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Q30. Females had longer evoked EMD times compared 
with males (15.69  ±  10.57  ms versus 9.95  ±  3.46  ms; 
p = 0.01), but the voluntary EMD times were not different.
Conclusion  The current research supports the work by 
Hannah et al. Exp Physiol 97:618–629, (2012) that normal-
ization to MVC in the quadriceps is able to account for all 
sex-differences in rate of toque development in the lower 
limb.

Keywords  Electromechanical delay · Muscle activation 
rate · Neural control · Strength testing · Surface 
electromyography · Muscle fiber conduction velocity · 
Contraction time

Abbreviations
ANOVA	� Analysis of variance
ANCOVA	� Analysis of covariance
CMAP	� Compound muscle action potential
CSA	� Cross-sectional area
CT	� Contraction time
dτ/dtmax	� Maximum rate of torque development
EMD	� Electromechanical delay
MFCV	� Muscle fiber conduction velocity
MVC	� Maximal voluntary contraction
Q30	� Rate of increase in the sEMG over the first 

30 ms of muscle activity
R	� Intraclass correlation coefficient
RMS	� Root mean square
RTD	� Rate of torque development
SEM	� Standard error of measurement
sEMG	� Surface electromyography
SD	� Standard deviations
TA	� Tibialis anterior
τmax	� Maximum torque
Vpp	� Peak-to-peak amplitude

Abstract 
Objective  Recent research has reported that lower maxi-
mal rate of torque development (dτ/dtmax) exhibited by 
females, relative to males, during knee extension can be 
accounted for by normalization to a maximal voluntary 
contraction (MVC); however, this was not seen in the 
upper limb.
Purpose  The aim of the current work was to examine the 
contribution of maximum strength (τmax), twitch contrac-
tion time (CT), muscle fiber condition velocity (MFCV), 
and rate of muscle activation (Q30) to sex-differences in the 
dτ/dtmax during maximal isometric dorsiflexion.
Methods  Thirty-eight participants (20 males; 18 females) 
performed both maximal voluntary and evoked isomet-
ric contractions of the tibialis anterior across 3 days. Ten 
maximal compound muscle action potentials were elic-
ited and subsequently followed by three, 5-s contractions. 
From the recordings, MFCV, dτ/dtmax, τmax, CT, elec-
tromechanical delay (EMD), root-mean squared (RMS) 
amplitude, peak-to-peak voltage (Vpp), and Q30 were 
calculated.
Results  An ANCOVA showed that τmax accounted for 
all the sex-differences in dτ/dtmax (p =  0.96). There were 
no significant differences between groups with respect to 
MFCV, RMS amplitude, Vpp amplitude, or CT. However, 
there was a significant sex-difference in dτ/dtmax, τmax, and 
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Introduction

The rate of tension development has received increased 
attention as a critical aspect of dynamic muscle perfor-
mance during activities of daily living (e.g., balance main-
tenance) and sport performance (Aagaard et  al. 2002; 
LaRoche et al. 2010; Paasuke et al. 2001; Pijnapples et al. 
2008; Schultz et  al. 1997; Tillin et  al. 2013). A number 
of studies have shown that there is an inextricable link 
between the ultimate strength of the muscle and its rate of 
tension development (Andersen and Aagaard 2006; Holter-
mann et al. 2007). However, neural factors can also play an 
important role, as training-related increases in the maximal 
rate of tension development are associated with an increase 
in muscle activation at the onset of contraction (Van Cut-
sem et al. 1998; Van Cutsem and Duchateau 2005). Inglis 
et al. (2013) recently showed that neural factors also play a 
role in sex-differences in the maximal rate of tension devel-
opment in the upper limb. Maximum strength was used as 
a covariate and was only able to account for a portion of 
the sex-differences. The addition of a second variable, the 
maximum rate of electromyographic (EMG) activity at the 
onset of contraction (Q30), was able to eliminate statisti-
cally significant sex-differences.

Given the inherent relationship between muscle strength 
and the maximum rate of tension development, few studies 
have explored additional mechanisms that would explain 
sex-differences in the maximal rate of tension development 
(Aagaard et al. 2002; Andersen and Aagaard 2006; Folland 
et al. 2014; Van Cutsem et al. 1998). However, sex-differ-
ences in lower extremity musculoskeletal injury rates (DiS-
tefano et  al. 2015) and falls incidences (Hess and Wool-
lacott 2005; Stevens and Sogolow 2005) may be linked 
back to this critical aspect of muscle contraction (Bento 
et  al. 2010). Hannah et  al. (2012) explored potential neu-
ral and biomechanical factors involved in sex-differences 
in the maximal rate of tension development in the quadri-
ceps, in addition to maximum strength. Twitch properties, 
electromechanical delay, and muscle activation using sur-
face EMG (sEMG) were also assessed. Consistent with the 
more general findings for the relationship between maxi-
mum strength and the rate of tension development, when 
the peak rate of tension development was normalized with 
respect to maximum isometric strength of the muscle, the 
sex-differences were completely eliminated.

