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Constrained sampling from deep generative image models
reveals mechanisms of human target detection
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Department of Psychology, Centre for Vision Research &
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The first steps of visual processing are often described as
a bank of oriented filters followed by divisive
normalization. This approach has been tremendously
successful at predicting contrast thresholds in simple
visual displays. However, it is unclear to what extent this
kind of architecture also supports processing in more
complex visual tasks performed in naturally looking
images. We used a deep generative image model to
embed arc segments with different curvatures in
naturalistic images. These images contain the target as
part of the image scene, resulting in considerable
appearance variation of target as well as background.
Three observers localized arc targets in these images,
with an average accuracy of 74.7%. Data were fit by
several biologically inspired models, four standard deep
convolutional neural networks (CNNs), and a five-layer
CNN specifically trained for this task. Four models
predicted observer responses particularly well; (1) a
bank of oriented filters, similar to complex cells in
primate area V1; (2) a bank of oriented filters followed
by tuned gain control, incorporating knowledge about
cortical surround interactions; (3) a bank of oriented
filters followed by local normalization; and (4) the
five-layer CNN. A control experiment with optimized
stimuli based on these four models showed that the
observers’ data were best explained by model (2) with
tuned gain control. These data suggest that standard
models of early vision provide good descriptions of
performance in much more complex tasks than what
they were designed for, while general-purpose non
linear models such as convolutional neural networks do
not.

Introduction

Processing in higher levels of the visual system
becomes successively invariant to the specific details of
an image. For example, orientation tuning in primary

visual cortex seems to be largely independent of
stimulus contrast (Finn et al., 2007; Nowak & Barone,
2009; Skottun et al., 1987; Bowne, 1990), at least for
large stimuli (Mareschal & Shapley, 2004); shape
processing is invariant to rotations (Blais et al., 2009);
and specifically object recognition seems invariant
to many different image transformations, including
contrast, rotation, scaling, and illumination (Gauthier &
Tarr, 2016; Pinto et al., 2007; DiCarlo et al., 2012). The
visual system derives invariance with seemingly no effort
even in natural scenes, with lots of clutter and possible
occlusions (Balboa et al., 2001; DiMattina et al., 2012)
and despite often dramatic variations in appearance
(Elder & Zucker, 1998).

Over the years, a standard model for the early stages
of visual processing has emerged that consists of a bank
of linear filters tuned to image properties like spatial
frequency (Campbell & Robson, 1968; Stromeyer &
Julesz, 1972) and orientation (Wilson et al., 1983)
followed by divisive gain control (Legge & Foley, 1980;
Foley, 1994; Heeger, 1992; Albrecht & Geisler, 1991;
Mante et al., 2005; Schütt & Wichmann, 2017; Neri,
2015; Foley, 2019). This theory can successfully explain
the independence of orientation tuning and contrast
(Finn et al., 2007), and it generalizes over a wide range
of different stimulus conditions (Neri, 2015). So far,
however, it is unclear if it can also account for higher
levels of visual processing and for more complex
invariances.

One challenge here is the difficulty of generating
and manipulating stimuli with naturalistic variability
in appearance. Modern generative image models
based on artificial neural networks, such as Generative
Adversarial Networks (GANs; Goodfellow et al.,
2014), can generate impressively realistic images (see
examples in Brock et al., 2018, Miyato et al., 2018),
and human visual performance is highly sensitive to
image manipulations guided by these models (Fruend
& Stalker, 2018).
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Figure 1. Architecture of the generative adversarial network. (A) Architecture of the generator network. Information flow is from left
to right; each arrow corresponds to one transformation of the input. The square insets on the arrows indicate the respective non
linearity (see upper right for legend), the labels above the arrows indicate the kind of affine transformation that was applied (fc: fully
connected, i.e., unconstrained affine transformation; 2 × 2 transpose convolution, i.e., upsampling before convolution to increase
spatial resolution and image size). Blocks indicate hidden unit activations. For darker blocks, batch-normalization (Ioffe & Szegedy,
2015) was applied; for lighter blocks, no batch-normalization was applied. “ReLU” refers to rectified linear unit “ReLU(x) = max(0, x)”
(Glorot et al., 2011). The generator network maps a sample z from an isotropic 128-dimensional Gaussian to a 32 × 32-pixel color
image. (B) Architecture of the discriminator network. Same conventions as in (A), but 3 × 3 is for regular convolution with a stride of
2 and kernel size of 3. See He et al. (2015) for definition of “leaky ReLU.” The discriminator network receives as input either an image
ŷ generated by the generator network or a real training image y from the image database (C) and it decides if the input image is real
or not. The example from the CIFAR10 dataset is used with permission by A. Krizhevsky.

Zhu et al. (2016) propose a method to edit images
directly within the manifold of natural images, by
applying user-defined constraints on images sampled
from a GAN. Here, we use their method to embed
edges in artificial, yet natural-looking images, and
we ask human observers to detect these edges. It
is well known that edges in natural images have a
considerable degree of appearance variation (Elder &
Zucker, 1998), and the embedding method by Zhu et al.
(2016) is expected to (at least partly) reproduce this
variability.

Artificial neural networks have recently attracted
interest in the vision science community because they
appear to successfully perform object recognition
in photographic images (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2015; He et al., 2015).
Furthermore, artificial neural networks have been
argued to make similar errors as humans in tasks that
involve intermediate visual representations (Kubilius
et al., 2016) and to develop internal representations
that seem to resemble those within the primate ventral
stream (Khaligh-Razavi & Kriegeskorte, 2014; Yamins
et al., 2014). We therefore compare our observer’s
detection performance to a number of variations of

the standard model as well as several artificial neural
network models.

Materials and methods

GAN training

We trained a Wasserstein-GAN (Arjovsky et al.,
2017) on the sixty thousand 32 × 32 images contained
in the CIFAR10 data set (Krizhevsky, 2009) using
gradient penalty as proposed by Gulrajani et al. (2017).
In short, a GAN consists of a generator network
G that maps a latent vector z to image space and a
discriminator network D that takes an image as input
and predicts whether that image is a real image from
the training data set or an image that was generated
by mapping a latent vector through the generator
network (see Figure 1). The generator network and
the discriminator network were trained in alternation
using stochastic gradient descent. Specifically, training
alternated between five updates of the discriminator
network and one update of the generator network.
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Updates of the discriminator network were chosen to
minimize the loss

Ez[D(G(z))] − Ey[D(y)] + λ‖∇yD(ỹ)‖,

and updates of the generator were chosen to maximize
this loss. Here, the first term quantifies the false alarm
rate of the discriminator (i.e., the likelihood that the
discriminator D classifies a fake image G(z) as real), the
second term quantifies the hit rate of the discriminator,
and the third term is a penalty term to encourage the
discriminator to be 1-Lipschitz (a stronger form of
continuity). In accordance with Gulrajani et al. (2017),
we set λ = 10 for discriminator updates and λ = 0 for
generator updates. In this equation, ỹ denotes a random
location between ŷ = G(z) and the training image y.
Networks with different numbers of hidden states
(parameter N in Figure 1) were trained for 200,000
update cycles using an ADAM optimizer (Kingma &
Ba, 2015) with learning rate 10−4 and β0 = 0, β1 = 0.9.
Specifically, we trained networks with N = 40, 50, 60,
64, 70, 80, 90, 128 (see Figure 1). Wasserstein-1 error
(Arjovsky et al., 2017) on a validation set (the CIFAR10
test data set) was lowest with N = 90 in agreement
with visual inspection of sample quality, so we chose
a network with N = 90 for all remaining analyses.
In Appendix “Naturalism of CIFAR10 images,” we
provide evidence that the CIFAR10 data set contains
image features that a naive observer would likely use
during natural vision.

