advanced disease having fibrosis (61%), termed predominantly fibrosis (PF) (Figure 2; Table
S2). The sample clustering is significantly associated (Pearson’s Chi-squared Test) with
the NAFLD subclass (p < 2.2 × 10−16) and T2D status (p = 0.01). Figure 2 also shows that
the distributions of sex, body mass index (BMI), and age are similar across the different
clusters. In contrast, the occurrence of T2D in cluster PF (55%) is higher than in clusters
PN&S (32%) and PLI (32%), corroborating that among individuals with T2D and NAFLD,
the prevalence of NASH and advanced fibrosis is enriched when compared to nondiabetics
with NAFLD, as observed in independent analyses of this particular cohort [19] and other
cohorts [27–29]. This is most evident among the 40 patients diagnosed with fibrosis within
the PF cluster, with 78% having T2D (Table S2).

We next investigated in more detail the association between distinct pathway enrich-
ment profiles (i.e., molecular disease phenotypes) and clinical subtypes by determining
the differential pathway enrichment profiles of the pairwise comparisons among the three
clusters and among the corresponding clinical subtypes (Figure 1C).

The pairwise cluster comparisons of PLI vs. PN&S, PF vs. PN&S, and PF vs. PLI gene
and pathway expression data yielded a total of 139 unique differentially enriched pathways
(FDR p-value < 0.001) (Figure 1C; Table S3; Data file S1). Analogously, the pairwise clinical
subtype comparisons of lobular inflammation vs. normal and steatosis (Lob vs. N&S),
fibrosis vs. normal and steatosis (Fib vs. N&S), and fibrosis vs. lobular inflammation (Fib
vs. Lob) gene and pathway expression data yielded a total of 140 unique differentially
enriched pathways (FDR p-value < 0.001) (Table S3; Data file S1). The distributions of
these differentially enriched pathways within their respective top-level KEGG hierarchical
classifications in each pairwise comparison are presented in Figure 3A and Figure S1A,
respectively. Overall, these distributions are consistent with the intrinsic heterogeneity of
NAFLD that reflects the diverse but convergent impacts of the environment, metabolism,
comorbidities, and genetic risk factors [2]. More specifically, many of these differentially
enriched pathways can be associated with at least one of four categories that comprise
our current conceptual framework of NAFLD progression (Figure 1D, Methods): (C1)
insulin resistance and oxidative stress; (C2) cell stress, apoptosis, and lipotoxicity; (C3)
inflammation; and (C4) fibrosis (Figure 3B and Figure S1B) [2,5]. Apart from these four
main categories, other pathways have been observed that are less directly associated with
NAFLD or metabolic syndrome (Figure 1D, Figure 3B and Figure S1B).
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Figure 3. Distribution of differentially enriched pathways and their respective KEGG groups and
NAFLD categories among the pairwise cluster comparisons defined in Figure 2. The number of
differentially enriched pathways identified between the PLI vs. N&S, PF vs. N&S, and PF vs. PLI
pairwise comparisons were 59, 125, and 50, respectively (adj. p-value < 0.001). Their distribution (and
percent contribution) with respect to KEGG groups (A) and NAFLD categories (B) are detailed in
Table S3 and Data file S1. The top ten differentially enriched pathways for each comparison (ranked
by the FDR adjusted p-values through the linear modeling equivalent of a two-sample, moderated
t-test) are shown along with their association (black circles) with NAFLD categories C1–4 (as indicated
and defined in the Main Text) (C). The colors of the bars represent the directionality and relative
enrichment of each pathway for each of the pairwise comparisons.

The 10 most differentially enriched pathways for all patient subgroup pairwise com-
parisons, and their association with the disease processes within these four categories
(C1–C4), are shown in Figure 3C and Figure S1C. The 10 pathways for the PF vs. PN&S
and the PLI vs. PN&S cluster-based comparisons, and the Fib vs. N&S and the Lob vs.
N&S clinical subtype comparisons are consistent with the metabolic underpinning, and the
resultant cellular stress and inflammatory response intrinsic to NAFLD pathogenesis. Com-
plementarily, the differentially enriched pathways within the comparisons between PF vs.
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PLI and between Fib vs. Lob are consistent with fibrosis being the widely recognized hall-
mark of disease progression in NASH (Figure 3C and Figure S1C). The majority of the top
10 differentially enriched pathways in these comparisons have been shown to have a role in
hepatic fibrosis [30–37] with several involved in hepatic stellate cell activation [30–32]. The
majority of differentially enriched pathways derived from the unsupervised clusters are
concordant with those derived from the clinical subtypes per se (Figure S2), corroborating
an association of these pathways with NAFLD progression. A meta-analysis extending the
unsupervised cluster comparisons to three independent NAFLD patient cohorts further
supports an association of many of these differentially enriched pathways with NAFLD
progression (Figure S3). The fraction of the top 10 differentially enriched pathways play-
ing a role in multiple disease categories in the PF vs. PLI comparison was greater than
the fractions in the other two comparisons, indicative of enhanced disease complexity
during progression (Figure 3C). Details of the full list of differentially enriched pathways
for each comparison can be found in Table S3 and Data file S1. Together, the analysis of
this transcriptomic dataset appears to have corroborated the clinical relevance of these
differentially enriched pathways in the context of the current conceptual framework of
NAFLD progression [2,5].

Although each of these identified differentially enriched pathways has the potential to
be a drug target, their large number and diversity, the prospect of redundancy, and the un-
certainty regarding their individual contribution to NAFLD pathogenesis, especially across
a heterogeneous patient population, all present challenges to translating this information
into revealing pathophysiological mechanisms and informing therapeutic strategies. To
help conceptualize this translational objective, we suggest that differentially expressed
gene (DEG) signatures that map to differentially enriched pathways involved in the disease
processes comprising the four NAFLD categories C1–C4 (see below and Figure 1E; Table S4;
Data file S3; Methods) mirror emergent disease-specific networks (i.e., disease states) at
different stages of disease progression. We hypothesize that pharmacologically normalizing
these gene signatures using the integrative approach outlined in Figure 1E–L and below
will modify disease progression in a clinically relevant human MPS model of NAFLD.

2.2. Initial Prediction and Testing of Drugs in a Human Liver MPS Model of NAFLD

To predict drugs/small molecules that modulate individual components of NAFLD
progression, we initially focused on the DEGs (Data file S2) that mapped to the categorized
(four NAFLD categories, C1–C4; Methods) differentially enriched pathways (Figure 1D–E;
Table S3; Data file S1; Methods) identified above in each of the three comparisons of
unsupervised clusters (i.e., PLI vs. PN&S, PF vs. PN&S, and PF vs. PLI) resulting in a total
of 12 gene signatures (Table S4; Data file S3; Methods). Each of these 12 gene signatures
was then used as input to perform connectivity mapping (CMap) on the LINCS database
(see [20] and Methods).

CMap connects the DEG signature between different disease states (including the
non-disease state) to drugs and other pharmacologically active compounds predicted to
normalize the disease-associated gene signature (see Methods) [20–22]. In the context of
this study, the output of CMap [20–22] enables the pharmacologic testing of the hypothesis
that normalization of the gene signatures between two disease states will halt or perhaps
reverse disease progression in an experimental human NAFLD model (see below; Methods).
Since a key objective is to identify drugs that can be repurposed for preventing NAFLD
progression, we focused on CMap outputs present in DrugBank (see Methods) that could
promote the reversion of the disease-associated gene signature in each NAFLD category
(Methods; Figure 1F). For our initial study using the 2017 LINCS database [20], we selected
the top 20 drugs (ranked by their most negative CMap score among all instances for that
particular drug, see Methods) for each of the 12 queries, resulting in 106 unique predicted
drugs, 35 of which appeared as an output in more than one query (Figure 1G; Table S5;
Data file S4). Given the complex interplay among dysregulated metabolic pathways,
oxidative and ER stress, inflammation, and fibrosis during NAFLD progression, our initial
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prioritization of 25 drugs focused on those predicted to modulate multiple gene expression
signatures (Figure 1G; Table S5). Enriched in this set are drugs with targets known to be
associated with NAFLD and with the potential to act pleiotropically to modulate several
pathways. For example, vorinostat is predicted to normalize 5 of the 12 signatures focused
primarily on inflammation and fibrosis, and previous studies in rodent models of NAFLD
suggested efficacy with other HDAC inhibitors [38,39].