The results by Hannah et al. (2012) in the lower limb 
are contrary to the finding of Inglis et  al. (2013) who 
showed a role for neural factors in the upper limb. It 
may be hypothesized that since males and females were 
more comparable in absolute strength in the quadriceps 
(Δ33%) than the biceps (Δ55.5%; Inglis et  al. 2013), 
strength may entirely explain sex-differences in the rate 
of tension development in the lower limb. In contrast, 

the difference in maximum strength between males and 
females in the upper limb observed by Inglis et al. (2013) 
was much greater (Δ55.5%), possibly allowing for addi-
tional factors, such as the rate of muscle activation, to 
play a role. Inglis et  al. (2013) explored the possibility 
that the interpretation of the results may differ based on 
normalization to maximum voluntary strength versus 
the use of a covariate approach. It was found that nor-
malization to maximum voluntary strength also failed to 
account for all sex-differences in the maximal rate of ten-
sion development.

Since there is a strong relationship between maxi-
mum strength and the rate of tension development, sex-
differences may be accounted for by maximum strength 
only when the two groups are ‘more’ comparable with 
respect to maximal strength as exists in the lower limb 
compared with the upper limb. For example, it has been 
shown that males and females are more comparable 
in maximal isometric dorsiflexion strength (Δ28.9%) 
and identical with respect to root-mean-square (RMS) 
sEMG magnitude (Heyward et  al. 1986; Hoffman et  al. 
1979; Lenhardt et  al. 2009). Unfortunately, Lenhardt 
et  al. 2009 did not assess the maximum rate of torque 
development. The 28.9% strength difference between 
the sexes is consistent with Holmbäck et al. (2003) who 
concluded that muscle cross-sectional area was the prin-
cipal determinant of dorsiflexion strength. In general, 
the muscle cross-sectional area of the TA in males is 
only 20% larger than that for females (Holmbäck et  al. 
2003; Jaworowski et al. 2002).

The purpose of this paper was to determine if sex-dif-
ferences in the maximum rate of isometric dorsiflexion 
torque development are determined by maximum isomet-
ric dorsiflexion torque alone or other factors as observed 
for the upper limb where the strength differences are more 
pronounced. Based on the work of Hannah et al. (2012), it 
was hypothesized that maximum isometric strength would 
account for sex-differences in the maximum rate of torque 
development in the TA, because males and females are 
more comparable in maximum isometric strength in the 
lower limb. Studying mechanisms behind sex-differences 
in distal muscles that are responsible for balance and explo-
sive activity can guide specific training interventions or 
rehabilitation techniques.

Methods

Participants

A power analysis was performed prior to data collection 
based on research by Lenhardt et al. (2009), showing that a 
subject pool of 18 males and females was sufficient to show 
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differences in the rate of muscle activation (Q30). However, 
to protect against subject drop out, 40 subjects (males and 
females) were recruited. Pre-tension on the load cell was 
observed in two female subjects, so their data was removed 
from the analysis. Thus, 38 healthy Brock University Kine-
siology students (20 males and 18 females) were analyzed 
in this study. The participants were free of any orthopedic 
or neuromuscular disorders, right leg dominant, and pro-
vided written informed consent prior to study participa-
tion in accordance with the Brock University Research 
Ethics Board guidelines (REB-02-284). Each participant 
was familiarized with the Electromyographic Kinesiology 
Laboratory prior to the first testing session. Prior to test-
ing, participants were asked about their history of physical 
activity and weight training (years of experience) as well as 
the duration (hours per week and per day) and the percent-
age of weight training focusing on the upper body or lower 
body.