Observers

Three observers gave their informed consent to
participate in the study. All observers were naive to
the purpose of this study. Observers o1 and o2 had
some experience with psychophysical experimentation,
while o3 did not. All observers had normal or
corrected-to-normal vision, were between 23 and
26 years old, and received no monetary compensation
for participation. The study procedures were approved
by the Ethics Committee of York University, Toronto,
Ontario, and adhered to the principles outlined in the
original Declaration of Helsinki.

Stimuli

Stimuli were 64 × 64-pixel grayscale images
presented at 8-bit resolution on a Sony Triniton
Multiscan G520 CRT monitor in a dimly illuminated
room. The stimulus images were initially constructed
at 32 × 32-pixel resolution and were subsequently
upsampled for display using bilinear interpolation.
The monitor was carefully linearized using a Minolta

LS-100 photometer. Maximum stimulus luminance was
106.9 cd/m2; minimum stimulus luminance was
1.39 cd/m2. The background was set to medium gray
(54.1 cd/m2). At the viewing distance of 56 cm, the
stimulus square subtended approximately 1 degree of
visual angle. One pixel subtended approximately 0.031
degree of visual angle. Two different types of stimuli
were used, arc segments embedded in naturalistic
images and model-optimized stimuli to target different
performance levels.

Embedding arc segments in naturalistic images
Stimuli in the main experiment consisted of arc

segments that were embedded into naturalistic images
by conditionally sampling from a GAN. In the 32 ×
32-pixel image array, each arc segment connected one
of four pairs of points. These were (13, 20) − (20, 20)
(top location), (13, 20) − (13, 13) (left location), (13,
13) − (20, 13) (bottom location), or (20, 13) − (20, 20)
(right location), where coordinates are in pixels from
the bottom-left corner of the image (see Figure 3).
Furthermore, arc segments had one of eight curvatures
0, ±0.096, ±0.177, ±0.231, 0.25, corresponding to
orientations of ±nπ /8, n = 0, …, 7 at their endpoints.
These arcs were then rendered to a 32 × 32-pixel image
using a background intensity of 0 and a foreground
intensity of 1. The differentiable histogram of oriented
gradients (HOG) by Zhu et al. (2016) was evaluated on
each one of them.

In order to sample an image from the GAN that
contained the respective arc segment, we follow Zhu
et al. (2016) and minimized the objective function

E (z) =
∑
xyθ

γxy[H (G(z))xyθ − hxyθ ]2, (1)

where the sum goes over all pixel locations x, y
and eight different equally spaced orientations θ ;
H : R

32×32 → R
32×32×8 is the differentiable HOG

operator; G : R
128 → R

32×32 is the generator network of
the GAN; and h = (hxyθ ) ∈ R

32×32×8 is the differentiable
HOG operator evaluated on the target arc image.
Thus, the minimized error function was simply the
squared difference between local histograms of oriented
gradients in the generated image and in the target
binary arc image. To make sure that only errors in
the vicinity of the embedded arc could drive image
generation, we weighted the error terms by weights γ xy
that were calculated by convolving the binary arc image
with a kernel of the form

k = 1
10

(1 1 1
1 2 1
1 1 1

)
.
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Figure 2. Embedding an arc segment in a natural image. (A) Arc stimuli embedded in the images. Only the “right” location is shown.
The corresponding curvature values are shown above the images. (B) Natural images with embedded arc segments. All stimuli in one
column correspond to the same arc segment.

Figure 3. Example experimental display. Top row: Trial sequence in the embedded arc experiment. Bottom row: Trial sequence in the
optimized stimuli experiment with an example stimulus optimized for the feature normalization model for Observer o1. Time
increases from left to right. In both cases, the correct target response would be “right.” The dots mark the endpoints of the possible
arc segments and were also present during the experiment.

This way, error terms arising from pixels that were more
than 2 pixels away from the embedded arc received
a weight of zero and did not drive the search for an
appropriate latent vector zarc. To find a latent vector
zarc that corresponded to an image that contained the
respective arc segment, we started with a random latent
vector z0 drawn from an isotropic Gaussian distribution
and then used gradient descent on E (z) as defined
in Equation (1). While Zhu et al. (2016) aimed for
real-time performance and therefore trained a neural

network to optimize Equation (1) in one shot, we
did not require real-time performance and decided to
simply minimize Equation (1) using gradient descent.
In Appendix “Validation of embedded arc stimuli as
natural,” we show that the non target areas of the
constructed stimuli were statistically very similar to
natural images from the CIFAR10 database.

We constructed a total of 134,400 stimuli (four
locations, eight curvatures, 4,200 exemplars; see
Figure 2 for examples).
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Optimizing stimuli to target different performance levels
In a second experiment, we tested observers’

performance on stimuli that were optimized with
respect to a candidate model (see section “Model
fitting” and Appendix “Details of model architectures”
for details of these models). Specifically, let
M : R

32×32 → R
4 be a candidate model that maps

a 32 × 32-pixel image I to a vector of probabilities
M(I ) = p := (pleft, pright, ptop, pbottom). To construct
a stimulus for which the model predicts a correct
left-response with probability q, we minimized the error
function

fleft(I ) = [pleft(I ) − q]2 +
∑
i �=left

[pi(I ) − (1 − q)/3]2,

and similar for right, top, and bottom responses.
For each location and for target performances of
q = 25%, 50%, 75%, 95%, we constructed 40 stimuli
using gradient descent on the image pixels.

Optimized stimuli were only computed for the four
best models (see section “Prediction performance can
not discriminate between different models”).

Procedure

We performed two experiments that were the
same in everything but the stimuli presented (see
section “Stimuli”). All other procedures were the same
between both experiments.

Figure 3 shows the layout of a single trial. Each
trial started with an 800-ms fixation interval. During
the fixation interval, a marker consisting of four dots
(size 1 pixel) forming the corners of a 10 × 10-pixel
(0.31 × 0.31-degree visual angle) square was visible
on the screen and observers were instructed to fixate
at approximately the center of the square. After the
fixation interval, the target stimulus appeared on the
screen for 100 ms. On all experimental trials, the target
stimulus was followed by a second interval showing only
the fixation marker, and observers had 1 s to indicate
where they had seen the arc segment by pressing the
corresponding arrow key on a computer keyboard;
the up-key if the arc segment was between the top two
dots, the down-key if the arc segment was between
the bottom two dots, the left-key if the arc segment
was between the left two dots, and the right-key if the
arc segment was between the right two dots. After the
response, observers always received feedback: After a
correct response, the fixation marker jumped up for a
duration of nine frames (150 ms); after an incorrect
response, the fixation marker jiggled randomly for a
duration of nine frames (150 ms). If observers did not
respond within 1 s, the message “no response” was
flashed on the screen and the trial was marked as invalid

response and was discarded from further analysis.
This affected between 57 and 61 trials per observer
(approximately 1% of all trials).