We next used our LAMPS model of NAFLD to test the predicted drugs. The LAMPS
model comprises an all-human cell platform containing primary hepatocytes and liver sinu-
soidal endothelial cells (LSECs) as well as Kupffer (differentiated THP-1) and stellate (LX-2)
cell lines layered in a microfluidic device that recapitulates several key structural features
and functions of the human liver acinus [16,40,41] (Figure 1K and Figure S4A; Methods).
The LAMPS model has been tested and reproduced by the Texas A&M Tissue Chip Vali-
dation Center (Tex-Val), one of the National Center for Advancing Translational Sciences
(NCATS) funded Tissue Chip Testing Centers (TCTC) [42]. We have recently demonstrated
that this model system recapitulates critical aspects of NAFLD progression, including lipid
accumulation, stellate cell activation, and the production of pro-inflammatory cytokines and
fibrotic markers, using media containing key NAFLD drivers, including increased levels of
glucose, insulin, and free fatty acids [16,41] (Figure S4B; Methods). To gain further evidence
supporting the clinical relevance of the LAMPS NAFLD model, we implemented a machine
learning approach based on transcriptomic analysis of the 182 patient cohort [19] described
in Figure 2 and Table S2 (Methods; Figure 1L). We first trained a multinomial logistic
regression with an elastic net penalization model (MLENet) using nested cross-validation
to successfully differentiate among four clinical classifications of NAFLD (Figure 4A). The
final model used 71 genes, with 80% of these having prior association with NAFLD (Data
file S10). Using this patient-based model, we then classified the transcriptome of individual
LAMPS under three media conditions, normal fasting (NF), early metabolic syndrome
(EMS), and late metabolic syndrome (LMS), as shown in Figures 1L and 4B and the Methods.
At the transcriptome level, progression of NAFLD in LAMPS upon media treatment mimics
disease progression observed in patients, independently corroborating the biomarker and
imaging data (Figures 1L and 4B).

We then examined the effects of two control drugs that have shown appreciable clinical
benefits in NAFLD clinical trials, obeticholic acid (OCA) [43,44] and pioglitazone (PGZ) [45],
using the LAMPS experimental model (Figures 1K and 5). LAMPS were maintained for
10 days in EMS media containing either the indicated concentration of drug or DMSO
vehicle control. EMS conditions were selected since biomarker and imaging analysis
indicate that steatosis, inflammation, and fibrosis are progressively induced during the
10-day testing period [41]. We determined drug concentrations to test in LAMPS guided
by the concentrations indicated in the LINCS L1000 database, reported PK/PD, and the
absence of cytotoxicity at these concentrations during pre-testing in primary hepatocytes
(Table S6). In addition, we determined the amount of each compound that was adsorbed
by the PDMS component of the LAMPS device (Table S6). We examined a panel of metrics
to monitor disease-specific phenotypes, including model functionality (albumin and blood
urea nitrogen production), cytotoxicity (lactate dehydrogenase secretion), hepatocellular
steatosis (LipidTOX® labeling), stellate cell activation (α-smooth muscle actin staining),
and the production of a panel of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-1α, and
MCP-1) and fibrotic markers (Pro-collagen 1A1 and TIMP-1) [41] (Figure S4B).
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Figure 4. Unbiased machine learning model of patient transcriptomic data identifies and predicts
congruent clinical phenotypes within LAMPS. (A) The bootstrapping procedure used to develop and
validate the transcriptome-based machine learning model (MLENet) capable of differentiating and
predicting 4 NAFLD patient classifications (see Methods) (red indicates the clinically defined true
positives). The average sensitivity across the bootstrapping instances (numbers in parenthesis are
standard deviations) are: 0.66 (0.11), 0.64 (0.12), 0.77 (0.08), 0.93 (0.07); average specificity 0.93 (0.03),
0.83 (0.03), 0.98 (0.02), 0.95 (0.03) for normal, steatosis, Lob, and fibrosis, respectively. (B) The
workflow and table of outcomes from implementing MLENet to identify and predict congruent
NAFLD patient phenotypes from LAMPS transcriptomic analytes generated under normal fasting
(NF); early metabolic syndrome (EMS); or late metabolic syndrome (LMS) conditions (see Methods).
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The phenotype matching of LAMPS to patients results from extensive parallel biochemical and
imaging analyses [41], indicating that the three different media conditions drive distinct phenotypes
congruent with clinical phenotypes of NAFLD progression and are independently consistent with
the machine learning approach.

LAMPS models were maintained for 10 days in EMS media containing 10 µM OCA,
30 µM PGZ, or vehicle control (Figure 5). Throughout the experimental time course, al-
bumin, blood urea nitrogen, and lactate dehydrogenase showed similar secretion profiles
between vehicle control and drug treatment groups (Figure 5A–C), suggesting no hep-
atocellular damage or loss of function. At the day 6 timepoint (Figure 5A), there was a
significant increase in albumin secretion in the OCA group; however, no further significant
increases in albumin output were observed at later time points (days 8 and 10). However,
there was a significant decrease in LipidTOX® and α-SMA staining intensity in the OCA
and PGZ treatment groups compared to vehicle control, demonstrating that both hepa-
tocellular steatosis (Figure 5D,E) and stellate cell activation (Figure 5F,G) were reduced.
Although there was a ~20% decrease in secretion of the pro-fibrotic marker Pro-collagen 1a1
(Figure 5H) with treatment of OCA or PGZ, this decrease was not statistically significant,
similar to other previous studies examining collagen 1 gene expression and secretion in
response to treatment with OCA and PGZ [46,47]. In addition, there was also no significant
change in the secreted levels of TIMP-1, another pro-fibrotic marker, in any of the treatment
groups compared to vehicle (Figure 5I).

We next examined the effect of the histone deacetylase (HDAC) inhibitor, vorinostat
(abbreviated SAHA), the highest ranking drug predicted from our initial CMap analysis
(Figures 1K and 5J–S; Table S5). LAMPS models maintained for 10 days in EMS disease
media contained either vorinostat (1.7 µM or 5 µM) or DMSO vehicle control. As shown
in Figure 5, albumin and blood urea nitrogen curves showed no significant differences
between vehicle and drug treatment groups (Figure 5J,K), suggesting that these drug treat-
ments do not induce appreciable loss of hepatic functionality. There was a significant
decrease in LDH secretion (Figure 5L) at days 8 and 10 in the 5 µM vorinostat treatment
group, suggesting that treatment with this drug alleviates disease media-induced cyto-
toxicity. This result is further supported by the overall significant decrease in the day
10 measurements of stellate cell activation (Figure 5O,P; α-SMA intensity), production of
the pro-fibrotic markers pro-collagen 1a1 and TIMP-1 (Figure 5Q,R), and inflammatory
cytokine production (Figure 5S) observed in the vorinostat treatment group. In contrast to
PGZ and OCA, and despite its significant effect on profibrotic markers, vorinostat treatment
did not appreciably alleviate lipid accumulation at day 10 (Figure 5M,N), indicating no
significant effect on steatosis.
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Figure 5. Control and predicted drugs reduce different NAFLD disease phenotypes in LAMPS
models treated with EMS media. LAMPS models were maintained for 10 days in Early Metabolic
Syndrome (EMS) media containing either vehicle control, 10 µM obeticholic acid (OCA) and 30 µM
Pioglitazone (PGZ) [standard compounds], or vorinostat (suberoylanilide hydroxamic acid; SAHA) at
1.7 µM or 5 µM [predicted compounds]. A panel of metrics was examined to monitor disease-specific
phenotypes. For standard drugs, albumin, blood urea nitrogen, and lactate dehydrogenase curves
throughout the time course show similar profiles throughout the time course between vehicle and
drug treatment groups, suggesting no overt model cytotoxicity or loss of function (A–C). At the day
6 timepoint, there was a significant increase in albumin secretion in the OCA group; however, no
further significant increases in albumin output were observed at later time points (days 8 and 10).
At day 10, there was a significant decrease in steatosis (D,E; LipidTOXTM intensity) and stellate cell
activation (F,G; α-SMA intensity) for both OCA and PGZ groups compared to vehicle. Panels (D,F)
display representative 20X image Day 10 LipidTOXTM (D) and α-SMA (F) images of LAMPS. Scale
bar; 50 µm. There was no significant change in the secreted levels of the pro-fibrotic markers Pro-Col
1a1 (H) TIMP-1 (I) in either treatment group compared to vehicle. For the predicted drug vorinostat
(SAHA), albumin and blood urea nitrogen curves show no significant differences between vehicle and
treatment groups (J,K), suggesting that these drug treatments do not result in loss of model functionality;
however, a significant decrease in LDH secretion (L) at days 8 and 10 in the 5 µM vorinostat treatment
group, suggesting decreased cytotoxicity. This was further supported by the significant decrease in
stellate cell activation (O,P; α-SMA intensity), production of the pro-fibrotic markers pro-collagen 1a1 and
TIMP-1 (Q,R), and inflammatory cytokine production (S) observed in the vorinostat group. In contrast,
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vorinostat does not reduce lipid accumulation compared to vehicle control (M,N), indicating no
effect on steatosis. Panels (M,O) display representative 20X image Day 10 LipidTOXTM (D) and
α-SMA images of LAMPS under each treatment condition. Scale bar; 50 µm. For each control
and drug treatment group, n = 3 chips were analyzed and plotted ± SEM for each assay and
statistical significance was assessed using a One-Way ANOVA with Tukey’s test (* p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001).