Experimental setup and scheduling

All testing was performed as the participant sat in a custom 
built testing chair designed to isolate the dorsiflexors during 
maximal isometric contractions. Participants sat with their 
hip and knee joints secured at 90° of flexion and the ankle 
joint secured at 110° of plantar flexion (Inglis et al. 2011). 
Slight plantar flexion was chosen as previous research has 
shown that a certain degree of plantar flexion produces a 
maximal torque and 110° may place the TA closer to opti-
mal length for both maximal evoked and voluntary dorsi-
flexion torque production, which considers the lever arm 
length (Marsh et  al. 1981). A load cell (JR3, Woodland, 
CA, USA) was secured under the foot plate of which the 
foot was restrained by a minimally padded steel bar located 
proximal to the metatarsals for all torque recordings (Chris-
tie et al. 2009). There were 3 days of testing to assess the 
reliability of the measures as participants can exhibit a 
learning effect during maximal strength assessment (Green 
et  al. 2014). On each day, participants were asked to per-
form the same tasks. These tasks included both voluntary 
isometric maximal dorsiflexion contractions and maximal 
evoked isometric torque. Each of the three testing days 
was separated by at least 48 h to avoid any complications, 
which may arise as a result of fatigue.

sEMG recordings

Participants lay supine on a gurney, so that the most promi-
nent TA motor point may be electrically identified using a 
metallic probe over the skin surface (Christie et al. 2005). 
The lowest possible current that produced a minimally visi-
ble twitch was taken as the motor point (Calder and Gabriel 
2007). Following motor point identification, the recording 

areas were shaved, mildly abraded (NuPrep; Weaver and 
Co., Aurora, CO), and finally cleansed with alcohol to min-
imize skin–electrode input impedance. The sEMG record-
ing electrode had three parallel stainless steel bars which 
resulted in two bipolar signals. Each stainless steel bar was 
1 mm in diameter, 10 mm long, and was mounted with an 
interbar distance of 5  mm. The recording electrode was 
prepared with double-sided adhesive tape, electrolyte gel 
(Signal Gel; Parker Laboratories, Inc., Fairfield, New Jer-
sey), and placed in line with the muscle fibers, 1 cm distal 
to the motor point. Alignment and final placement of the 
electrodes for recording MFCV followed the procedures 
outlined in McIntosh and Gabriel (2012).

Finally, a ground electrode (CF5000; Axelgaard) was 
placed on the lateral malleolus (McIntosh and Gabriel 
2012). Electrode–skin input impedance (Grass EZM5, 
Astro-Med Inc., West Warwick, RI) was assessed before 
and after the experiment to ensure it remained below 
10  kΩ. Skin temperature (Electrotherm TM99A; Cooper 
Instrument Corp., Middlefield, Connecticut) was also 
monitored before and after the experiment to verify that 
there was no change, which could affect the stability of the 
myoelectric signal.

sEMG was band-pass filtered (between 10 and 1000 Hz) 
and amplified (Grass P511; Astro-Med) to maximize the 
resolution on a 16-bit analog-to-digital converter (MI PCI-
6052E; National Instruments, Austin, TX). All signals were 
collected at 5000  Hz and acquired on a computer-based 
data acquisition system (DASYLab; DASYTEC National 
Instruments, Amherst, New Hampshire). The data were 
stored on a PC (Celeron; Dell, Round Rock, Texas) for 
offline analysis.

The data window for the sEMG analysis of the maximal 
voluntary contraction was 500  ms, terminating before the 
middle of the contraction (Inglis et  al. 2013). The sEMG 
signals were up-sampled to 25 kHz prior to calculating the 
cross-correlation coefficient to increase the time resolution 
of the action potential propagation (Farina and Merletti 
2004). Muscle fiber conduction velocity calculation was 
based on the time delay identified by the peak of the cross-
correlation function and the known interbar distance of 
5  mm. The root-mean-square (RMS) amplitude of sEMG 
activity was also calculated. The rate of muscle activation 
was calculated by first rectifying the sEMG data and then 
numerically integrating the first 30  ms starting from the 
sEMG onset (Q30) that represents the rate of increase in 
the sEMG over the first 30 ms of muscle activity (Gottlieb 
et al. 1989).

Electromechanical delay (EMD) comprises an impor-
tant portion of the rate of tension development phase 
of the contraction (Gabriel et  al. 2001), where changes 
in motor unit activity patterns have been demonstrated 
to play a critical role in the maximal rate of torque 
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development (Van Cutsem et al. 1998). Electromechani-
cal delay was determined from the time lag between the 
onset of dorsiflexion torque and sEMG. sEMG onset 
threshold was identified as the first point of the sEMG 
signal to rise above the 95% confidence interval for base-
line noise and to remain above the 95% confidence inter-
val for 20 ms (Di Fabio 1987). Visual inspection was uti-
lized to ensure the accuracy of the established threshold’s 
ability to detect either torque or sEMG onset (Inglis et al. 
2013).