At the beginning of the experiment, each observer
performed 20 trials of training, in which they saw
the isolated arc segments and had an opportunity to
familiarize themselves with the response format. After
that, observers performed two sessions of 400 trials
each for training with the embedded arc stimuli. In
the first training session, observers performed the task
on unmasked stimuli. In the second training session,
observers performed the task on masked stimuli; after
100 ms, a second, unconditioned sample from the GAN
appeared on the screen and remained visible for up to
1 s or until the observer made a response.

After the training sessions, each observer performed
eight sessions with 400 trials each with embedded arc
segment stimuli, without masking. During these eight
sessions, performance did not change considerably
as confirmed by plotting a rolling 20-trial response
accuracy. We then performed two additional control
experiments. In the first control experiment, the
stimuli from one of the sessions from the main
experiment were shown a second time. This allowed
us to determine how consistently observers responded
with their own responses (Neri & Levi, 2006). In the
second control experiment, we used stimuli that were
optimized to target different performance levels for
model observers. This second control experiment used
the stimuli described in section “Optimizing stimuli
to target different performance levels.” In the second
control experiment, observers saw 10 trials for each
combination of arc location, target performance, and
model.

Model fitting

We evaluated 22 different models for their ability to
predict human responses on a trial-by-trial level. The
first six models were based on a bank of orientated
filters with parameters that mimicked spatial tuning
properties of neurons in primary visual cortex (Ringach
et al., 2002). These models differed between each
others in two aspects. First, models were either based
on the filter outputs directly, or they were based on
the energy of the filter outputs (Morrone & Burr,
1988; Adelson & Bergen, 1985) to mimic complex cell
responses in primary visual cortex. Second, models
were either directly using these filter outputs, or they
applied spatially local or orientation-tuned gain control
to the filter outputs. We also used a number of deep
convolutional neural networks (LeCun et al., 2015),
allowing for highly non linear features. Specifically,
we looked at two classes of neural networks. The first
class were standard neural networks with published
architectures for which versions pretrained on the



Journal of Vision (2020) 20(7):32, 1–21 Fruend 6

high-resolution ImageNet database are publicly
available. For these models, we kept the initial feature
layers intact and retrained a final linear decoding layer.
Second, we specifically optimized a neural network
model to predict human responses for each one of the
observers. All models derived a set of (linear or non
linear) features and human responses were predicted
by linearly decoding these features. Details of the
models can be found in Appendix “Details of model
architectures.”

Before fitting the models to the observers’ data,
we split the data into a training set (80% of all trials,
between 3,200 and 3,500 trials), a validation set (10%
of all trials, between 400 and 440 trials), and a test set
(10% of all trials, between 400 and 440 trials).

The biologically inspired models are ultimately
logistic regression models with elaborate input features.
As such, they could easily be fit using deterministic
gradient-based methods such as gradient descent or
Fisher scoring iterations. This is, however, not the case
for the deep convolutional neural network models.
Such models are typically trained using stochastic
gradient descent; the training data are split into a
number of smaller “mini-batches” and gradient descent
is performed using gradients of the likelihood of
these small subsets of the data. This allows stochastic
gradient descent to make more efficient use of the
compute power, and in addition, the stochasticity
arising from taking the gradient on random subsets of
the data potentially allows the model to escape from
local minima (Murphy, 2012, p. 267). To ensure that
differences between models did not result from the
training method used, we decided to train all models
using stochastic gradient descent on the negative
log-likelihood of the training data. We used a batch
size of 16 trials and a learning rate of 0.001 (except
for the Energy model, for which a learning rate of 0.1
was used). Models were trained for up to 200 epochs,
where one epoch consisted of one pass over all training
data. We used early stopping to regularize the models
(e.g. Goodfellow et al., 2016, chap. 7.8): After every
epoch, we evaluated the negative log-likelihood of the
validation data set. If this validation likelihood did not
improve over 10 successive epochs, model training was
interrupted early.

Results

Performance varies weakly with arc curvature

Observers’ performance did not vary much with the
curvature of the embedded arc. As shown in Figure 4,
all observers performed at a level of approximately 75%
correct (o1: 80.1% ± 0.67%, o2: 74.6% ± 0.73%, o3:
69.5% ± 0.81%). For two out of three observers, more

Figure 4. Performance for different curvatures. Mean fraction of
correct responses is shown for different observers (color
coded). Solid parabolas are least squares fits of the model
p(correct) ≈ a + bC2. Error bars indicate 95% confidence
intervals determined from 1,000 bootstrap samples. The
horizontal gray line marks chance performance.

acute arcs were slightly easier to detect than straight
arcs (o1: correlation between performance and squared
curvature, r = 0.65, p < 0.08 Wald test; o2: r = 0.72, p <
0.05; o3: r = 0.90, p < 0.005). However, these variations
only covered a relatively small performance range.

Prediction performance cannot discriminate
between different models

We compared a number of different models for the
trial-by-trial behavior of observers in the arc detection
task. These models consisted of a logistic regression
applied to abstractions of features that are known to
be computed at different levels by the visual system.
As a first step of evaluating these models, we assessed
how well they predicted the trial-by-trial responses of
individual observers on a held-out set of previously
unseen trials from the same experiment.

For the first model, the features consisted of a
bank of linear filters with tuning parameters that
resembled those of simple cells in macaque area V1
(see section “Model fitting” and Appendix “Details
of model architectures”). These features achieved
an average prediction accuracy of 51.2%, which was
significantly above chance (p < 10−10, binomial test,
see Figure 5A). However, the prediction accuracy of
this linear model was still much below the internal
consistency of the observers as determined by running
one of the experimental sessions a second time.

The second model replaced the linear filters by energy
detectors with the same tuning parameters, resembling



Journal of Vision (2020) 20(7):32, 1–21 Fruend 7

Figure 5. Predictive performance of evaluated models. Prediction accuracy for different models on a held-out test set of trials. Error
bars indicate standard errors on the test set. Models on the x-axis correspond to the features used by the model. The light gray line
indicates chance performance; the light gray area at the top marks the range for the best possible model performance derived by Neri
and Levi (2006).

complex cells in area V1. This model—which we will in
the following refer to as the “Energy”model—achieved
an average prediction accuracy of 75.7%, similar to the
observers’ internal consistency.

We furthermore explored a number of models that
applied different kinds of normalization to either the
linear filters or the energy filters. In general, these
models used either a linear filter bank or a bank of
energy detectors and normalized their responses by
responses that were either pooled locally in space or
in feature space. These models generally replicated
the observations made with the first two models:
Normalized energy features achieved performances that
resembled the internal consistency of the observers,
while normalized linear features did not. Furthermore,
we found that models based on local energy with
normalization by locally pooled energy (the “spatial
normalization” model in Figure 5) or by energy pooled
in feature space (the “feature normalization” model in
Figure 5) performed as good as or slightly better than
the simple energy model (o2: specialized CNN—energy
= 6.3%, p < 1/2,000, permutation test with 2,000
samples1; o3: spatial normalization—energy = 2.7%, p
< 1/2,000, all other tests not significant). Yet, models
based on normalized linear features performed worse
than the model based on unnormalized linear features
(accuracy differences > 10%, p < 1/2,000 permutation
test with 2,000 samples).