Overall, the CMap predicted drug vorinostat in comparison to the control drugs PGZ
and OCA, exhibited complementary effects that mitigated NAFLD progression in the
LAMPS. To extend our initial proof-of-concept (PoC) findings, we tested LAMPS models
maintained in EMS media containing either control or combinations of pioglitazone (30 µM)
and vorinostat (1.7 µM or 5 µM) and monitored the same panel of disease-specific metrics.
As shown in Figure 6, while albumin secretion profiles showed no significant differences
between vehicle and drug treatment groups, suggesting that these drug combinations
did not result in loss of model functionality (Figure 6A), a significant increase in urea
nitrogen secretion was observed in both drug combination groups compared to control,
suggesting increased model metabolic activity (Figure 6B). In addition, like the LDH profile
in Figure 5, there was a significant decrease in LDH secretion (Figure 6C) in the 5 µM
vorinostat treatment group, suggesting a reduction in disease-induced cytotoxicity. In
contrast to the individual drug testing studies shown in Figure 5, we found an effect on the
full complement of disease progression markers measured in this study when pioglitazone
and vorinostat were used in combination, as we observed a significant reduction in both
lipid accumulation (Figure 6D,E) and stellate cell activation (Figure 6F,G), as well as in
the production of the pro-fibrotic markers pro-collagen 1a1 and TIMP-1 (Figure 6H,I) and
inflammatory cytokine production (Figure 6J).

Figure 6. Pioglitazone and vorinostat used in combination result in the reduction of steatosis and
stellate cell activation as well as the secretion of pro-fibrotic markers and production of inflammatory
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cytokines in LAMPS models treated with EMS media. LAMPS models were maintained for 10 days
in NAFLD disease media containing combinations of pioglitazone (30 µM) and vorinostat (1.7 µM
or 5 µM) or DMSO vehicle control. A panel of metrics was examined to monitor disease-specific
phenotypes under these treatment conditions. While albumin secretion profiles show no significant
differences between vehicle and drug treatment groups, suggesting that these drug combinations
do not result in loss of model functionality (A), a significant increase in urea nitrogen secretion
is observed in both drug combination groups compared to control, suggesting increased model
metabolic activity (B). In addition, like the LDH profile in Figure 5, there is a significant decrease in
LDH secretion (C) in the 5 µM vorinostat treatment group, suggesting a reduction in cytotoxicity.
Compared to the contrasting effects observed in the individual drug testing studies shown in Figure 5,
we observe an overall decrease in both lipid accumulation (D,E) and stellate cell activation (F,G),
as well as in the production of the pro-fibrotic markers pro-collagen 1a1 and TIMP-1 (H,I) and
inflammatory cytokine production (J) when pioglitazone and vorinostat are used in combination.
Panels (D,F) display representative 20X image Day 10 LipidTOXTM (D) and α-SMA (F) images of
LAMPS under each treatment condition. Scale bar; 50 µm. For each control and drug treatment group,
n = 3 chips were analyzed and plotted ± SEM for each assay and statistical significance was assessed
using a One-Way ANOVA with Tukey’s test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

2.3. Expansion and Complementary Prioritization of CMap Predicted Drugs Using
Network Proximity

During the course of these initial studies, the LINCS L1000 database (accessible at
clue.io) was significantly expanded, providing an additional 1033 drugs that were anno-
tated in DrugBank and, accordingly, a more comprehensive set of perturbation instances
that also encompassed additional cell lines. We took advantage of this larger biological
representation by incorporating a percentile statistic for defining an overall CMap score for
ranking drugs (Figure 1F,G; Methods and [20]). Using this updated database, many drugs
were identified, ranking higher than vorinostat, with the 25 highest shown in Table 1. Some
of these drugs having canonical targets associated with NAFLD are predicted to revert 7
of the 12 cluster-based signatures. For example, the NSAID fenoprofen inhibits cyclooxy-
genase 1 and 2 to modulate prostaglandin synthesis and also activates the peroxisome
proliferator receptors, alpha and gamma (PPARα/γ). The androgen receptor agonist oxan-
drolone, also predicted to revert 7 of the 12 signatures, promoted hepatic ketogenesis in an
observational trial of adult males [48] consistent with enhanced fatty acid partitioning from
intrahepatic triglycerides towards mitochondrial beta oxidation and 4-hydroxybutyrate
formation, as proposed for the reversal of NAFLD resulting from a short-term ketogenic
diet [49,50]. Although several of the ranked drugs (Table 1) were structurally steroid-like,
considerable structural diversity was evident in the predicted antibiotic and oncology
drug classes. The cephalosporin, cefotaxime, interacts with the family of organic anion
transporters (OATs or SLC22), whose expression is significantly altered during NAFLD
progression [51]. These transporters mediate the hepatic disposition of drugs, xenobiotic
metabolites, and endogenous intermediates and metabolites. Targeting NAFLD-associated
hepatic proteins that have critical roles both in xenobiotic and endobiotic metabolism may
be an emerging theme (see Discussion and [52]) that can be extended to nuclear receptor
transcription factors as the diverse drugs tetracycline, SN-38, and the endogenous steroid,
pregnanolone, have been shown to interact with PXR [53,54]. In a parallel CMap analysis
based on queries derived from 12 patient subtype signatures (complementary to the set of
12 signatures derived from the unsupervised clusters, Table S4; Data files S3–S5), 17/25
of the same predicted drugs (Table 1) were also identified and enriched in the highest
ranked drugs.

As a complementary approach to prioritizing the 126 drugs from the CMap analysis
(Figure 1G; Table 1 and Table S5), we constructed an NAFLD subnetwork (Figure 1H and
Figure S6; Methods) and used proximity to this network [23] as an approach to potentially
enhance the specificity and relevance of the CMap analysis. In essence, this algorithm
connects NAFLD-associated gene signatures to drug-target profiles and maps the targets of
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a particular drug to the network protein nodes (Figure 1H–J; Methods). Drugs with target
profiles that most closely overlap with a subset of protein nodes in the NAFLD network are
prioritized for pharmacological testing in our human liver biomimetic MPS experimental
models (Figure 1K and Methods). The KEGG pathway database contains an annotated map
of the stage-dependent progression of NAFLD (pathway id: hsa04932, [55,56]). We used
this NAFLD progression pathway as an anchor, extending it with 10 interrelated pathways
to generate an NAFLD subnetwork in the context of the liver protein–protein interactome
(Figure 1H and Figure S6; Methods). From the total number of 9904 DEGs (FDR p-value
< 0.001) in our three comparisons PLI vs. PN&S, PF vs. PN&S, and PF vs. PLI (Data file
S2), 234 DEGs mapped to these 11 NAFLD associated pathways and the background liver
PPI network (Figure 1H and Figure S6; Methods). The degrees of the subnetwork nodes
range from 0 to 64, with 9.7 neighbors on average for the 234 DEGs, and ranges from
0 to 354, with 52.1 neighbors on average for the background liver network (Data file S6).
Among the top 20 hub proteins (Table S7; Data file S6) were HSP90, MAP kinase 8 (MAPK8),
NFKB essential modulator (IKBKG), protein kinase C alpha (PRKCA), caspase 8 (CASP8),
signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase
kinase kinase 7 (MAP3K7), and protein kinase C zeta type (PRKCZ).

Among the 126 unique drugs identified by our CMap analysis per se, 45 had targets in
the liver background network (see Methods). These were further evaluated by determining
the network proximity between their targets and the NAFLD subnetwork (Figure S6;
Methods) [23]. The network proximity measure for each drug was represented by a z-
score ranging from −2.8 to 2.1 (Data file S7; Methods). Negative z-scores indicate that the
targets of the drug are more intrinsic to the disease module than a random set of targets.
Therefore, the lower the z-score of a predicted drug, the more likely it is to modulate the
signaling in the NAFLD disease module. The 25 highest priority drugs and their known
targets are shown in Table S7. Among the highest ranked drugs was fenoprofen, also
highly ranked by signature frequency (Table 1), bolstering its prioritization for future
testing. The HSP90 inhibitor, alvespimycin, was also highly ranked by network proximity,
consistent with HSP90 being a critical hub protein in the NAFLD subnetwork (Figure S6;
Table S7; Data file S6). ). In addition, a closely related HSP90 inhibitor has been reported
to modulate the activation of the NLRP3 inflammasome resulting in efficacy in murine
models of NASH [57]. A hallmark of NAFLD is hepatic calcium dyshomeostasis induced
by steatosis, which further promotes steatosis, insulin resistance, and ROS that can be
ameliorated in murine NASH models by the calcium channel blocker nifedipine [58,59].
Nifedipine and another calcium channel blocker, cinnarizine, were among the drugs ranked
higher by network proximity. Two statins, fluvastatin and mevastatin, were also identified
by network proximity, consistent with recent meta-analyses [60,61], suggesting the benefit
of statin use in NASH development and progression.
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Table 1. The 25 highest ranked CMap-predicted drugs based on frequency of occurrence across
multiple NAFLD-associated gene signature queries. Drugs/small molecules perturbagens identified
in more than 1 of the 12 cluster-based gene signature queries were prioritized according to the number
of occurrences across the 12 queries and termed: Gene signature-query frequency (Data File S4 and
S5). Each signature-based query is indexed s1–12 (see Table S4 and Data file S3) and ordered (from
highest to lowest) according to the relative rank of the drug within each query that the drug was
identified (i.e., occurrence). Each gene signature-based query is associated with a predominant feature
(i.e., disease category) of NAFLD (see Table S4; Data File S3, and Methods). The canonical targets
derive from DrugBank (v5.1.4) except for (PXR) (explained in Results). Distinct from Table S5, CMap
scores were calculated as percentile scores (see Methods, Results, and [20]), and the 2020 expanded
LINCS Database was used as indicated in the Methods and Results. * Denotes compounds also found
in a parallel top 25 CMap-predicted drug analysis using clinical classification-based signature queries
(Table S4 and Data File S3).