Evoked isometric compound muscle action potentials

Compound muscle action potentials were evoked through 
a cathode stimulating electrode placed over the fibular 
nerve along with an anode placed on the medial condyle 
of the fibula to evoke an isometric dorsiflexion twitch 
contraction. The evoked potentials were monitored on an 
oscilloscope (VC-6525; Hitachi) to ensure that a consistent 
maximal response had been achieved for ten stimulations. 
The peak-to-peak voltage (Vpp) was extracted from the 
CMAP, while contraction time (CT) was obtained from the 
torque-time curve. Evoked contraction time (CT) was cal-
culated from the time difference between the CMAP onset 
to its time to peak tension (Dahmane et al. 2005). Contrac-
tion time is used in this paper to separate differences in 
the rate of torque development associated with voluntary 
control versus muscle fibers properties. Ultimately, it was 
important to determine if potential sex-difference in Q30 
could be due to the initial differences in peripheral fac-
tors (MFCV, Vpp, or CT) or overall voluntary activation 
(RMS).

Maximal voluntary isometric dorsiflexion contractions

After the evoked contractions, a 15-min rest period was 
given. Participants then performed three voluntary maximal 
effort isometric dorsiflexion contractions by pulling with the 
top of their foot against a padded metal plate while mini-
mizing toe extension. During the MVC’s, each participant 
was asked to contract “as hard and as fast as possible” with 
an emphasis on the “hard” (Sahaly et al. 2001). Each con-
traction lasted approximately 5 s in duration and was sepa-
rated by a 5-min rest period. The force data were converted 
to torque values using the lever arm length, measured from 
the ankle joint to the metatarsals, where the load cell was 
located. A target line was given which represented 110% 
of the previously determined maximal effort, which was 
identified in real time on an oscilloscope. Furthermore, dur-
ing each voluntary contraction, the participants were ver-
bally encouraged to surpass the target line. Figure 1 shows 
a representative torque trace, rate of change in torque, and 
surface electromyographic activity of the tibialis anterior 

during a maximal effort dorsiflexion contraction. The man-
ner in which the signals were collected is described below.

Maximum rate of torque development was calculated 
from the equation provided by Andersen and Aagaard 
(2006). The calculation involves determining the slope 
(Δτ/Δt) over non-overlapping, successive 20 ms intervals, 
starting from the onset of the torque-time curve. The onset 
was determined as the point in the signal where the rate of 
change surpassed 1% of the maximal rate of torque devel-
opment (dτ/dtmax). The dτ/dtmax was then the maximum 
slope, which is synonymous with the ‘peak’ of the dτ/dt 
curve (Gabriel et al. 2001).

Statistical analysis

Statistical analysis was conducted in two stages: first, to 
evaluate the reliability of the criterion measures using the 
intraclass correlational analysis of variance technique for 
males and females, separately; second, significant differ-
ences between males and females (Sex) in the magnitude 
of the means, and changes in the means across test sessions 
(Days), and the interaction (Sex  ×  Days) was evaluated 
using a repeated-measures analysis of covariance to deter-
mine the impact of potential variables that may underlie 
sex-differences in the rate of torque development.

Intraclass correlation

Intraclass correlational analysis of variance (ANOVA) 
was performed to evaluate the reliability of the criterion 

Fig. 1   Torque (τ) (dark grey), surface electromyographic activity 
(light grey), and the rate of torque development (black) over the first 
second of a trial for a male representative subject. The first vertical 
line (black) represents the EMG onset; the second vertical line (grey) 
represents the torque onset
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measures for each group, which requires the consideration 
of both the stability of means and the consistency of scores. 
A one-way repeated-measures ANOVA was used to assess 
the stability of means across the three test sessions, while 
the intraclass correlation coefficient (model 2,k) was used 
to evaluate the consistency of scores within subjects. We 
adopted the convention delineated by Fleiss (1986) where 
an intraclass correlation coefficient (R) below 0.40 indicates 
poor reliability, between 0.40 and 0.75 is fair reliability, 
while values greater than 0.75 represent excellent reliability.

The magnitude of the intraclass correlation coefficient 
was further evaluated using the standard error of measure-
ment (SEM) within an individual (Green et al. 2015). The 
SEM was calculated as the square of the mean square error 
for the ANOVA table using the variables ‘Sex’ and ‘Day’ 
(Weir and Cockerham 1984). The intrasubject coefficient of 
variation was the grand mean across the three test sessions 
divided by the SEM.