We also explored a number of models with
hierarchically constructed, highly non linear features.
These models were implemented as multilayer
convolutional neural networks. Four such models
were based on successful versions of models from the

computer vision literature (see Appendix “Details of
model architectures” for details). The features used by
these models were optimized to aid object recognition
on a large database of natural images. These models are
labeled as resnet18 and resnet50 (He et al., 2015) and
as vgg11 and vgg19 (Simonyan & Zisserman, 2015) in
Figure 5. Notably, these models are not able to predict
human performance very well and achieve prediction
accuracies between 41% and 55% on average. This
is not overly surprising given that the task crucially
relied on a model’s ability to predict the location of the
target. In contrast, these models have been optimized
to predict the identity of a target, and they seem to do
so by largely ignoring precise spatial structure (Brendel
& Bethge, 2019). However, when specifically training
a convolutional neural network to predict human
trial-by-trial performance in our task, such a model
was indeed able to achieve performance levels that
were similar to the models based on energy detectors
(specialized CNN model in Figure 5), so CNNs are in
principle able to do this task.

Neri and Levi (2006) found that the best trial-by-trial
prediction performance that any model could achieve
depends on assumptions about an observer’s internal
noise. However, they show that the best trial-by-trial
prediction performance is always between the observer’s
internal consistency and an upper bound as marked
by the light gray areas in Figure 5. Four models
were within (or in the case of o3 very close to) this
range; the Energy model, the Spatial Normalization
model, the Feature Normalization model, and finally
the specifically trained convolutional neural network
model.
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Figure 6. Optimized stimuli to target different performances of Observer o1. (A) Stimuli targeting a performance of 25% correct
responses. For reference, the target marker is shown as an overlay. Stimuli in the left column require a “left” response; stimuli in the
right column require a “right” response. Different rows correspond to different models. (B) Stimuli targeting a performance of 50%
correct responses. Otherwise like (A). (C) Stimuli targeting a performance of 75% correct responses. Otherwise like (A). (D) Stimuli
targeting a performance of 95% correct responses. Otherwise like (A).

Targeted stimuli reveal advantage of standard
model

In order to discriminate between the different
candidate models, we constructed artificial stimuli
that directly targeted specific performance levels
for each of the top models from Figure 5 (Energy,
Spatial Normalization, Feature Normalization, CNN).
Examples of these stimuli for Observer o1 are shown in
Figure 6 (stimuli for other observers were similar).

As the optimized stimuli in Figure 6 target higher
performance levels, we find that structure in the
images in the first three rows becomes more focused
in the target region (i.e., left or right in Figure 6).
Furthermore, images that target high performance
levels (Figure 6D) have higher contrast than images that
target chance performance (Figure 6A) for the models
shown in the first three rows. While the first three rows
of Figure 6 show stimuli for models that are—to some
extent—inspired by knowledge about the early visual
system, the model in the fourth row of Figure 6 is a
convolutional neural network that has been optimized
to correctly predict responses in the main experiment,
without necessarily mimicking known properties of the
visual system. Optimized stimuli for this model look
quite different from stimuli for the remaining three
models. In general, contrast for these images was low
and did not change with the target performance level.

When observers repeated the experiment with these
optimized stimuli, their performance was indeed
correlated to the performances predicted by the
model for the first three models (average correlation
for Energy model, r = 0.81; Spatial Normalization
model, r = 0.82; Feature Normalization model, r =
0.89; see Figure 7A–C). However, humans tended to
perform better than predicted by models based on

oriented stimulus energy consistent with the idea that
humans have access to additional, potentially more
high-level image features than these simple models
(see Figure 7A–C). On the contrary, human accuracy
hardly correlated with the performance predicted by
the convolutional neural network model (r = −0.18, see
also Appendix “Kernels for first layer of CNN”). Even
for stimuli where the neural network model predicted
near-perfect accuracy (p = 0.95), human accuracy was
still close to chance (o1: 36.8% ± 3.8% human accuracy
± SEM; o2: 25.0% ± 3.4%; o3: 30.0% ± 3.6%).

We quantified the differences between the different
models by calculating the deviance between observed
and predicted accuracy for each model. Deviance is
a generalization of the well-known sum-of-squares
error to a setting with binomial responses (Dobson
& Barnett, 2008). Figure 7D–F shows deviances for
four different models. For Observer o1 (Figure 7D),
the deviance between observed and predicted accuracy
was lowest for the Feature Normalization model
where the normalising signal was pooled over different
orientations (see Table 1) and it was much larger for
any of the other models (Feature Normalization vs.
any other model, |t| > 2.8, p < 0.01, corrected for
multiple comparisons using the method by Benjamini
and Hochberg (1995).

For the other observers (Figure 7B,E and C,F), a
similar pattern emerged: While the predicted accuracies
for the CNN model were largely unrelated to the
observed human accuracy, the other models generated
stimuli for which the predicted accuracy increased with
human accuracy. However, and similar to Observer
o1, Observers o2 and o3 showed higher accuracy
than expected from the respective models. Looking
at deviances, we found a similar pattern as well (see
Table 1). For both observers, the CNN model was
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Figure 7. Human performance on optimized stimuli (A).
Performance of Observer o1 for stimuli that target different
accuracies in the models. Error bars indicate standard error of
mean. The diagonal gray line indicates equal performance
between predicted and human (width of the line is ± SEM). (B)
and (C) same as (A) for Observers o2 and o3. (D) Deviance
between predicted and observed performance for stimuli
optimized for different models of Observer o1’s trial-by-trial
behavior. (E) and (F) same as (D) for Observers o2 and o3.

Observer Model Deviance df SE

o1 Energy 55.84 153 2.69
Spatial Normalization 53.87 155 2.84
Feature Normalization 22.13 160 2.72
CNN 116.92 150 2.69

o2 Energy 71.98 160 2.70
Spatial Normalization 67.69 160 2.53
Feature Normalization 44.58 160 2.76
CNN 185.81 152 2.72

o3 Energy 59.56 156 2.79
Spatial Normalization 71.48 157 2.59
Feature Normalization 54.17 155 2.72
CNN 157.68 141 2.89

Table 1. Deviances relative to the predicted accuracies.
Standard errors were determined using 1,000 bootstrap
samples.

worse than other models (o2: D = 185.81 ± 2.72, |t|
> 4.5, p < 10−4 comparing to other models, o3: D
= 157.68 ± 2.89, |t| > 3.5, p < 0.002 comparing to
other models, all p values corrected using the method
by Benjamini & Hochberg, 1995). Furthermore, the
Feature Normalization model was better than or
equally good as the other biologically inspired models
(o2, t test Feature Normalization vs. Energy, t(318) =
−2.96, p < 0.05, t test Feature Normalization vs. Spatial
Normalization, t(318) = −1.92, n.s., o3, t test Feature
Normalization vs. Energy, t(309) = 0.46, n.s., Feature
Normalization vs. Spatial Normalization, t(308) =
1.34, n.s., all p values corrected using the method by
Benjamini & Hochberg, 1995).

This suggests that overall a model in which the
output of the Feature Normalization model is used
to derive a decision provides the best explanation for
the edge localization task considered here. This model
consists of energy filters with similar orientation tuning
as complex cells in primary visual cortex, followed by
biologically realistic gain control pooled over multiple
different orientations.