Drug Name
(DrugBank ID)

Gene Signature-Query
Frequency

Gene Signature Indices (See Table S4) and
Their Disease Categorization Canonical Targets

Eltanolone * (DB12308)
(pregnanolone) 7

s5: Insulin Resistance and Oxidative Stress
s6: Cell Stress, Apoptosis, and Lipotoxicity
s7: Inflammation
s3: Inflammation
s2: Cell Stress, Apoptosis, and Lipotoxicity
s8: Fibrosis
s1: Insulin Resistance and Oxidative Stress

(PXR)

Fenoprofen * (DB00573) 7

s5: Insulin Resistance and Oxidative Stress
s6: Cell Stress, Apoptosis, and Lipotoxicity
s7: Inflammation
s8: Fibrosis
s2: Cell Stress, Apoptosis, and Lipotoxicity
s3: Inflammation
s4: Fibrosis

PTGS2, PTGS1,
PPARA, PPARG

Oxandrolone * (DB00621) 7

s2: Cell Stress, Apoptosis, and Lipotoxicity
s6: Cell Stress, Apoptosis, and Lipotoxicity
s3: Inflammation
s4: Fibrosis
s8: Fibrosis
s1: Insulin Resistance and Oxidative Stress
s5: Insulin Resistance and Oxidative Stress

AR

Cefotaxime * (DB00493) 6

s2: Cell Stress, Apoptosis, and Lipotoxicity
s6: Cell Stress, Apoptosis, and Lipotoxicity
s1: Insulin Resistance and Oxidative Stress
s7: Inflammation
s3: Inflammation
s5: Insulin Resistance and Oxidative Stress

SLC22A6, SLC22A8,
SLC22A11, SLC22A7,
SLC15A1, ALB,
SLC15A2

Amorolfine * (DB09056) 5

s3: Inflammation
s7: Inflammation
s8: Fibrosis
s5: Insulin Resistance and Oxidative Stress
s6: Cell Stress, Apoptosis, and Lipotoxicity

Dexamethasone *
(DB01234) 5

s3: Inflammation
s6: Cell Stress, Apoptosis, and Lipotoxicity
s2: Cell Stress, Apoptosis, and Lipotoxicity
s7: Inflammation
s12: Fibrosis

NR3C1, NR0B1,
ANXA1, NOS2,
NR1I2 (PXR)
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Table 1. Cont.

Drug Name
(DrugBank ID)

Gene Signature-Query
Frequency

Gene Signature Indices (See Table S4) and
Their Disease Categorization Canonical Targets

proxyphylline (DB13449) 5

s5: Insulin Resistance and Oxidative Stress
s10: Cell Stress, Apoptosis, and Lipotoxicity
s11: Inflammation
s12: Fibrosis
s9: Insulin Resistance and Oxidative Stress

sn-38 * (DB05482) 5

s4: Fibrosis
s2: Cell Stress, Apoptosis, and Lipotoxicity
s5: Insulin Resistance and Oxidative Stress
s6: Cell Stress, Apoptosis, and Lipotoxicity
s7: Inflammation

TOP1, (PXR)

Sulfanitran * (DB11463) 5

s5: Insulin Resistance and Oxidative Stress
s6: Cell Stress, Apoptosis, and Lipotoxicity
s2: Cell Stress, Apoptosis, and Lipotoxicity
s3: Inflammation
s1: Insulin Resistance and Oxidative Stress

Tetracycline * (DB00759) 4

s12: Fibrosis
s6: Cell Stress, Apoptosis, and Lipotoxicity
s8: Fibrosis
s7: Inflammation

PRNP, PADI4, (PXR)

7-hydroxystaurosporine *
(DB01933) 4

s8: Fibrosis
s6: Cell Stress, Apoptosis, and Lipotoxicity
s2: Cell Stress, Apoptosis, and Lipotoxicity
s4: Fibrosis

PDPK1

dopamine (DB00988) 4

s12: Fibrosis
s9: Insulin Resistance and Oxidative Stress
s11: Inflammation
s10: Cell Stress, Apoptosis, and Lipotoxicity

DRD2, DRD1, DRD5,
DRD3, DRD4,
SLC6A3, DBH,
HTR1A, HTR7,
SLC6A2, SLC6A4,
HTR3A, HTR3B,
SOD1, SLC18A2

Medrysone * (DB00253) 4

s2: Cell Stress, Apoptosis, and Lipotoxicity
s6: Cell Stress, Apoptosis, and Lipotoxicity
s5: Insulin Resistance and Oxidative Stress
s1: Insulin Resistance and Oxidative Stress

NR3C1

Mestranol * (DB01357) 4

s2: Cell Stress, Apoptosis, and Lipotoxicity
s6: Cell Stress, Apoptosis, and Lipotoxicity
s4: Fibrosis
s7: Inflammation

ESR1

Norethindrone *
(DB00717) 4

s10: Cell Stress, Apoptosis, and Lipotoxicity
s12: Fibrosis
s9: Insulin Resistance and Oxidative Stress
s8: Fibrosis

PGR

Troxerutin * (DB13124) 4

s5: Insulin Resistance and Oxidative Stress
s8: Fibrosis
s7: Inflammation
s6: Cell Stress, Apoptosis, and Lipotoxicity

Brequinar * (DB03523) 3
s7: Inflammation
s4: Fibrosis
s3: Inflammation

DHODH
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Table 1. Cont.

Drug Name
(DrugBank ID)

Gene Signature-Query
Frequency

Gene Signature Indices (See Table S4) and
Their Disease Categorization Canonical Targets

bromocriptine (DB01200) 3
s1: Insulin Resistance and Oxidative Stress
s11: Inflammation
s12: Fibrosis

DRD2, DRD3,
HTR1D, ADRA2A,
HTR1A, ADRA2C,
ADRA2B, HTR2B,
DRD4, HTR2A,
HTR1B, HTR2C,
DRD5, DRD1,
ADRA1A, ADRA1B,
ADRA1D, HTR7

Cebranopadol * (DB12830) 3
s4: Fibrosis
s7: Inflammation
s8: Fibrosis

flucloxacillin (DB00301) 3
s9: Insulin Resistance and Oxidative Stress
s11: Inflammation
s2: Cell Stress, Apoptosis, and Lipotoxicity

granisetron (DB00889) 3
s11: Inflammation
s10: Cell Stress, Apoptosis, and Lipotoxicity
s12: Fibrosis

HTR3A

hexestrol (DB07931) 3
s9: Insulin Resistance and Oxidative Stress
s10: Cell Stress, Apoptosis, and Lipotoxicity
s11: Inflammation

AKR1C1, ESR1,
NR1I2 (PXR), NR1I3

iohexol (DB01362) 3
s1: Insulin Resistance and Oxidative Stress
s4: Fibrosis
s2: Cell Stress, Apoptosis, and Lipotoxicity

Melphalan * (DB01042) 3
s3: Inflammation
s5: Insulin Resistance and Oxidative Stress
s6: Cell Stress, Apoptosis, and Lipotoxicity

oxacillin (DB00713) 3
s9: Insulin Resistance and Oxidative Stress
s12: Fibrosis
s11: Inflammation

SLC15A1, SLC15A2

3. Discussion

An important outcome of the initial analysis in this study was the identification
of differential pathway enrichment profiles among clinically defined stages of NAFLD
progression. This information enabled disease states to be defined that could be targeted
by systems-based approaches that are more comprehensive and less biased than traditional
targeted approaches and, therefore, may be better suited to address the heterogeneity and
complex pathophysiology intrinsic to NAFLD. An unsupervised analysis of RNA-seq data
from individual liver biopsies derived from a 182 NAFLD patient cohort encompassing a
full spectrum of disease progression subtypes from simple steatosis to cirrhosis showed
the presence of three patient clusters distinguishable by their pathway enrichment profiles
and their predominant association with one of three clinical subtypes: normal/simple
steatosis, lobular inflammation, or fibrosis. Pairwise comparisons among these clusters
identified differentially enriched pathways consistent with the metabolic underpinning of
NAFLD and the pathophysiological processes implicated in its progression that included
lipotoxicity, insulin resistance, oxidative and cellular stress, apoptosis, inflammation, and
fibrosis. The differentially enriched pathways identified among the pairwise comparisons of
clusters originally derived from the unsupervised analysis showed significant congruence
with those derived from the clinical subtypes within this patient cohort and, through a meta-
analysis, additional patient cohorts. Although from a traditional translational perspective,
each of these identified differentially enriched pathways has the potential to be a drug target,
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their large number and diversity, the prospect of redundancy, and the uncertainty regarding
their individual contribution to NAFLD pathogenesis, especially across a heterogeneous
patient population, all present challenges to translating this information into therapeutic
strategies. The recent failures of several NASH clinical trials due to lack of efficacy [62]
are likely the result of this complex pathophysiology emphasizing the need to define and
probe therapeutic targets more holistically from the perspective of disease states.