Analysis of covariance (ANCOVA)

A repeated-measures analysis of covariance (ANCOVA) 
was then used to determine the impact of a covariate on sig-
nificant differences between males and females with respect 
to the dτ/dtmax development. Maximal torque and Q30 were 
the primary variables of interest. However, EMD, MFCV, 
and twitch contraction time (CT) were also explored. All 
statistical procedures were performed using SAS statistical 
software (SAS Institute Inc., Cary, NC) with alpha set at 
the 0.05 probability level. The means ± standard deviations 
(SD) for each measure are reported below.

Results

Participant characteristics

The means and standard deviations for the participant’s char-
acteristics are given in Table 1. Significant differences were 

seen in all anthropometric measurements between males 
and females (p < 0.05). However, there were no significant 
differences in hours per week engaged in physical activity 
or weight lifting (p > 0.05). The grand means and standard 
deviations for the criterion measures across the three test ses-
sions for males and females are presented in tables for the 
voluntary and evoked contractions (see Tables 2, 3).

Reliability analysis

Table 2 shows that the consistency of scores within subjects 
for the criterion measures obtained during the voluntary con-
tractions for females was excellent (R  =  0.76–92) except 
for EMD which had an intraclass correlation coefficient 
of R =  0.35 (see Table  2). Female participants exhibited a 
27.2% reduction in EMD from session 1 to session 3 (F [2, 
51] = 5.83, p = 0.0045). The lack of stability, as assess by 
the repeated-measures ANOVA, resulted in a reduced intra-
class correlation coefficient. However, the intrasubject coeffi-
cient of variation (Grand Mean/SEM) was 24.5%, which was 
deemed acceptable for further analyses (Green et al. 2015).

The means of the criterion measures generated during 
voluntary contractions as shown in Table  2 were highly 
stable across test sessions in males, while the consistency 
of scores within subjects ranged from fair to excellent 
(R =  0.61–83). The higher intrasubject variation (56.8%) 
for males Q30 resulted in a lower intraclass correlation 
coefficient (R = 0.61), but was still acceptable.

The same was true for the criterion measures gener-
ated during evoked contractions (R = 0.85–95) and Table 3 
shows that consistency of scores within subjects for the cri-
terion measures obtained during the evoked contractions 
in males ranged from fair to excellent (R = 0.57–96). The 
lowest intraclass correlation coefficient was for EMD, but 
it had an intrasubject coefficient of variation of only 22.8%. 
While there was a slight decrease in the means across ses-
sions, a limited range of scores contributed to a decreased 
intraclass correlation coefficient. Thus, the measure was 
still deemed acceptable for further analyses.

Table 1   Demographic 
characteristics of the study 
participants

Significant differences were set at a p < 0.05 level and are indicated with *

Measure Females (N = 18) M ± SD Males (N = 20) M ± SD Difference%

Age (years) 24 ± 3.3 24 ± 2.4 0

Height (m) 1.6 ± 0.1 1.8 ± 0.1 11.1*

Mass (kg) 56.5 ± 8.5 79.7 ± 3.9 29.1*

Body mass index (kg/m2) 21.4 ± 2.2 24.4 ± 0.8 12.3*

Foot length (cm) 23.7 ± 0.7 28.5 ± 1.5 16.8*

Leg length (cm) 39.2 ± 1.8 47.3 ± 2.3 17.1*

Leg girth (cm) 37.0 ± 1.7 40.4 ± 1.9 8.4*

Physical activity (hours/week) 7.5 ± 3.4 9.3 ± 2.2 19.4

Weight-lifting (hours/week) 4.4 ± 3.7 5.5 ± 2.8 20.0
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Between groups analyses

A repeated-measures ANOVA revealed a significant dif-
ference between groups and across days for voluntary 
maximal dorsiflexion isometric torque (F [1, 36] = 45.97, 

p = 0.001). Males had on average a 50.6% greater torque 
output than females. The difference between males and 
females with respect to the maximum rate of torque devel-
opment was similar in magnitude. The maximum rate 
of torque development was 44.6% greater in males than 

Table 2   Data under the voluntary condition

Means (M) and standard deviations (SD) for voluntary muscle fiber conduction velocity (vMFCV), voluntary electromechanical delay (vEMD), 
voluntary peak rate of torque development (vRTDpk), voluntary maximum torque (vTorque), voluntary rate of EMG increase over the first 30 
ms (Q30), and voluntary root-mean squared amplitude (RMS). Significant differences were set at a p<0.05 level and are indicated with *