Feature weighting for the feature normalization
model

In order to understand how features from different
image locations contributed to the observers’ decisions,
we visualized the readout weights of the Feature
Normalization model. The readout weights map from
four orientations at each image location to one of
four different responses. We decided to visualize the
readout weights for each combination of orientation
and response separately (see Figure 8). Thus, in order to
derive a decision signal for a “left” response, the model
would match the four maps in the first row of Figure 8
and sum up the corresponding responses.

Figure 8 visualizes the weights for one observer
(Observer o2; other observers had similar patterns
but they were more noisy and are shown in
Appendix “Readout weights for Observers o1 and o3”).
Three things are worth pointing out. (1) We found that
for the left and right responses, vertical orientations in
the area of the target signal were strongly weighted,
and for the top and bottom responses, horizontal
orientations in the area of the target signal were
strongly weighted. In the following, we will refer
to this weight pattern as ρ1 (see Figure 9A). These
weights correspond to signals that are aligned with a
straight-line interpolation between the start and end
points of the respective arc. (2) The model negatively
weighted signals that corresponded to structure that
was orthogonal to this straight-line interpolation, but
only toward the inside of the square formed by the
four target markers (ρ2; see Figure 9B). (3) We find
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Figure 8. Readout weights for Feature Normalization model. Each column corresponds to one oriented energy feature; each row
corresponds to one possible response. The orientation of the corresponding energy features is given by the small grating symbols
above the columns. Color codes the weight with which the respective location contributed to the observer’s decision. On each panel,
the arcs that would be associated with the corresponding decision are superimposed in light gray.

Figure 9. Performance of models with simplified decoder structure. (A) Schematic visualization of the decoder weights for weight
pattern ρ1 for response “left.” The weight pattern was just the envelope of the pattern shown here, applied to the orientation
channels visualized by the underlying grating. For reference, the superimposed lines indicate where the corresponding target was
located. (B) Same as (A) for weight pattern ρ2. Note that this pattern was associated with negative weights. (C) Same as (A) for weight
pattern ρ3. (D) Accuracy of prediction of human responses for the different weight patterns in isolation and combined. Similar to
Figure 5, the horizontal lines indicate chance performance (gray) and double-pass consistency for the individual observers (colored
lines).
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Accuracy

Decoder structure o1 o2 o3

ρ1 0.531 ± 0.020 0.512 ± 0.020 0.500 ± 0.020
ρ2 0.303 ± 0.018 0.332 ± 0.018 0.268 ± 0.017
ρ3 0.394 ± 0.019 0.352 ± 0.019 0.328 ± 0.018
ρ1 + ρ2 0.532 ± 0.020 0.529 ± 0.020 0.545 ± 0.020
ρ1 + ρ3 0.552 ± 0.020 0.557 ± 0.019 0.549 ± 0.020
ρ2 + ρ3 0.431 ± 0.019 0.458 ± 0.020 0.451 ± 0.020
all 0.562 ± 0.019 0.562 ± 0.019 0.578 ± 0.019

Table 2. Performance of models with simplified decoder structure. Reported values are mean ± SEM on hold-out test data set.

some weight associated with oblique directions (ρ3; see
Figure 9C). Specifically, locations in which curved arcs
would connect to the corresponding target markers
were positively weighted to arrive at a response.

In order to test the relevance of this visible structure
in the readout weights, we created simplified models
in which either of the above weight patterns were
approximated by Gaussian blobs and the others were
set to 0 (see Appendix “Simplified models of readout
weights” for details). The predictive performance of
these simplified models (and their combinations) was
then evaluated on the test data set from Experiment 1
(see Figure 9). Weight pattern ρ1 predicted human
responses with an accuracy of about 50% (mean ±
SEM = 53.1% ± 1.95% for Observer o1, 51.2% ±
1.96% for Observer o2, 50.0% ± 1.96% for Observer
o3). Combining weight pattern ρ1 with either of the
other two patterns predicted human responses with
higher accuracy, and combining all three components
of the weight pattern predicted human performance
even better (see Table 2). However, compared to the
results presented in section “Rediction performance
cannot discriminate between different models,” these
numbers are pretty low, suggesting that the detailed
pattern of feature weights really matters for a full
explanation of behavior.

Discussion

By embedding edge segments in samples from
a generative adversarial network, we were able to
construct edge stimuli with considerable variation
in appearance. Using these stimuli, we found that
human performance at detecting these embedded edge
segments is consistent with multiple variations of the
standard model of early vision (Schütt & Wichmann,
2017), as well as an artificial neural network model
with no explicit knowledge about the visual system. We
therefore constructed stimuli that, for each one of the
models, would target specific levels of performance.
When tested on these model-specific stimuli, we found

that the standard model generally performed better
than the artificial neural network model.

This study relied on the CIFAR10 data set
(Krizhevsky, 2009), which consists of fairly small
images from 10 different classes. It might be argued that
this data set does not appropriately cover the variability
in appearance or class identity covered by larger data
sets with higher resolution, such as the ImageNet
data set (Russakovsky et al., 2015). There are two
perspectives on this. First, one might ask to what extent
the statistical regularities of the images in CIFAR10
carry over to larger images and data sets with more
variability. Zoph et al. (2018) improved classification
performance on the large, high-resolution ImageNet
data set by optimizing hyperparameters of their
network architecture on the much smaller CIFAR10
data set. This suggests that at least part of the statistical
regularities that can be learned from CIFAR10 carry
over to larger and more complex image databases.
Second, one might wonder if the statistical regularities
present on CIFAR10 are consistent with the kinds
of image features that normal observers use during
everyday vision. The results in Appendix “Naturalism
of CIFAR10 images” suggest that this is true as
well. Together, this supports the idea that our results
would be expected to generalize to images with larger
variability in appearance and class identity.

On the model-specific stimuli, none of the models
perfectly generalize from the naturalistic stimuli to
the targeted stimuli constructed for those models.
Although the biologically inspired models result in
stimuli for which human accuracy increases with model
accuracy, humans actually perform better for these
stimuli than expected from the respective models. We
believe that this implies that human observers have
access to more complex interactions between signals at
different locations than any of the models studied here.
One class of such interactions might be effects related
to surround suppression (Cavanaugh et al., 2002),
where the output of a neuron with receptive field in one
location is normalized by the output of neurons with
neighboring receptive fields (Carandini & Heeger, 2012;
Coen-Cagli et al., 2012). Our Feature Normalization
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model contains a normalizing mechanism that would
result to some extent in surround suppression, yet recent
evidence suggests that realistic surround suppression
would likely be considerably more complex (Coen-Cagli
et al., 2015). Furthermore, it might be that correlations
between neural responses (Kohn et al., 2016) or flexible
assignment of neurons to different suppressive pools
(Guerrero-Colón et al., 2008) could play a role. We
believe that a detailed examination of the contributions
of surround suppression to observers’ performance in
our experiment is beyond the scope of this article and
decided to restrict ourselves to better understood local
gain control operations.