Guided by systems-based concepts and building upon the gene expression and path-
way enrichment analyses, we implemented a QSP approach for defining NAFLD states,
predicting drugs that target these states, and testing the predicted drugs in human clin-
ically relevant liver MPS NAFLD models. We defined disease states by first identifying
differentially expressed genes for each of the pairwise comparisons among either the
three unsupervised cluster groupings or among the three clinically defined clinical groups
associated with disease progression. The differentially expressed genes that mapped to
differentially enriched pathways were then categorized according to one (or more) of four
categories of NAFLD pathophysiological processes in which the pathways are known to
participate. This analysis resulted in two sets of twelve gene expression signatures reflect-
ing different states of NAFLD progression. These signatures were then used to query the
LINCS L1000 database to identify and rank drugs predicted to revert these gene signatures
and, accordingly, normalize their respective corresponding disease states [20,21]. Among
the higher CMap-ranked drugs, two complementary criteria, frequency of appearance
within each set of 12 signatures or NAFLD subnetwork proximity based on a predicted
drug’s known target profile, were used for further prioritization for experimental testing.

To test the predicted drugs in a clinically relevant experimental system, we imple-
mented a human liver acinus MPS, LAMPS, that recapitulates critical structural and func-
tional features of the liver acinus [40,63]. A large and diverse set of biomarkers and image-
based analyses measured over time under different media that reflect normal fasting and
early and late metabolic syndrome conditions indicated that the human LAMPS also reca-
pitulates critical aspects of NAFLD progression (e.g., simple steatosis, lipotoxicity, oxidative
stress, insulin resistance, lobular inflammation, stellate cell activation, and fibrosis) [16,41].
Nevertheless, with the translational goal in mind of identifying disease-modifying ther-
apies, it is important to know if these clinical phenotypes observed pre-clinically arise
through those mechanisms that occur in patients. To further establish the clinical relevance
of the LAMPS NAFLD model, we implemented a machine learning approach. We trained a
transcriptome–based model from the 182 NAFLD cohort representing a full spectrum of dis-
ease progression subtypes to classify patients with high specificity. We then implemented
this patient-based model consisting of 71 genes, with 57 of these having an independently
determined association with NAFLD, to classify the transcriptomes of individual LAMP
models treated under media conditions mirroring different stages of disease progression.
The congruence between the patient-derived transcriptome-based classification of indi-
vidual LAMPS and the diverse panel of NAFLD-associated biomarker measurements
supports the clinical relevance of the LAMPS as an NAFLD model. Two mechanistically
distinct drugs, obeticholic acid and pioglitazone, that have shown some clinical benefit
for NAFLD, were then tested as controls, and both exhibited a hepatocellular antisteatotic
effect and inhibition of stellate cell activation without an appreciable effect on profibrotic
markers. We then tested the top ranked drug from an initial CMap analysis, the HDAC
inhibitor vorinostat, predicted to primarily modulate inflammation and fibrosis. Consistent
with the NAFLD CMap analysis and in contrast to the control drugs obeticholic acid and
pioglitazone, vorinostat showed significant inhibition of proinflammatory and fibrotic
biomarkers without an appreciable effect on steatosis. In addition, vorinostat ameliorated
disease-induced cytotoxicity. Interestingly, in contrast to our results using vorinostat in the
LAMPS model, recent reports show that vorinostat also reduced steatosis [64] and lipid
metabolism pathways [65] in rat and HCC monoculture studies, respectively. These con-
trasting findings demonstrate the variability between animal models and simple cell culture
models in assessing drug effects, highlighting the need for implementing all-human MPS
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model systems in drug testing platforms. Based on the complementary effects exhibited
by vorinostat and the control drugs, the combination of vorinostat and pioglitazone was
tested and demonstrated significant improvement across the full complement of NAFLD
biomarkers. Altogether, these studies provide initial proof-of-concept for a patient-derived
QSP platform that can infer disease states from gene expression signatures, predict drugs
and drug combinations that can target these disease states, and experimentally test these
predictions in clinically relevant NAFLD models.

With the recent expansion of the LINCS L1000 database, we have identified several
drugs predicted to be more efficacious than vorinostat for future testing and providing
mechanistic inferences. Several of these predicted drugs have known interactions with pro-
teins associated with NAFLD, such as nuclear receptors, and bile and fatty acid transporters.
In contrast, others had no known interactions with targets associated with NAFLD despite
being predicted to reverse many of the same signatures. These drugs were either highly se-
lective for a particular target such as topoisomerase (e.g., SN-38) or were antibiotics having
minimum interactions with human proteins. Further analysis suggested a common thread
among many of the predicted drugs that involve nuclear receptors, such as PXR [66] and
the related constitutive androstane receptor. PXR is a transcriptional regulator capable of
interacting with diverse exogenous and endogenous ligand modulators that have evolved
in the liver to have xenobiotic/endobiotic metabolic functions in addition to functions
regulating glucose/lipid metabolism/energy, inflammation, and stellate cell activation.
Traditional targeted drug discovery approaches have identified FXR and PPAR agonists
converging on this broader family of nuclear receptors intimately associated with NAFLD
pathophysiology. The QSP approach described here has independently done so in a more
comprehensive and unbiased manner with the potential to identify drugs/combinations
more efficacious than obeticholic acid and pioglitazone by more completely targeting dis-
ease states. In essence, the systems-based platform described here can inform therapeutic
strategies that are inherently more pleiotropic than traditional approaches and thus has the
potential to address the complexity of transcriptional dysregulation intrinsic to diseases
such as NAFLD [12]. The finding that this can be achieved by repurposing approved drugs
suggests that acceptable therapeutic indices could result by selectively modulating disease
states. In conjunction with the advances in patient-derived iPSC technology [17] and in situ
methods for RNA, metabolomic, and proteomic analyses, we anticipate the QSP platform
described in this study will become a mainstay for a personalized approach to developing
effective NAFLD therapeutic strategies.

4. Materials and Methods
4.1. Generation of Individual Patient Liver Gene Expression Profiles

The RNAseq data were derived from samples of wedge biopsies taken from the liv-
ers of patients undergoing bariatric surgery, as previously described [19]. Patients were
diagnosed, and samples were labeled according to the predominant liver histology find-
ing as normal, steatosis, lobular inflammation, or fibrosis [19]. The patient cohort [19]
is summarized in Figure 2 and Table S2. The data processing is depicted in the context
of the QSP workflow (Figure 1A), and the code used for these analyses can be found at:
https://github.com/lefeverde/QSPpaper (accessed on 2 June 2022). Paired fastq-files
were pseudo-aligned to the human Ensembl [67] v94 transcriptome using the Kallisto
pipeline [68]. The resulting transcript abundances were converted into gene-level estimates
using Tximport [69] with the settings recommended for VOOM [70,71]. An exploratory
analysis of the gene expression distributions suggested a technical bias exclusive to some
of the earliest collected normal and steatotic patient samples that were corrected by the
quantile normalization option in the LIMMA-VOOM pipeline [70] (Figure S7A). Princi-
pal component analysis (PCA) (Figure S7B) revealed technical heterogeneity (i.e., batch
effect) that was accounted for without an appreciable over-correction using surrogate
variable analysis [72,73] (Figure S7C). The patient-gene expression matrix encompassing
182 patients and 18,307 genes per patient can be accessed by following the instructions at

https://github.com/lefeverde/QSPpaper
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https://github.com/lefeverde/QSPpaper and served as the primary input for the analyses
described below.