 Female vMFCV (m/s) vEMD (ms) vRTDpk (Nm/s) vTorque (Nm) Q30 (mV x s) RMS (mV)

Test Day (M ± SD) (M ± SD) (M ± SD) (M ± SD) (M ± SD) (M ± SD)

1 5.16 ± 1.61 37.19 ± 11.06 81.15 ± 33.65 29.10 ± 7.96 7.90 ± 5.27 0.21 ± 0.10

2 5.28 ± 1.40 33.86 ± 10.07 82.74 ± 36.02 29.17 ± 7.78 8.26 ± 6.97 0.21 ± 0.13

3 5.33 ± 1.69 27.09 ± 5.30 91.43 ± 34.88 27.10 ± 6.61 8.20 ± 6.74 0.17 ± 0.11

Grand 5.26 ± 1.55 32.71 ± 9.94* 85.11 ± 34.51 28.46 ± 7.39 8.12 ± 6.26 0.20 ± 0.11

SEM 0.67 8.02 10.35 2.76 3.06 0.03

R 0.81 0.35 0.91 0.86 0.76 0.92

 Male

Test Day

1 4.92 ± 0.99 32.92 ± 12.48 160.03 ± 70.29 57.31 ± 17.12 5.80 ± 2.91 0.18 ± 0.11

2 5.13 ± 1.25 32.52 ± 12.08 157.04 ± 70.00 58.52 ± 21.69 4.83 ± 3.21 0.18 ± 0.13

3 4.70 ± 1.09 33.08 ± 13.74 142.01 ± 82.01 56.97 ± 20.54 5.26 ± 2.73 0.17 ± 0.08

Grand 4.92 ± 1.11 32.84 ± 12.57 153.03 ± 73.47 57.60 ± 19.55 5.30 ± 3.01 0.18 ± 0.11

SEM 0.55 6.12 30.29 8.06 1.88 0.06

R 0.76 0.70 0.83 0.83 0.61 0.72

Percent Difference 6.5 0.4 44.4* 50.6* 34.7* 10

Table 3   Data under the evoked condition

Means (M) and standard deviations (SD) for evoked muscle fiber conduction velocity (eMFCV), evoked electromechanical delay (eEMD), 
evoked peak rate of torque development (eRTDpk), evoked maximum torque (eTorque), evoked peak-peak voltage (Vpp), and the evoked con-
traction time (CT). Significant differences were set at a p<0.05 level and are indicated with *

 Female eMFCV (m/s) eEMD (ms) eRTDpk (Nm/s) eTorque (Nm) Vpp (mV) CT (ms)

Test Day (M ± SD) (M ± SD) (M ± SD) (M ± SD) (M ± SD) (M ± SD)

1 4.22 ± 1.76 16.71 ± 11.21 46.07 ± 18.41 2.59 ± 1.43 2.17 ± 0.92 77.20 ± 17.63

2 4.11 ± 0.99 15.38 ± 10.98 46.75 ± 18.43 2.69 ± 1.28 2.22 ± 0.91 80.74 ± 12.18

3 4.34 ± 1.51 14.97 ± 10.02 46.25 ± 14.43 2.68 ± 1.10 2.07 ± 0.98 69.21 ± 22.78

Grand 4.22 ± 1.43 15.69 ± 10.57 46.36 ± 16.87 2.66 ± 1.25 2.16 ± 0.92 75.72 ± 18.37

SEM 0.50 4.25 4.13 0.28 0.36 4.41

R 0.88 0.84 0.94 0.95 0.85 0.91

 Male

Test Day

1 4.33 ± 1.50 10.57 ± 3.30 106.48 ± 39.66 5.89 ± 2.33 2.59 ± 1.14 68.65 ± 7.47

2 4.71 ± 1.66 10.17 ± 4.56 101.01 ± 41.67 5.54 ± 2.48 2.51 ± 1.13 79.55 ± 11.98

3 4.17 ± 0.99 9.12 ± 2.06 104.50 ± 35.12 5.86 ± 1.99 2.73 ± 1.01 76.60 ± 8.09

Grand 4.40 ± 1.40 9.95 ± 3.46 104.00 ± 38.31 5.77 ± 2.24 2.61 ± 1.08 74.93 ± 10.33

SEM 0.76 2.27 8.57 0.45 0.40 2.32

R 0.71 0.57 0.95 0.96 0.87 0.64

Percent Differences 4.1 36.6* 55.4* 53.9* 17.2 0.01
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for females (F [1, 36] =  16.46, p =  0.0003). In contrast, 
females had a 34.7% greater rate of increase in muscle acti-
vation as assessed by Q30 (F [1, 36] = 4.30, p = 0.0454). 
There were no significant differences between males 
and females with respect to EMD, RMS amplitude, or 
MFCV (F [1, 36] =  0.00, p =  0.9635; F [1, 36] =  0.31, 
p = 0.5834; F [1, 36] = 0.86, p = 0.3598, respectively).