Many studies that aim to identify features that
contribute to an observer’s decision have used white
noise (Gold et al., 2000; Abbey & Eckstein, 2002;
Morgenstern & Elder, 2012; Neri, 2009, 2015; Neri
& Levi, 2008; see Murray, 2011, for an overview)
or noise with relatively simple correlation structure
(Wilder et al., 2018). The embedding technique used
here can be interpreted as “natural image noise.”2 The
convolutional neural network model fails to generalize
to stimuli synthesized for this model. This could be
interpreted as a failure to generalize from natural noise
to less natural noise, which might seem less critical
than a failure to generalize from artificial stimuli to
natural conditions. However, looking at Figure 6, the
images generated for the convolutional neural network
generally have fairly low contrast, and even for stimuli
that should be recognized with high confidence, the
image structures are very weak. It might be that the
CNN model in our study does not learn the same
features that humans use to solve the task (also see
Appendix “Kernels for first layer of CNN”). Baker et al.
(2018) find that convolutional neural networks trained
on a large database of natural images (Russakovsky
et al., 2015) use different image features than humans
for object recognition. More specifically, Geirhos et al.
(2019) report that such convolutional neural network
models mostly rely on texture to perform classifications,
while humans rely more on object shape. The CNN
model here was not trained to perform large-scale image
recognition, but it was explicitly trained to predict
human responses. However, if there was a correlation
between the features used by our human observers
and some subtle texture properties in the images from
the main experiment, the CNN model might be biased
to pick up these texture features. When constructing
stimuli from the CNN model, these stimuli would only
contain the subtle texture properties but not the features
used by our human observers, resulting in near-chance
performance as observed in our control experiment.

Convolutional neural networks that have been pre
trained on the ImageNet database (Russakovsky et al.,
2015) are commonly used as generic features in both
computer vision (Gatys et al., 2016; Xie & Richmond,
2016; also see He et al., 2019) and biological vision

(Baker et al., 2018; Khaligh-Razavi & Kriegeskorte,
2014; Geirhos et al., 2018; Tang et al., 2018). In our
task, these models fall short at predicting human
responses, in particular when compared to a simple
energy detector (see Figure 5). While this might
initially seem surprising given the success that these
models had in other domains, it should be noted
that the convolutional neural networks tested here
appear to be quite insensitive to the precise spatial
structure of an image (Brendel & Bethge, 2019). By
being convolutional, these networks have to learn a
set of features that applies equally across the entire
image. The task used here requires localization of the
target stimulus and might thus be particularly hard for
convolutional neural networks. Indeed, extensions of
convolutional neural networks for object localization
(Redmon et al., 2016; Girshick et al., 2015) typically
require additional mechanisms to use the convolutional
features for object localization.

Our models all use a single-frequency channel (albeit
with different orientations), while it is well known
that the human visual system has multiple frequency
channels (Blakemore & Campbell, 1969; Ringach et al.,
2002; Stromeyer & Julesz, 1972; Goris et al., 2013). In
this respect, our models are clearly a simplification.
However, we note that the models don’t seem to require
this fine frequency resolution and are able to accurately
predict human responses despite the limited frequency
resolution. We find that adding orientation-tuned gain
control to the models tends to add to the model’s
ability to predict human responses and to improve the
model’s ability to construct stimuli that target different
performance levels. This suggests that gain control
might have to some extent complemented the limited
frequency resolution of our models.

Sebastian et al. (2017) report results on target
detection in natural images. Their target stimulus
was a grating patch of fixed size and orientation at
the center of a natural image patch. They elegantly
“manipulated” properties of this background patch
by selecting appropriate image patches from a large
database of natural images. However, their target
pattern was simply superimposed on the background
image. Under natural viewing conditions, targets
are usually not superimposed on the background,
but they are part of the entire image as much as the
background itself. Depending on the scene in which a
target appears, that target may be partially occluded or
be illuminated in different ways. All these factors will
alter not only the appearance of the background but
also the target itself (see Elder & Zucker, 1998, for a
detailed discussion in the context of edge targets). Neri
(2017) circumvents this problem by creating small gaps
in natural images at places where the target is inserted.
This ensures that target appearance is not altered by
the natural image background and that conclusions
about local processing remain interpretable. However,
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it also means that this approach remains insensitive to
local interactions between background and target, as
the target is clearly different from the background. Our
embedding approach allows us to constrain part of the
appearance of the target while still maintaining the fact
that the target is part of the background scene. In that
sense, it can be seen as an intermediate approach to the
ones by Sebastian et al. (2017) and by Neri (2017).

Our method of constructing model-specific
stimuli that target specific performance levels has
some resemblance to the construction of maximum
differentiation stimuli (Wang & Simoncelli, 2008).
Wang and Simoncelli (2008) address the problem of
comparing two competing models, and they suggest
constructing two classes of stimuli that each clip the
accuracy of one model while maximizing accuracy
of another model. Although it would be possible to
generalize this procedure to comparisons between n
models by clipping the accuracy of n − 1 models and
maximizing the accuracy of the remaining one, this
approach requires repeated evaluation of every model
when constructing each of the stimulus classes. In
addition, clipping accuracy for n − 1 related models will
result in complex constraints on the generated images
that can be computationally costly to satisfy. In this
study, we compared four different models, with three
of them being closely related to each other. We take an
alternative approach to Wang and Simoncelli (2008)
by requiring models to construct stimuli that target
a given level of human accuracy. This requires the
models to also predict human responses at intermediate
accuracy levels correctly while at the same time being
less computationally demanding.

Conclusion

In conclusion, we have provided evidence that the
standard model of early vision, combined with a
flexible linear readout mechanism, is able to generalize
to fairly complex target detection tasks in naturalistic
stimuli, while convolutional neural networks provide
less general descriptions of visual behavior.

Code and data for this study are available at
doi:10.5281/zenodo.2535941.

Keywords: generative adversarial networks, target
detection, natural image statistics, convolutional neural
networks
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Footnotes
1In other words, the energy model was better in all 2,000 permutations of
the data.
2Note, however, that in this case, the noise also influences the appearance
of the target and is therefore not additive as assumed in previous
studies.
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Appendix

Naturalism of CIFAR10 images

To test if the CIFAR10 database captures those
image features that a normal observer would use
during “natural” vision, one reviewer suggested to
test if a naive observer would be able to correctly
recognize gray-scale images from CIFAR10. We asked

https://doi.org/10.1167/17.12.12
https://doi.org/10.1167/8.12.8
https://doi.org/10.1167/18.8.9


Journal of Vision (2020) 20(7):32, 1–21 Fruend 17

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Total

Mean 1.000 0.952 0.982 0.979 0.977 0.941 0.980 1.000 0.976 0.955 0.974
SE 0.000 0.033 0.018 0.021 0.022 0.033 0.020 0.000 0.024 0.025 0.007

Table 3. Classification accuracy of one observer on CIFAR10 images (converted to gray scale).

one naive, untrained observer to classify 500 images
from CIFAR10. The images were randomly selected,
converted to gray scale, and presented at 8-bit resolution
on a linearized monitor (details of the stimulation setup
were the same as in the main experiment). The task
was set up as a spatial two-alternative-forced-choice
(2AFC): The observer saw two images from two
different classes side by side along with the question,
“Which image is a XX?” where XX was replaced
by the class of one of the two images. The observer
then indicated which image they believed to belong
to the target class by either pressing the left or right
arrow key on a computer keyboard. There was no
feedback.