4.2. Clustering of Individual Patient KEGG Pathway Enrichment Profiles Associated with NAFLD
Clinical Subtypes

The pathophysiology of NAFLD is intrinsically complex and heterogeneous, involv-
ing a complex interplay of diverse signaling pathways [2,5]. As an initial step toward
understanding the relationship between individual patient pathway enrichment profiles
and clinical subtypes, we performed gene set variation analysis (GSVA) [25] (Figure 1B)
in conjunction with MSigDB v7.0 C2 KEGG pathways [24]. GSVA, being an intrinsically
unsupervised method, enables individual patient pathway enrichment profiles to be gen-
erated across a heterogeneous population, providing an advantage over GSEA [74], for
example. Importantly and despite the known patient heterogeneity intrinsic to NAFLD,
this classification was sufficient to identify and order the three clusters of distinct pathway
enrichment profiles with different stages of NAFLD progression and serve as the basis for
our subsequent studies in this manuscript. The aforementioned gene expression matrix
provided the input for GSVA, resulting in a patient (column) by pathway enrichment (i.e.,
row of features) matrix. To enable relative comparisons across all identified features, mini-
mizing bias in the ensuing cluster analysis while preserving the presence of outliers within
each feature, feature standardization (the mean for each value was subtracted then divided
by the standard deviation across each KEGG pathway row) was performed [75]. The path-
way enrichment matrix was then subjected to hierarchical clustering (Pearson correlation
distance, Ward’s linkage; for details, see https://github.com/lefeverde/QSPpaper), and
new groups were identified by cutting the column dendrogram at the 3rd level to create
three clusters (Figures 1B and 2). We chose the 3rd level because these clusters had a
statistically significant association (Pearson’s Chi-squared Test) with NAFLD clinical sub-
type (p < 2.2 × 10−16) and type 2 diabetes (T2D) status (p = 0.01). These clusters (Table S2)
were named according to the predominant patient sub-classification in each cluster: the
first encompassed almost entirely normal and steatosis (PN&S) patients, the second pre-
dominantly lobular inflammation (PLI) patients, and the third predominantly fibrosis (PF)
patients. Cluster stability was evaluated using the bootstrapping method described in [76].
The 3 identified clusters were compared to new clusters generated from re-sampling using
Jaccard coefficients, a metric of similarity between 2 sets [76]. The coefficients were 0.95,
0.62, and 0.72 for PN&S, PLI, and PF, respectively, and above the minimum cutoff of 0.6
proposed by [76].

4.3. Identification of Differential Gene Expression Signatures for the Three Pairwise Comparisons
within the Pathway Enrichment Clusters and within the Clinical Classifications

Having shown an association between the pathway enrichment profiles resulting from
unsupervised cluster analysis and the clinical phenotypes (Figure 1B), we next derived two
sets of differential gene expression signatures associated with the processes involved in
NAFLD development (Figure 1C). One set was derived from the cluster analysis and the
other from the clinical classifications. For the former, differentially expressed genes (DEGs)
were identified from the aforementioned gene expression data applying the standard
LIMMA-VOOM pipeline [70,71] (Figure 1C) for three pairwise comparisons (PLI vs. PN&S,
PF vs. PN&S, and PF vs. PLI) (Data file S2). Differentially enriched pathways were
identified analogously, except that the GSVA outputs were used (Figure 3; Table S3, and
Data file S1). In total, 59, 125, 50 differentially enriched pathways (FDR p-value < 0.001)
were identified for the 3 pairwise comparisons (Figure 3; Table S3, and Data file S1). A
PubMed-directed literature search to assign the differentially enriched pathways into one
or more of seven categories (C) (Figure 1D). The first four categories, insulin resistance and
oxidative stress (C1); cell stress, apoptosis, and lipotoxicity (C2); inflammation (C3); fibrosis
(C4), comprise disease processes strongly associated with NAFLD and constitute our
current conceptual framework of NAFLD progression [5]. The three additional categories
include: general KEGG-annotated disease-associated pathways (C5); pathways with limited
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literature association with NAFLD (C6); and pathways with no known association with
NAFLD (C7) (Figure 1D). The first four categories (C1–C4) were used for the subsequent
generation of NAFLD-associated gene signatures. The gene signatures were created by
identifying DEGs (FDR p-value < 0.001) that were a component of the [56] differentially
enriched pathways (FDR p-value < 0.001) associated with the disease processes in categories
C1–C4 (Figure 1E; Table S4, and Data file S3) for each of the three pairwise comparisons
among the three patient clusters (Figure 2). Four category-specific gene signatures were
generated containing the aggregated up- and down-regulated genes for each of these three
pairwise comparisons (12 gene signatures in total; Figure 1E; Table S4; and Data file S3).
An analogous set of gene signatures was derived from the 3 pairwise clinical classification
comparisons lobular inflammation vs. normal and steatosis (Lob vs. N&S), fibrosis vs.
normal and steatosis (Fib vs. N&S), and fibrosis vs. lobular inflammation (Fib vs. Lob)
Figure 1E; Table S4; Data file S3, for details see https://github.com/lefeverde/QSPpaper.

In sum, two sets of 12 differentially expressed gene signatures were generated, one set
derived from distinguishable pathway enrichment profiles associated with different clinical
subtypes and the other set derived directly from the clinical classifications (Figure 1E;
Table S4 and Data file S3). The differentially expressed genes in each signature reflect
pathway dysregulation in NAFLD-associated processes, and the signatures themselves are
indicative of a particular disease state at different stages of disease development.

4.4. Comparative Pathway Analysis Using Additional NAFLD Patient Datasets

We first performed an internal validation of our pathway results using the 3 pairwise
cluster identified patient groupings (PLI vs. PN&S, PF vs. PN&S, and PF vs. PLI) by
comparing them to pathway results using 3 pairwise clinical classification comparisons
(Lob vs. N&S, Fib vs. N&S, and Fib vs. Lob) (Figure S2). We found that 70–95% of pathways
overlapped, and they were all concordant (enriched in the same direction in the cluster
grouping and clinical pairwise comparison) (Figure S2).

We further validated our pathway results (using the cluster groupings) (Figures 1C and 3;
Table S3, and Data file S1) by performing concordance analysis on pathway results obtained
from re-analyzing 3 external patient microarray datasets: (NASH vs. healthy obese) [77],
(NASH vs. simple steatosis) [78], (advanced vs. mild fibrosis) [79] (Figure S3; for details see
https://github.com/lefeverde/QSPpaper). This was completed by identifying differentially
expressed genes using the standard LIMMA protocol [70,80], then ranking genes by t-statistic
and performing GSEA [74] using the MSigDB v7.0 C2 KEGG pathways [24]. In comparison
to GSVA, GSEA is better suited to accommodate the smaller number of patient samples per
clinical classification in the microarray datasets [77–79] and accordingly identified more path-
ways with small effect sizes as being significant. We compared these differentially enriched
(FDR p-value < 0.05) pathway results to those in the 182 patient cohort (Figures 1C and 3;
Table S3, and Data file S1, [19]), in which a pathway was considered concordant if they were
also differentially enriched in the same direction (i.e., up-regulated or down-regulated) in
one or more of the microarray cohorts (Figure S3). Conversely, discordance indicates that a
pathway is still differentially enriched but in opposite directions (Figure S3).

4.5. Drug Predictions Using the LINCS L1000 Database

Connectivity mapping (CMap) (15) (Figure 1F) was used to identify drugs and small
molecule perturbagens with the potential to normalize the disease state by reverting the
aforementioned NAFLD-associated gene signatures (Figure 1E; Table S4 and Data file S3). A
pilot study using the two sets of 12 signatures obtained in the previous step was employed
to query the LINCS L1000 level 5 (GSE92742, released in 2017) expression database [20]
as the initial CMap resource. This database consists of perturbation instances, defined
as compound-induced differential gene expression output from a unique combination of
cell type, time-point, compound, and compound concentration [20,21]. A subset of the
LINCS database with compounds that could be mapped to DrugBank [81] (v5.1.4 used in all
analyses) annotations was created by matching the compounds by common name, then by
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SMILES and/or PubChem ID in cases where the common name differed between databases
(see https://github.com/lefeverde/QSPpaper). In total, 1103 DrugBank compounds could
be matched to 1495 LINCS compound IDs (there were cases of multiple LINCS compound
IDs for the same compound in DrugBank). A LINCS-DrugBank database was generated,
comprising a set of 41,710 perturbation instances describing the response to 1103 DrugBank
compounds for 70 cell types, at 6 and 24 h time-points, and a range of concentrations.

During the course of our initial studies, an updated and expanded 2020 LINCS
database was released (see clue.io) that we used to generate a 2020 LINCS-DrugBank
database see https://github.com/lefeverde/QSPpaper). This version included the 1103 pre-
viously matched compounds and an additional 1033 compounds yielding 334,393 instances
comprising 2136 DrugBank compounds (2795 LINCS compounds IDs) across 228 cell types,
and a range of time-points and concentrations (clue.io).

The connectivity between each of these drug-induced perturbation instances and each
of the 24 input gene signatures was measured by a CMap score (CS) [20,22], composed
of two enrichment scores, one for the upregulated genes (ESup) and the other for the
downregulated genes (ESdown). The CS was calculated as follows: If the sign of ESup and
ESdown are the same, CS = 0; otherwise, CS = (ESup − ESdown)/2 [20]. We obtained results
using both the 2017 and 2020 databases (Figure 1F; Data file S4). The former contains
41,710 CSs (one CS for each of the DrugBank perturbation instances), the latter 334,393 CSs
(Data file S4). We calculated the p-values for the CSs using methods adapted from [82]. For
each gene signature, a distribution of random CSs was generated by calculating the CS
between a random perturbation instance and random gene set with the same number of up-
and down-regulated genes as the gene signature. This was repeated 50,000 times for each
gene signature to calculate a p-value for each CS. The p-values represent the probability of
observing the CS using a random set of genes with the same size as the gene signature. The
p-values were adjusted for multiple testing using the FDR method [83].