Similar to the voluntary contractions, maximal evoked 
dorsiflexion torque was 53.9% greater for males than for 
females (F [1, 36] = 28.52, p = 0.001), and males also had 
a comparably greater maximum rate of torque develop-
ment of 55.4% (F [1, 36] = 13.99, p = 0.0006). The EMD 
was 36.6% shorter for males than for females during the 
evoked contractions (F [1, 36] = 7.02, p = 0.0119). In con-
trast, MFCV, evoked CT, and Vpp of the CMAP were not 
significantly different between groups (F [1, 36] =  0.22, 
p = 0.6451; F [1, 36] = 0.03, p = 0.8589; F [1, 36] = 2.42, 
p = 0.1288, respectively).

Analysis of covariance

When maximal torque was used as the covariate in the 
repeated-measures ANCOVA for the maximum rate 
of torque development, the difference between means 
decreased to 1.2% (F [1, 36] = 0.01, p = 0.9264). The rate 
of increase in muscle activation (Q30) was not assessed as 
a covariate, because females were actually greater than 
males. The only other significant difference between males 
and females was EMD during evoked contractions. How-
ever, evoked EMD had little impact as a covariate. Sex-
related differences in the maximum rate of torque develop-
ment were reduced to 33.8%, which were still significant 
(F [1, 36] = 8.27, p = 0.0067).

Discussion

The main finding of the current work was that maximum 
torque was able to account for almost all of the sex-related 
differences in the maximum rate of torque development, as 
the percent difference in least-square  means  was reduced 
to 1.2% when using maximum torque as a covariate. There 
also were no significant differences between males and 
females in sEMG RMS amplitude magnitude as observed 
by Lenhardt et  al. (2009). The absence of sex-differences 
in the sEMG signal amplitude, Vpp, and CT may reflect a 
comparable number of hours per week of training for the 
two groups (Aagaard et  al. 2002). Contraction time was 
used in the study to determine if differences in the maxi-
mal rate of torque development were associated with either 
descending voluntary control or peripheral factors associ-
ated with muscle composition (Close 1972). Based on the 
fact, no sex-related differences in the CT (0.01%) were 

found suggests that the two groups were also similar with 
respect to muscle fiber composition, which is consistent 
with other research (Hicks and McCartney 1996).

Based on the work of Lenhardt et  al. (2009), it was 
expected that males and females would be more compara-
ble in maximum strength in the lower limb than the upper 
limb, which is consistent with other studies on sex-differ-
ences in maximum strength (Heyward et  al. 1986; Hoff-
man et al. 1979). Instead, a 50.6% difference was observed, 
which was the same order of magnitude as previously 
observed for the upper limb (Inglis et  al. 2013). One rea-
son may be related to differences in the cross-sectional area 
(CSA) of the TA in the present sample versus that of Len-
hardt et al. (2009). Although CSA was not directly meas-
ured, the males and females in this study had a larger dif-
ference in lower leg girth (8.4%) than the 5.2% observed 
by Lenhardt et al. (2009), which may suggest a larger dif-
ference in TA CSA.

The large difference in maximum strength between 
males and females was associated with a comparably large 
difference in the maximum rate of isometric dorsiflexion 
torque development (44.6%). Greater co-activation of the 
antagonist muscle group in females could contribute to 
both lower maximum strength and rate of torque develop-
ment. Macaluso et al. (2002) showed that females may use 
greater antagonist co-activation to stabilize the joint due 
to greater joint laxity, smaller agonist musculature, and 
potentially lower quality muscle mass (torque/CSA), as has 
been seen in older versus younger adults (Solomonow et al. 
1988; Thelen et  al. 1996). However, antagonist co-activa-
tion was not measured in this study as it is markedly lower 
during isometric contractions compared with dynamic con-
tractions and particularly lower when the muscle is placed 
in a shortened position as in this study (Pasquet et al. 2006).