On average, the observer correctly identified the
target image in 97.4% ± 0.7% (mean ± SEM),
suggesting that classification was very easy. As shown
in Table 3, the naive observer could easily identify
the target image for all target classes, with lowest
performance for dogs (94.1% ± 3.2%). After the
experiment, the observer reported that this was the first
time that they participated in a 2AFC task and that the
task felt quite natural to them. The observer further
reported typically being able to unambiguously identify
the class of both images, with the exception of images
from the “Frog” category.

Using a 2AFC task allowed us to measure the
amount of information available to the naive observer
without taking into account a possibly suboptimal
decision criterion (Green & Swets, 1966). Although
the observer reported that the task felt quite natural,
it is likely that they would perform worse in a
more natural setting. However, the extremely high
performance in this task and the subjective report of
the naive observer are consistent with the idea that
the CIFAR10 data set indeed captures information
that a normal observer would use during natural
vision.

Validation of embedded arc stimuli as “natural”

Embedding arc segments clearly changes an image’s
statistics locally; otherwise, the visual system would
not be able to recognize that arc segment. In order
to verify that the embedded arc stimuli only affected
the image’s statistics locally but left other parts of the
image untouched, we analyzed quadrants of images (see
Figure 10A). A large number of statistical signatures
of natural images have been described. These include a

characteristic scaling law of the images’ power spectrum
(Field, 1987) or second-order correlations between
local wavelet statistics (Wainwright & Simoncelli, 2000;
Schwartz & Simoncelli, 2001). Although these image
properties are well known, they are only moderately
meaningful on the 16 × 16 image quadrants used here.
We therefore decided to adopt a different approach:
We asked if a four-layer version of the VGG network
(Simonyan & Zisserman, 2015) could tell apart
quadrants from natural images, from unconditioned
GAN samples, and from images that had an arc
segment embedded in another part, as well as images
from a model that matches an image’s second-order
statistics (Portilla & Simoncelli, 2000; we used their
code in the default configuration, but with 3 instead
of 4 levels for the pyramid decomposition, due to the
small image size) and images that matched the images,
power spectrum. Specifically, the VGG network had
four convolutional layers with max-pooling after every
second layer, followed by two fully connected readout
layers (in the notation by Simonyan & Zisserman
[2015] the network’s architecture was conv3_64,
conv3_64, maxpool, conv3_128, conv3_128, maxpool,
FC_64, FC_3, softmax). We selected 1,824 image
quadrants per category and randomly selected 400 of
them as validation and test sets, respectively. Thus,
the remaining training set consisted of 8,320 image
quadrants. We trained the network for up to 1,000
epochs with a learning rate of 0.002 and a batch size of
128. We used early stopping to select the network with
lowest cross-entropy on the validation data set (after
302 epochs). We report results for this network on the
remaining test set of 400 image patches.

Overall, the network achieved a prediction accuracy
of 69.2% ± 2.3% (mean ± SEM), significantly better
than chance (25%). The full confusion matrix for the
five classes reveals additional information (Figure 10B).
While the network often confused GAN samples with
natural images, it could easily tell apart images with the
power spectrum matched to natural images from real
natural images. The same was true of samples from the
texture model by Portilla and Simoncelli (2000). Images
with embedded arc images were somewhere in between;
the network was clearly better at telling them apart
from natural images than it was for the unconditioned
GAN samples, but it confused embedded arc images
more often with real natural images than samples
from the Portilla and Simoncelli (2000) model or
images with matched power spectrum. We therefore
conclude that the images used in Experiment 1 are
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Figure 10. Do images with embedded arc segments have similar
statistical properties as natural images? (A) The left side of the
image contains an embedded arc segment, affecting the
image’s statistics. To understand if the effect of this
manipulation also affected the rest of the image, we analyzed a
quadrant from the supposedly unaffected side of the image
(right side in this example). (B) Confusion matrix of the patch
classification network. While natural images and GAN samples
appear mostly natural to the network, samples from the
texture model by Portilla and Simoncelli, (2000; P&S) and
images with matched power spectrum (Power) can be clearly
told apart from natural images. Results for embedded arc
images (Embedded) are somewhat in between.

reasonably well matched to the statistics of natural
images and—more important—match those statistics
better than alternative image models would.

Details of model architectures

Simple cell filter bank: The model consisted of a bank
of linear, oriented filters. Filters were polar separable in

the Fourier domain, such that the frequency response
could be written as

H (r, θ ) = F (r)G(θ ), (2)

where r =
√
f 2x + f 2y and θ = arctan2( fx, fy) are the

(absolute) frequency and orientation. We fixed

F (r) = exp (−32
√

π/2(r − 1)2),

to cover approximately 1.6 octaves (Zhaoping, 2014)
and selected four different orientation response
functions Gn, n = 0, 1, 2, 3 of the form (circularly
wrapped)

Gn(θ ) = exp
(

− (θ − θn)2

2σ 2

)
,

where θn = nπ /4 and

σ = 25π	−1(0.707),

to achieve an orientation bandwidth of 20–30 degrees
(Ringach et al., 2002). Here, 	 : R → (0, 1) is the
cumulative distribution function of the standard
normal distribution. The filter H was subsequently
converted to the spatial domain, and only the real (even)
part was retained. The resulting filter hn was pruned to
only contain the central 7 × 7 coefficients.

All four filters were applied to each image with zero
padding at the borders, resulting in a 4 × 32 × 32 array.
This array was treated as one long 4,096-element vector
s and was submitted to a four-class logistic regression.
Complex cell filterbank: The complex cell filterbank
model used the same filterbank from Equation (2).
However, when converting H to the spatial domain, the
real (even) and imaginary (odd) parts were retained.
These were pruned in the same way as for the simple cell
filterbank, and they were then both applied to the input
image (with zero padding). This ultimately resulted in
two 4,096-dimensional feature vectors ψeven = s and
ψodd. From these two we constructed a local, oriented
energy signal (e.g., Morrone & Burr, 1988; Adelson &
Bergen, 1985) as

e = ψ2
even + ψ2

odd, (3)

to be submitted to the subsequent four-class logistic
regression.
Simple cell filterbank with local gain control by simple
cell outputs: This model used the same filterbank
model as in Equation (2) and calculated the same
feature vector s as above. In addition, a normalization
signal m was computed by convolving the oriented
real parts of the filter outputs s with filters rotated by
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90 degrees. In other words, if s0 denotes the oriented
energy at orientation θ0 = 0 and h2 denotes the filter
with orientation θ2 = π /2, then

m0 = s0 
 h2,

with 
 denoting two-dimensional convolution; thus,
the resulting vector mn of normalization strengths at
orientation n had the form

mn = (m(n)
i j )

32

i, j=1
, n = 1, . . . , 4.

We then calculated a normalized vector of the form

rn= sn
1 + mn

=
(

s(n)i j

1 + m(n)
i j

)32

i, j=1

, n = 1, . . . , 4.