In order to rank compounds for each of the 24 signature queries, creating a repre-
sentative CS (i.e., summary statistic) for each compound is necessary since multiple CSs
exist for each compound in a single query (Figure 1G). Two approaches were used. The
first approach is similar to that used by [84], where the most negative CS (predictive of
the compound having the largest effect for inverting the disease gene signature) was cho-
sen for ranking compounds. This approach has the advantage of potentially identifying
compounds with maximal efficacy in reversing the gene signature. However, relying on
a single or small number of perturbation instances and, therefore, limiting the connec-
tion to relevant biological context, may reduce the robustness for translating the CMap
predictions to a particular experimental model or clinical cohort. The second approach
uses the maximum quantile statistic as described by [20]. The instances are normalized
by cell type, then the 33rd (Qlo) and 67th (Qhi) quantiles of the CSs are computed for each
compound, and whichever is larger in magnitude becomes the summary score. If the CSs
for a compound are predominantly < 0, then the |Qlo| > |Qhi| and the summary score
is Qlo, and vice-versa when the CSs are predominantly > 0 (|Qlo| < |Qhi| and so the
summary score is Qhi. The advantage of the maximum quantile approach is that the score
is representative of more biological contexts than the single most negative CS approach.

We initially prioritized the CMap results from the 2017 LINCS database [20] by rank-
ing each drug by the most negative CMap score among all instances for that particular
drug, then retaining the top 20 drug predictions from each signature query (Figure 1G,
Table S5, and Data file S5). The predictions were further filtered using a threshold of FDR
p-value < 0.05, and then ranked based on their frequency of appearance across the 12 cluster
signatures (Figure 1G, Table S5, and Data file S5). The top 25 compounds from this initial
approach are shown in Table S5. We performed a similar approach in a follow-up study
using the expanded 2020 LINCS database (accessible at clue.io), except compounds were
ranked (in ascending order) using the maximum quantile summary score (described above
and in [20]) (Figure 1G, Table 1 and Data file S5). The top 25 predictions from the follow-up
study are shown in Table 1.
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4.6. Drug Prioritization Using Network Proximity Analysis

As a complementary alternative to ranking compounds by frequency of appearance
across the signature CMap queries, we adopted the network proximity method as previ-
ously described [23]. The method evaluates the distance between the compound’s targets
and a given disease module based on the premise that a compound is effective against a
disease if its target proteins are within or in the immediate vicinity of the disease module.
In essence, this approach provides an independent criterion for selecting from amongst
CMap-extracted compounds, to enable further prioritization for experimental testing
(Figure 1 Unit 3).

For determining network proximity, information on a liver-specific PPI network (re-
ferred to as the background network) is required. The liver BioSnap network [85] which
contains 3180 nodes and 48,409 edges, was retrieved for this aim. A subnetwork from this
background network representing the PPIs specific to NAFLD was generated as follows:
we selected the KEGG pathway map of NAFLD, which represents a stage-dependent
progression of NAFLD (pathway id: hsa04932, [55,56]) in addition to 10 interrelated path-
ways [55,56]: TNF-signaling (hsa04668), insulin signaling (hsa04910), type II diabetes
mellitus (hsa04930), PI3K-Akt signaling (hsa04151), adipocytokine signaling (hsa04920),
PPAR signaling (hsa03320), fatty acid biosynthesis (hsa00061), protein processing in the
endoplasmic reticulum (hsa04141), oxidative phosphorylation (hsa00190), and apoptosis
(hsa04210). We then created an initial subnetwork by taking the intersection of the back-
ground network and the genes from these 11 pathways, yielding 390 nodes. We further
filtered this initial subnetwork to only include the nodes that were differentially expressed
in the three pairwise comparisons (PLI vs. PN&S, PF vs. PN&S, and PF vs. PLI), resulting
in a subnetwork of 234 nodes and 1130 edges, termed the NAFLD subnetwork (Figure 1H
and Figure S6; Table S7, and Data File S6).

We performed network proximity (Figure 1I,J) on the results from the cluster signatures
queried against the 2020 database prioritized by maximum quantile (Data File S5). The
NAFLD subnetwork was used as the disease module to determine the proximity of the
126 CMap prioritized compounds (Data File S5) described above. Among these, 45 are
known to target liver-expressed proteins and were subjected to network proximity analysis
(Figure 1J, Data file S7) and summarized here. For each drug, we extracted the set of targets
(T) from DrugBank v5.1.4 [81], and a distance (d) to the NAFLD subnetwork of 234 nodes
(S) was calculated using the liver PPI network as the shortest distance between node t
(belonging to T) and the closest node s (belonging to S) averaged over all nodes in T,

d(S, T) =
1
‖T‖ ∑

t∈T
mins∈Sd(s, t)

A reference distance distribution was constructed, corresponding to the expected
distance between two randomly selected groups of proteins of the same size and degree of
distribution as the disease proteins and drug targets in the network. This bootstrapping
procedure [32] was repeated 1000 times, and the mean (µ) and standard deviation (δ) of
the reference distance distribution in conjunction with the distance (d) determined above
were used to calculate a z-score (d–µ)/δ for each drug. The z-score provides a relative
ranking of the drugs vis-à-vis each drug’s potential effects on the NAFLD disease module;
a lower z-score means a drug’s target profile is closer to the disease module. The resulting
top-ranking 25 compounds selected to be prioritized in experiments are presented in Table
S8, and the full list of 45 compounds is in Data file S7.

4.7. Experimental Drug Testing Using the Human Liver Acinus Microphysiology
System (LAMPS)

LAMPS studies (Figures 1K, 5 and 6; Figure S4; Table S6) were carried out as previously
described [40,41,63,86] using a single chamber commercial microfluidic device (HAR-V
single channel device, SCC-001; Nortis, Inc. Woodinville, WA, USA). LAMPS models were
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composed of four liver cell types: primary cryopreserved human hepatocytes (HU1960;
ThermoFisher, Waltham, MA, USA), primary liver sinusoidal endothelial cells (LSECs;
HL160019ECP1; LifeNet Health, Virginia Beach, VA, USA), and THP-1 (Kupffer cell; ATCC,
Manassas, VA, USA) and LX-2 (stellate cell; EMD Millipore, Burlington, MA, USA) human
cell lines. The percentages of hepatocytes, THP-1, LSEC, and LX-2 cells are consistent
with the scaling used in our previously published models [40,41,63,86]. For the drug
testing studies described here, LAMPS models were assembled and maintained for 10 days
under flow (5 µL/h) in EMS media containing 11.5 mM glucose, 10 nM insulin, 100 µM
palmitic acid, and 200 µM oleic acid [41]. LAMPS were maintained for this period in EMS
containing (in triplicate for each condition) either vehicle control (0.1% DMSO) or the
following drug treatments: 10 µM obeticholic acid (Selleck Chemicals, Houston, TX, USA),
30 µM pioglitazone (Selleck Chemicals), 1.7 µM or 5 µM vorinostat (Selleck Chemicals).
For drug combination studies, 30 µM pioglitrazone was combined with either 1.7 µM or
5 µM vorinostat for the duration of the experimental time course. A panel of time course
and endpoint NAFLD disease-specific metrics were then examined, including albumin,
blood urea nitrogen, and lactate dehydrogenase secretion, lipid accumulation and stellate
cell activation, secretion of the pro-fibrogenic markers pro-collagen 1a1 and TIMP-1, and
secretion of the cytokines IL-1β, IL-6, IL-8, TNF-α, and MCP-1 [41]. A detailed description
for both LAMPS assembly and NAFLD disease progression metrics is provided in the
Supplementary Materials and the MPS-Db [41,87].

4.8. Performing RNA-seq on the LAMPS NAFLD Models

Separate LAMPS experiments were carried out as described above and previously from
our group [41]: LAMPS devices were treated with media mimicking metabolic conditions
such as normal fasting (NF), early metabolic syndrome (EMS), and late metabolic syndrome
(LMS) (Figure 1L). The LAMPS experiments were carried out at 3-time points: 4, 7, and
10 days with all 3 media conditions (3–4 replicates). Total RNA was extracted from the liver
LAMPS chips using Qiazol Reagent (Sigma, St. Louis, MO, USA # R4533) and a 1-Bromo-
3 chloropropane (BCP) (Sigma, St. Louis, MO, USA #B9673) phase separation reagent.
Further, the aqueous phase of the samples was adsorbed onto Qiagen RNEasy Mini cleanup
columns (Qiagen#74204, Germantown, MA, USA) and subjected to DNAse treatment
(Qiagen#79254, Germantown, MA, USA) to avoid DNA contamination. Subsequently, the
purified RNA was eluted using RNase-free distilled water after washing with 80% ethanol.
RNA purity was checked using the nanophotometer (IMPLEN, Westlake, CA, USA). RNA
degradation and contamination were monitored on 1% agarose gels. The integrity of RNA
was assessed by the RNA Nano 6000 Assay Kitof the Agilent 2100 bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Samples were required to have a minimum of 200 ng
RNA and RIN value greater than 4.0.