There were several novel findings in this study. First, 
there were no significant differences between males and 
females with respect to MFCV. This result may be due to 
comparable muscle fiber diameters between the sexes, 
which is a large determinant of MFCV (Lange et al. 2002; 
Lindstrom and Magnusson 1977; Merletti et  al. 1995; 
Nishihara et al. 2005; Zwarts 1989). It has been shown that 
type I (slow twitch) fibers are situated predominately in the 
anterior portion of the TA (Henriksson-Larsén et al. 1983). 
Moreover, it is a general result that, while males have larger 
fiber diameters than females, the type I muscle fiber diam-
eters in females are larger than their type II muscle fibers. 
The small interelectrode distance (5 mm) will record from 
a small pick-up volume that encapsulates these superficial 
type I fibers of the TA, which are comparable in muscle 
fiber diameter between the sexes.

A second novel finding is that there were pronounced 
sex-differences in Q30 that were not evident in either the 
voluntary (RMS) or evoked (Vpp) sEMG magnitude. 
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Females were significantly greater than males with respect 
to the rate of muscle activation as assessed by Q30. The 
difference increased further (4%) with repeated testing. 
This change was also associated with a significant train-
ing-related reduction in voluntary EMD associated with 
repeated testing. This reduction in voluntary EMG but 
“not” evoked EMG, and highlights the change in neural 
control (Gabriel and Boucher 1998). We suggest that the 
greater Q30 and reduction in voluntary EMD for females 
were associated with a different motor unit activity pat-
tern at the onset of muscle contraction. However, it is not 
possible to distinguish exact motor unit behavior that may 
be responsible for the sex-related differences in the rate of 
increase in surface EMG. Van Cutsem et al. (1998) estab-
lished a link between the maximum rate of isometric dor-
siflexion torque, the rate of increase in sEMG, and the 
incidence of doublets associated with progressive resis-
tive training. Similarly, Gabriel et  al. (2001)found that 
only three training sessions were sufficient to produce an 
increase in the maximum rate of isometric elbow exten-
sion torque development and mean spike frequency of the 
sEMG signal during the torque development phase of the 
contraction in female participants.

Bojsen-Moller et al. (2005) reported a positive correla-
tion between the rate of torque development and tendon 
structure stiffness, indicating that 30% of the variation in 
torque development can be accounted for by the tendons 
mechanical properties. Winter and Brookes (1991) further 
hypothesized that joint laxity might also play a role in the 
tension development phase of the contraction as reflected 
in the EMD. We believe that the greater rate of increase 
in sEMG activation for females reflects a compensatory 
mechanism to transmit force to the tendon more effectively, 
as evident in the observed decrease in voluntary EMD 
(Kubo et al. 2003; Wilkerson and Mason 2000; Winter and 
Brookes 1991). In support of this idea, Rozzi et al. (1999)
have shown that females exhibited greater integrated sEMG 
activity upon landing from a jump as a compensatory 
mechanism for greater knee joint laxity, which includes 
both the musculotendinous unit and ligamentous restraint.

Limitations

sEMG can only provide an indirect measurement of differ-
ences and underlying changes in motor unit activity pat-
terns. Similarly, the use of CT to look at fiber composition 
differences only allows the association of either similari-
ties or differences. Although the possible influence of dif-
ferent muscle structures and sizes in males versus females 
was discussed in the paper, not directly measuring it with 
ultrasound is a limitation. It was also assumed that there 
were differences in TA tendon stiffness without having 

actually measured it. Moreover, caution must be applied 
when extrapolating the results to older adults. The use of a 
healthy college aged population may not account for differ-
ences between the sexes with aging, such as the loss of type 
II fibers, which may render the sexes more similar in the 
6th and 7th decades.

Conclusion

The results support the work of Hannah et  al. (2012) as 
maximal strength of the TA as a covariate accounted for 
nearly all of the sex-differences in the maximum rate 
of torque development. This was true, even though the 
difference in maximal strength was quite pronounced 
(50.6%). Thus, the hypothesis that maximum strength 
accounts for sex-differences in the maximum rate of ten-
sion development in the lower limb due solely to the fact 
that males and females are more comparable in maximum 
strength than in the upper limb was not supported. Rather, 
the maximum strength accounted for sex-difference in 
the maximum rate of tension development despite a large 
discrepancy in strength between males and females. Fur-
thermore, females had a greater rate of increase in sEMG 
activation, and exhibited a significant reduction in EMD 
with repeated testing, suggesting that they might utilize a 
different motor unit activity pattern at the onset of con-
traction. Future research may focus on training modalities 
and rehabilitation techniques that could optimize RTD 
rather than only focusing on maximum strength to assist 
an older population in balance maintenance and recovery 
from imbalance.
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