(4)

The resulting 4,096-dimensional feature vector was
submitted to four-class logistic regression.
Simple cell filterbank with local gain control by complex
cell outputs: This model was very similar to the model
in the section above about gain-normalized simple cell
filters except that the normalization was calculated from
the oriented energy signal rather than from the simple
cell outputs. Thus, vectors of the form

n0 = e0 
 h2,

were used as a normalization signal and we calculated
the vector

rn = sn
1 + nn

, n = 1, . . . , 4,

similar to Equation (4). The vectors rwere concatenated
into one 4,096-dimensional feature vector and
submitted to four-class logistic regression.
Complex cell filterbank with local gain control by
complex cell outputs: This model was almost the same
as the model in the previous paragraph, except that the
vectors

rn = en
1 + nn

, n = 1, . . . , 4,

were submitted to four-class logistic regression.
Complex cell filterbank with orientation-tuned gain
control by complex cell outputs: We often think of the
gain control signal as being tuned both in location
and orientation, where similar orientations in similar
locations contribute most to the normalization pool.
We therefore used a model in which the gain control

signal was pooled by a space-orientation separable filter
of the form

w(x, y, θ ) = φ

(
θ

σθ

)
φ

(
x
σx

)
φ

(
y
σx

)
,

with orientation bandwidth σ θ = π /2 and spatial
bandwidth σ x = 1 pixel (Schütt & Wichmann, 2017).
Here, φ : R → R was the density function of the
standard normal distribution. We then used

rn =
(

e(n)i j

1 + (w 
 e)(n)i j

)32

i, j=1

, n = 1, . . . , 4,

in our four-class logistic regression. Note that here a
three-dimensional convolution is taken between the
4 × 32 × 32 orientation by space-by-space tensors w
and e. That three-dimensional convolution treated the
orientation dimension as circular, and the two spatial
dimensions were padded by zeros.
Deep convolutional neural networks: We studied two
types of convolutional neural networks. First, we used
pretrained versions of VGG (Simonyan & Zisserman,
2015) and ResNet (He et al., 2015) in which we replaced
the final fully connected layers by a single linear
decoding layer. The networks were downloaded through
torchvision and the final decoding layer was trained
to predict the observers, trial-by-trial responses using
stochastic gradient descent with a learning rate of
0.001 and a batch size of 16 trials. In order to make the
pretrained networks compatible with the small images
used in this study, we first scaled up each image by a
factor of 2 to a size of 64 × 64 pixels using bilinear
interpolation.

Second, we specifically trained a full convolutional
neural network to predict human responses with
approximately the same accuracy found to be
double-pass consistency in our observers. This deep
convolutional neural network constructed nonlinear
features in five convolutional layers. Networks with
fewer layers had lower performance. Each convolutional
layer had four output channels and a learned kernel of
size 3 × 3. The convolution operation was followed
by rectification (Glorot et al., 2011) and batch
normalization (Ioffe & Szegedy, 2015). The resulting
nonlinear features were then cast into one long vector
of 4,096 values and were linearly read out using logistic
regression as in the other models. In total, the deep
convolutional neural network had 17,060 parameters.
Thus, fitting this network was really dependent on using
effective regularization techniques. Batch normalization
is known to have a regularizing effect (Ioffe & Szegedy,
2015), and we further used early stopping based on
prediction error on a separate validation data set (see,
for example, Goodfellow et al., 2016, Section 7.8).
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Although early stopping was used for the other models
as well, it was particularly important for the deep
convolutional neural network model.

Kernels for first layer of CNN

We trained one convolutional neural network model
specifically to predict human responses. This model
successfully predicted human trial-by-trial responses
in the main task but generated targeted stimuli that did
not drive human behavior in a meaningful way. In order
to gain a better understanding of what this model had
learned about the images, we visualized the kernels of
thatmodel’s first layer in Figure 11. These kernels appear
mostly random. Thus, although this model successfully
predicted neural responses on held-out test data, it ap-
pears that this model was not able to pick up consistent
and reasonably smooth patterns from the input.

Readout weights for Observers o1 and o3

Figure 12 shows readout weights for Observers o1
and o3. For both observers, the pattern of readout
weights was more noisy than for Observer o2. However,
we found qualitatively similar structure.

Simplified models of readout weights

We analyzed three different decoder features and
their combinations to understand the readout process
for the Feature Normalization model. Specifically, those
were ρ1 horizontal/vertical structure aligned with the

Figure 11. Kernels in the first layer of the neural network
trained to predict human responses. Each row corresponds to
one observer, each column to one of the four different kernels.
Kernel weight is coded by color.

straight-line version of the target, ρ2 horizontal/vertical
structure orthogonal to the straight-line version of the
target, and ρ3 oblique structure along the sides of the
arcs. To describe these features, we can think of the
decoding weights as a template tensor T ∈ R

4×4×32×32,
such that Ti denotes the templates for response i (i.e.,
one row in Figure 8). Each of these templates has four
orientation bands, such that Ti j denotes the template
for response i for features from the orientation band j.
Note that this template is sensitive to orientations of
approximately π j/4. Components within orientation
bands are approximated by Gaussian blobs of the form
u : R

2 × R → R, where

u(x, σ ) = exp(−xTx/σ 2).

In all cases, the exact readout weights were determined
using numerical optimization as outlined below, but
the results remained qualitatively similar if the readout
weights were selected using the starting values of the
parameters (see below).
Horizontal/vertical structure aligned with the straight-line
version of the target: For decoding features ρ1, the
template tensor T was zero except

Tleft,0(x)= gu(x − m, σ ),
Tright,0(x)= gu(R(π )(x − m), σ ),
Ttop,2(x)= gu(R(π/2)(x − m), σ ),

Tbottom,2(x)= gu(R(−π/2)(x − m), σ ).

Here, we denote by Ti j (x) the value of the template
for response i at orientation band j and location x.
Furthermore, we used the rotation matrix

R(α) :=
[
cos(α) sin(α)
− sin(α) cos(α)

]

The parameters m, g, and σ were estimated by
minimizing the squared difference between T and the
observed decoding weights. The minimization was done
using simplex search (Nelder & Mead, 1965) starting at
mT

0 = (16.5, 12), σ 0 = 3, and g0 equal to the maximum
of the original decoding weights.
Horizontal/vertical structure orthogonal to the straight-
line version of the target: For decoding features ρ2, the
template tensor T was zero except

Tleft,2= gu(B(0)(x − m), 1),
Tright,2= gu(B(π )(x − m), 1),
Ttop,0= gu(B(π/2)(x − m), 1),

Tbottom,0= gu(B(π/2)(x − m), 1),

with the rotation matrix

B(α) := R(α)diag(1/σx, 1/σy).
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Figure 12. Readout weights for Feature Normalization model for Observer o1 (left) and Observer o3 (right). Details of the subfigures
are the same as in Figure 8.

The parameters m, g, σ x, and σ y were estimated in the
same way as in the previous section, but starting from
mT

0 = (16.5, 13), σ x, 0 = 3, σ y, 0 = 5 and g0 set to the
minimum of the original decoding weights.
Oblique structure along the sides of the arcs: For
decoding features ρ3, the template tensor T was

Tleft,1= g
(
u(x − c + d, ν ) + u(x − c − d, ν )

)
,

Tleft,3= g
(
u(x − c + d̃, ν ) + u(x − c − d̃, ν )

)
,

with analogous expressions for other orientations and
responses. Here, the free parameters are c, d , g, and
ν and for d = (d1, d2)T we defined d̃ := (d2, d1)T .
Optimization in this case started with c0 = (16.5, 12)T ,
d0 = (4, 3)T , ν0 = 2, and g0 was set to the maximum of
the observed oblique feature maps.