A total of 1 µg of total RNA was used as input to each sample preparation. Sequenc-
ing libraries were generated using NEBNext Ultra RNA Library Prep Kit for Illumina
(Ipswitch, MA, USA). Briefly, mRNA was purified from total RNA using poly-T oligo-
attached magnetic beads. Fragmentation was carried out using divalent cations under
elevated temperature in NEB Next First Strand Synthesis Reaction Buffer (5X). First strand
cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase
(RNase H-). Second strand cDNA synthesis was subsequently performed using DNA
Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After adenylation of 3′ ends of DNA fragments, NEB
Next Adaptor with hairpin loop structure was ligated to prepare for hybridization. To select
cDNA fragments of preferentially 150~200 bp in length, the library fragments were purified
with AMPure XP system (Beckman Coulter, Beverly, CA, USA). Then, 3 µL USER Enzyme
(NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37 ◦C for 15 min, fol-
lowed by 5 min at 95 ◦C before PCR. Then, PCR was performed with Phusion High-Fidelity
DNA polymerase, Universal PCR primers, and Index (X) Primer. Then, PCR products were
purified (AMPure XP system), and library quality was assessed on the Agilent Bioanalyzer
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2100 system. Samples were required to have a cDNA library concentration > 0.5 ng/microL,
a single qPCR peak at 2–30 nM, no adapter contaminations or primer dimers, and product
size of 350–520 bp.

The clustering of the index-coded samples was performed on a cBot Cluster Gener-
ation System using PE Cluster Kit cBot-HS (Illumina) according to the manufacturer’s
instructions. After cluster generation, the library preparations were sequenced on an
Illumina platform, and 125 bp/150 bp paired-end reads were generated.

4.9. Concordance Analysis of Differentially Enriched Pathways in Patients and LAMPS

The raw LAMPS transcriptome data (accessible following the instructions at https://
github.com/lefeverde/QSPpaper) were processed using the same pipeline as described for
the patients (Figure 1L). Differentially expressed genes were identified using the standard
LIMMA-VOOM protocol [70,71] in which the genes were fit with a linear model for media
treatment and timepoint. As we are interested in the treatment effects, time point was
treated here as a confounding variable [88]. We identified differentially expressed genes
(Data file S8) for LAMPS by performing three pairwise comparisons consisting of EMS
vs. NF, LMS vs. NF, and LMS vs. EMS, which are meant to be analogous to the patient
pairwise comparisons (Lob vs. N&S, Fib vs. N&S, and Fib vs. Lob). The phenotypes of
NF, EMS, and LMS range from minimal, moderate, and pronounced levels of steatosis,
inflammation, and fibrosis, respectively [41] (Figure 4B). Differentially enriched pathways
were identified by ranking the genes by t-statistic for each pairwise comparison and then
performing GSEA [74] using the MSigDB v7.0 C2 KEGG pathways [24] for both the LAMPS
and patient comparisons (Figure 1L and Figure S5; Data file S9).

Using this differential enrichment pathway analysis as input, we performed a concor-
dance analysis of the LAMPS and matched patient pairwise comparisons (Figure 1L and
Figure S5). A pathway was considered concordant if it was significantly (FDR p-value < 0.05)
regulated in the same direction in both the LAMPS and matched patient pairwise compar-
isons (Figure S5). Conversely, discordance indicates that a differentially enriched pathway
identified in both comparisons is regulated in opposite directions.

4.10. Comparing LAMPS NAFLD Model Transcriptomes to Patients via Multinomial Logistic
Regression with Elastic Net Penalization (MLENet)

We used an MLENet model [89] to compare the LAMPS to patients since this is a
classifier that performs feature (i.e., gene) selection (Figure 1L; for details, see https://
github.com/lefeverde/QSPpaper). The patient gene expression data (accessible following
the instructions at https://github.com/lefeverde/QSPpaper) was prepared by first ranking
the genes by variance and taking the top 7500 (this is done to reduce overfitting by removing
uninformative features). The same variance thresholding was applied to the LAMPS
expression matrix (see https://github.com/lefeverde/QSPpaper). Next, genes that were
not in both the variance filtered LAMPS and patient expression matrixes were removed
from both, yielding a set of 4057 genes. For the LAMPS gene expression matrix, we
used surrogate variable analysis [72,73] to predict and then remove unwanted sources
of variation (timepoint and possible cell ratio differences). Both the patient and LAMPS
matrixes were standardized (gene-wise) to have zero mean and unit variance.

We used a nested cross-validation approach to ensure that MLENet could successfully
differentiate between the 4 patient histological classifications (normal, steatosis, lobular
inflammation, or fibrosis). To do this, we used the Glmnet package [89] applying the
appropriate distribution (multinomial) and setting (alpha = 0.95) that in initial trials enabled
optimal performance for classifying the LAMPS samples. The nested cross-validation was
performed by first generating 100 sets of training and test data (Figure 4A). This was
completed by sampling 70% of the patient from each class to create a training subset and
then using the remaining 30% for the testing subset (Figure 4A). For each of the 100 sets,
we trained an MLENet model on the training subset using cv.glmnet [89] and then used
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the testing subset to evaluate the model’s performance by calculating the specificity and
sensitivity of the 4 patient classes (Figure 4A).

After ensuring that the MLENet approach could accurately classify patients with a
mean (numbers in parenthesis are standard deviation) specificity of 0.93 (0.03), 0.83 (0.03),
0.98 (0.02), 0.95 (0.03) for normal, steatosis, lobular inflammation, and fibrosis, respectively,
we trained a final model using the 182 patients using the parameters described above
(Figures 1L and 4B). The final MLENet model selected 71 genes, of which, the majority (80%)
had prior association with NAFLD in independent studies (usually being differentially
expressed in other studies, see Data file S10). We used this final MLENet model to classify
the LAMPS samples as belonging to one of the 4 patient classes (Figure 4B; for details, see
https://github.com/lefeverde/QSPpaper).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060528/s1, Figure S1: Distribution of differentially
enriched pathways and their respective KEGG groups and NAFLD categories of pairwise compar-
isons performed using the patient clinical classifications (complements Figure 3); Figure S2. Venn
diagrams showing the overlap of differentially enriched pathways (FDR p-value < 0.001) identified in
the cluster (left circle) and clinical label (right circle) pairwise comparisons (Supports Figure 3 and
Figure S1); Figure S3: Concordance analysis of the differentially enriched pathways in the cluster
pairwise comparisons (left circle) and pathway list derived from microarray datasets (right circle);
Figure S4: Using the Biomimetic Human Liver Acinus MicroPhysiology System (LAMPS) for proof-
of-concept experimental testing of CMap-predicted drugs; Figure S5: Concordance analysis of the
differentially enriched pathways in the LAMPS (left circle) and phenotypically matched patient
pairwise comparisons; Figure S6: NAFLD associated protein interactome; Figure S7: Exploratory data
analysis and PCA of the patient transcriptome; Table S1: Index of associated tables, figures, data files,
or notebook analyses for each step in Figure 1; Table S2: Distribution of NAFLD patient subtypes
within the three clusters defined in Figure 2; Table S3: The differentially enriched pathways across
7 NAFLD categories for each pairwise cluster and clinical classification comparison (supporting
Figure 3 and Figures S1); Table S4. Gene signature index (created using Data file S3); Table S5:
Twenty-five highest ranked predicted drugs based on initial CMap analysis; Table S6: Drug binding
and cytotoxicity profiles for compounds used in LAMPS studies; Table S7: The 20 highest ranked hubs
(proteins/targets) by degree in the NAFLD subnetwork; Table S8. Prioritization of CMap-predicted
drugs and small-molecule perturbagens based on NAFLD subnetwork proximity; Data file S1. Differ-
entially enriched pathways for each pairwise cluster and clinical classification comparison; Data file
S2. DEGs resulting for each pairwise cluster and clinical classification comparisons; Data file S3: Gene
signatures used for CMap analysis; Data file S4: CMAP scores of small molecules with a DrugBank ID
for the 24 queries described in the Methods; Data file S5: List of top 20 CMap predictions from both
the 2017 and 2020 LINCS databases and both ranking methods (“Best score” and “Percentile score”)
from the 24 signatures; Data file S6. Degree of the nodes in the NAFLD subnetwork (Figure S5); Data
file S7. Network proximity-determined Z-scores for the highest ranking CMap-predicted drugs with
targets mapping to the NAFLD subnetwork; Data file S8. DEGs resulting from the LAMPS pairwise
comparisons (EMS vs. NF, LMS vs. NF, LMS vs. EMS); Data file S9. Differentially enriched pathways
the LAMPS pairwise comparisons (EMS vs. NF, LMS vs. NF, LMS vs. EMS); Data file S10. The
71 features selected by the final MLENet model; Expanded methods. Reference [90] are cited in the
supplementary materials.
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